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Abstract

In many applications, one is interested to detect certain patterns in random process
signals. We consider a class of random process signals which contain sub similarities
at random positions representing the texture of an object. Those repetitive parts
may occur in speech, musical pieces and sonar signals. We suggest a warped time
resolved spectrum kernel for extracting the subsequence similarity in time series in
general, and as an example in biosonar signals. Having a set of those kernels for
similarity extraction in different size of subsequences, we propose a new method to
find an optimal linear combination of those kernels. We formulate the optimal kernel
selection via maximizing the Kernel Fisher Discriminant criterion (KFD) and use
Mesh Adaptive Direct Search (MADS) method to solve the optimization problem.
Our method is used for biosonar landmark classification with promising results.

Key words: Time-resolved spectrum kernel, SVM, Fisher discriminant, Mesh
adaptive direct search.

1 Introduction

Time series are an important type of data occurring in many scientific dis-
ciplines. A common task with time series is to compare one sequence with
another. In some domains, a very simple distance method measure, such as
Euclidian distance will suffice. In the case that two time series have similar
parts but not at similar positions, we use a more efficient method for similarity
extraction known as Dynamic Time Warping (DTW), in which the time of one
(or both) sequences is “warped” before an alignment. Dynamic programming
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is used to measure the similarity score in DTW.
Kernel methods have also been used as a popular method to extract the sim-
ilarity. Different kernels correspond to different notions of similarity. A kernel
function implicitly defines a feature space that in many cases we do not need
to construct explicitly. The structure of the data and our knowledge of the
particular time series suggest a way of comparison that we can consider in
our kernel function. Then, the kernel function can be used directly in Support
Vector Machines (SVMs) based classifiers.

There have been methods proposed to embed the time alignment operation
and DTW into a kernel function [1,2]. These methods especially are useful in
speech recognition, in which the information lies in the whole time series.

However, in some time series the information lies in a fixed (or not very varied)
size window of time events (subsequence), independent of the actual time.
So we have subsequences at random positions whose similarities should be
measured. Those repetitive parts may occur in speech, musical pieces and
sonar signals. Therefore, the algorithms for finding similar time series should
not consider the whole time series but look for informative subsequences. Then,
in kernel based methods for similarity extraction, we need kernels, which can
extract similarities between all subsequences. Hence, the main task is to find
a map that reflects the suitable and common features of those time series and
gives a good indiction of the sub similarity, we would like to capture. On the
other hand, we should be able to calculate those inner products efficiently.

A similar situation happens in text classification and also remote homology
detection in protein families, where we must detect a remote relation between
unknown sequence and a family of proteins. Those proteins contain domains
whose positions are not similar in proteins of a family. There again we should
measure the local similarities between all subsequences as an indication of
similarity between two sequences.

Proposed kernels for text classification and remote homology detection in pro-
tein families include the Fisher kernel [6], spectrum kernel [3], mismatch kernel
[4], and the string kernel proposed by Lodhi et al. [5]. A dynamic programming
technique makes the computation of those kernel very efficient.

Inspired by the solutions for remote homology detection in protein families
and the string kernel proposed by Lodhi et al. [5], in our previous work [7] we
suggested a similar kernel called time-resolved spectrum kernel to measure
the similarity of two time series. The p-length subsequence of that kernel
simply measures the occurrences of fixed p-length subsequences for each of
the time series in consideration. The more time series share similar p-length
subsequences, the more similar they are.

In this paper, we implement a more general kernel called warped time-resolved
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Fig. 1. Three different trees as biosonar landmarks. From left to right: Ficus, Bam-
boo, Schefflera.

spectrum kernel, which considers warping in the subsequences. The warped
time-resolved spectrum kernel measures the whole similarities of all warped
non contiguous subsequences of the two time series, independent of their po-
sitions.

Having a set of those kernels for different size of subsequences, we find the op-
timal kernel selection via maximizing the Kernel Fisher Discriminant criterion
(KFD) [8] to build the optimal linear combination of kernels. This criterion
ascertains that the obtained kernel maximizes the similarity score between
signals of one class and minimizes the similarity score between signals of two
different classes. Given that criterion, to solve the optimization problem we use
a Mesh Adaptive Direct Search (MADS) method. MADS as defined by Audit
and Dennis [9] is a class of algorithms for nonlinear optimization. It computes
a series of points that get closer and closer to the optimal point. The algo-
rithm searches a set of randomly selected points, called a mesh, around the
current point-the point computed at the previous step of the algorithm. The
mesh is formed by adding the current point to a scalar multiple of a set of
vectors called a pattern and the point in the mesh that improves the objective
function becomes the current point at the next step. The routine continues
until a stopping criterion is fulfilled.

In this paper, we study the classification of biosonar signals as an example
of the random process signals which contain those local similarities. Bats can
distinguish objects by emitting a series of ultrasound signals (chirps) that
generally sweep covering frequencies from 22 to 100 kHz [10]. Inspired by the
bat biosonar system, researchers have utilized ultrasonic sensing techniques
for mobile robots (biomimetic robots) and tried to classify different textures
and landmarks using received echo signals [11,12].

Sonar signals reflected by different trees and flowers as landmarks (Fig. 1)
contain the information of their textures. Those textures represent the geo-
metric specifications like the size of leaves or branches. They are random and
nonstationary in the temporal dimension and small changes in the orientation
of the plant result in changes in the position of energy features along the time
series.
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Fig. 2. The time-resolved spectrum kernel tries to find the local similarities in win-
dows of size p in echoes of one object.

However, as we see in Fig. 2, despite the randomness of those signals, there
are some local similarities (shown by p) in echoes from one tree. But their
positions are random. Then, we should find the size or sizes of subsequences of
the time series independent of the positions of occurrences that have maximum
similarities in echoes of each object. We use our suggested kernel to extract
the similarities between those reflected echoes.

This paper is organized as follows: In Sec. 2 we describe the warped time
resolved spectrum kernel. In Sec. 3 we describe our method for optimal kernel
selection. We report experimental results in Sec.4 and give conclusions in Sec.
5.

2 Warped time resolved spectrum kernel

A kernel function can often be considered as a measure of similarity. Different
kernels correspond to different notions of similarity. The use of a kernel makes
it possible to perform the mapping into that feature space and to calculate
the inner product between those maps. However, the main task is to find a
map φ that reflects the suitable and common features of data and gives a good
indication of the similarity we would like to capture. The warped time-resolved
spectrum kernel measures the whole similarities of all warped non contiguous
subsequences of the two time series, independent of their positions. The more
two time series share similar subsequences, the more similar they are. We use
dynamic programming for efficient calculation of that kernel.

A time sequence s = s1...sn is a sequence of data points at successive times
with si ∈ Rd, where 1 ≤ i ≤ n and d is the dimension of data points. We
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denote |s| the length of s, s(i− p + 1 : i) the p-length subsequence of s from
position i − p + 1 to position i. We consider I|s|p the set of indices defining
all the p-long (both contiguous and non-contiguous) subsequences of s: Is

p =
{i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|} and u = si as a subsequence of s in
positions given by i = (i1, ..., i|u|). The number of gaps in the subsequence is
gi = (i|u|− i1 + 1)− |i|. For example, if we consider s = s1s2s3s4s5, u = s1s3s5

is a subsequence of s in the positions i = (1, 3, 5) of length |i| = 3 and gi = 2.

In p-length warped time resolved spectrum kernel, we add the similarities of
all (possibly warped) p-length subsequences of times series s and t.

For u ∈ Σp×d, the set of all subsequences with size p and dimension d, the
implicit embedding map φ brings s to a vector space F (φ : s → (φu(s)) ∈ F )
and the u component of our feature vector is:

φp
u(s) =

∑

i∈I|s|p , u∈Σp×d

ϕu(si)γ
gi

where γ ∈ (0, 1) is a decay factor as a cost for warping (non-contiguousity) in
the time series and ϕ is an implicit map that satisfies:

κp(si, tj) =< ϕu(si), ϕu(tj) > i ∈ Is
p, j ∈ It

p, u ∈ Σp×d (1)

in which κp is a kernel function that measures the local similarity between two
p-length subsequences si and tj of the time series in consideration. In words,

φp
u(s) is a sum over all similarities between p-long subsequences of s and u.

The dot product of those feature vectors of s and t represents the warped time
resolved p-spectrum kernel :

Kp(s, t) = 〈φp
u(s), φ

p
u(t)〉 =

∫
Rd×p φp

u(s)φ
p
u(t)du

=
∑
i∈Is

p

∑
j∈It

p

γ
giγ

gj ∫
Rd×p ϕu(si)ϕu(tj)du

Regarding the above kernel definition for local similarity(Eq. 1), we conclude:

Kp(s, t) =
∑

i∈Is

p

∑

j∈It

p

κp(si, tj)γ
gi+gj (2)

As we see from the above equation, the kernel adds all similarity scores between
subsequences, considering all possible degrees of warping. Needless to say, the
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calculation of that kernel has a very high computational cost. We use dynamic
programming to calculate it in an efficient manner and justifiable time.

Considering the definitions of Is
p and It

p, we can rebuild the Eq. 2:

Kp(s, t) =
|s|∑
i=1

|t|∑
j=1

∑

(i,j)∈Is(1:i)

p ×I
t(1:j)
p

κp(si, tj)γ
gi+gj

To express the kernel using a suffix version of that, we define the suffix kernel
as:

KS
p (s(1 : i), t(1 : j)) =

∑

(i,j)∈Is(1:i)

p ×It(1:j)

p

κp(si, tj)γ
gi+gj (3)

So we have:

Kp(s, t) =
|s|∑

i=1

|t|∑

j=1

KS
p (s(1 : i), t(1 : j) (4)

We consider s′ = s(1 : |s′|), t′ = t(1 : |t′|), 1 ≤ |s′| ≤ |s| and 1 ≤ |t′| ≤ |t| as
prefixes of s and t. If we add a new data point x to the time series s′, using
the above equation we can calculate Kp(s

′x, t′):

Kp(s
′x, t′) =

|s′x|∑
i=1

|t′|∑
j=1
KS

p (s′x(1 : i), t′(1 : j))

=
|s′|∑
i=1

|t′|∑
j=1
KS

p (s′(1 : i), t′(1 : j)) +
|t′|∑
j=1
KS

p (s′x, t′(1 : j))

Then,

Kp(s
′x, t′) = Kp(s

′, t′) +
|t′|∑

j=1

KS
p (s′x, t′(1 : j)) (5)

We accept a constraint on choosing the kernel function κp(si, tj) (Equation

1), we suppose:

κp(si, tj) =
p∏

i=1

κ∗(sii, tji
) (6)

in which κ∗ is an arbitrary function that measures the similarity between
two data points of the time series. In this study, as a suitable and arbitrary
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selection we consider κ∗(sii, tji
) = exp

−(sii
−tji

)2

2σ2 to measure the similarity

between two data points, then:

κp(si, tj) =
p∏

i=1

κ∗(sii, tji
) = exp


−

||si − tj||2
2σ2


 (7)

That, κp(si, tj) is a gaussian kernel of width σ and suitable for measuring the

local similarity of subsequences in time series. This also ensures the positive
definiteness of our suggested kernel (Eq. 2).

If we add another new data point y to the time series t′, considering the
assumption for κp and the above definition of KS

p (Eq. 4), we have:

KS
p (s′x, t′y) = κ∗(x, y)

|s′|∑

i=1

|t′|∑

j=1

γ|s
′|−i+|t′|−jKS

p−1(s
′(1 : i), t′(1 : j)) (8)

It means when new points are added, to measure the new p-suffix kernel,
we must calculate similarities of p − 1 length subsequences in the suffixes
considering all possible degrees of warping. To evaluate KS

p recursively, we
define:

KSw
p (k, l) =

k∑

i=1

l∑

j=1

γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) (9)

Then equation 8 becomes:

KS
p (s′x, t′y) = κ∗(x, y)KSw

p (|s′|, |t′|) (10)

to express the above kernel recursively, we use the relation:

a∑

i=1

b∑

j=1

f(i, j) = f(a, b) +
a−1∑

i=1

b∑

j=1

f(i, j) +
a∑

i=1

b−1∑

j=1

f(i, j)

−
a−1∑

i=1

b−1∑

j=1

f(i, j)

Let f(i, j) = γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) , a = k and b = l, we have the
following algorithm:
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Fig. 3. Kernel score between two echoes of Ficus tree with different warping costs

Algorithm: Recursive computation of the warped time resolved spectrum ker-
nel.

KSw
p (k, l) = KS

p−1(s
′(1 : k), t′(1 : l)) + γKSw

p (k, l − 1) + γKSw
p (k − 1, l)− γ2KSw

p (k − 1, l − 1)(11)

KS
p (s′x, t′y) = κ∗(x, y)(x, y)KSw

p (|s′|, |t′|)

Kp(s
′x, t′) = Kp(s

′, t′) +
∑|t′|

j=1KS
p (s′x, t′(1 : j))

KS
0 (s′, t′) = 1 for all s′, t′,

KS
i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s
′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic programming technique with
the order of O(p|s||t|). We have recursions over the prefixes of the time series
and the lengths of the subsequences and we do the routine above until x = s|s|
and |t′| = |t|. As we see from the above pseudo-code, the evaluation of the
Knorm

i is of order O(|s||t|) and the overall complexity of our algorithm to
calculate a linear combination of all p-spectrum kernels is O(p|s||t|).

To prevent that with larger sizes of subsequences the kernel achieves a higher
similarity score we normalize the kernel,

Knorm
i (s, t) =

Ki(s, t)√
Ki(s, s)Ki(t, t)

This operation scales the similarities in the range [0,1]. Fig.3 plots the kernel
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Algorithm Warped Time resolved spectrum kernel

Input : Time series s and t of length n and m, max subsequence length l
and warping cost γ;

Output: Array of spectrum kernel K[] with different sizes of
subsequence-length from 1 to l);

KPSw(0 : n, 0 : m) = 0;1

for i ← 1 to n do2

for j ← 1 to m do3

KPS(i, j) = κ∗(si, tj);4

K[1] = K[1] + KPS(i, j);5

end6

end7

for p ← 2 to l do8

for i ← 1 to n do9

for j ← 1 to m do10

KPSw(i, j) = KPS(i− 1, j − 1) + γKPSw(i, j − 1) +11

γKPSw(i− 1, j)− γ2KPSw(i− 1, j − 1);
KPS(i, j) = κ∗(si, tj)KPSw(i− 1, j − 1);12

K[p] = K[p] + KPS(i, j);13

end14

end15

end16

return K[]17

score of two samples of echoes reflected by a Ficus tree with different values
of warping cost. We see that as the gamma parameter gets closer to 1 we let
subsequences of two time series warp more and the similarity score (kernel
score) increases. When gamma is equal to zero, the kernel is equal to the
time-resolved spectrum kernel [7].

In practice and especially in our classification task, it makes sense to consider
the similarity of subsequences having different sizes and calculate a linear
combination of different i-spectrum kernels with different weighting θi ≥ 0.
The weighted kernel is:

K(s, t) =
p∑

i=1

θiKnorm
i (s, t) (12)

The parameter θi shows the weight of each i-length kernel and the optimum
selection of those parameters extracts maximum similarities in the signals in
consideration. It is a case of more general problem known as optimal kernel
selection. For this task we selected the optimal kernels via maximizing the
Kernel Fisher Discriminant (KFD) criterion ([8]).
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3 Optimal kernel selection

3.1 Fisher discriminant based optimal kernel selection

Having two classes of labelled data, Fisher’s idea was to look for a direction
w that separates the classes means well (when projected onto the found di-
rection) while achieving a small variance around these means. The hope is
that, using this projection a classifier can classify the unlabelled data with
a small error. The quantity measuring the difference between the means is
called between class variance and the quantity measuring the variance around
these class means is called within class variance, respectively. Then, in Linear
Fisher Discriminant Analysis the goal is to find a direction that maximizes
the between class variance while minimizing the within class variance at the
same time (Fig. 4).

The Kernel Fisher Discriminant (KFD) is a non-linear extension of the linear
Fisher discriminant analysis. Optimizing the selection of kernels using this
criterion in kernel spaces ensures us that the obtained kernel scores represent
the maximum similarity within signals of a class and minimum similarity
between two different classes.

Given a set of n+ positive training data χ+ ⊂ Rd and a set of n− negative
data χ− ⊂ Rd, (n = n+ +n−, all data), and a map φ : u → φ(u) ∈ F , the aim

is to find a direction w =
n∑

i=1
αiφ(ui) in the feature space F given by weights

α = [α1, ..., αn] which maximizes the separation of the mean scaled in the
feature space and minimizes the variance in that direction (KFD criterion).

10



Considering the kernel matrix K:

Ki,j = k(xi, xj) =< φ(xi), φ(xj) > (13)

For the direction w, the KFD criterion will be in the form of ([8]):

J(α) =
αT Mα

αT (N + λI)α
(14)

The parameter λ is a regulation factor and M and N are gained in terms of
the kernel matrix K:

M = (µ+ − µ−)(µ+ − µ−)T (15)

where µ+ = 1
n+

∑
x∈χ+

Kx and µ− = 1
n+

∑
x∈χ−

Kx are scaled means in the feature

space and:

N = KDKT (16)

where D =




In+ − 1
n+

1n+1T
n+

0

0 In− − 1
n−

1n−1T
n−




n×n

in which 1n and In denote the vector of all ones and the identity operator in
Rd, respectively.

The parameter α that maximizes the KFD criterion is obtained via:

αmax = (N + λI)−1(µ+ − µ−) = (KDKT + λI)−1Ky

where:

y =




(1/n+)1n+

(−1/n−)1n−




n×1

which results in:

Jmax(K) = αT
maxKy = yT K(KDT K + λI)−1Ky (17)

If we consider the variable K as a linear combination of a set of kernel matri-
ces, in the next step we try to find the matrix K, which maximizes the above
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equation. Considering equations 12 and 17, the problem of finding the optimal
kernel in terms of maximizing the Fisher discriminant ratio can be written as:

min f(
l∑

i=1
θiKnorm

i ) = −Jmax(
l∑

i=1
θiKnorm

i )

subject to θ º 0, 1T θ = 1

It is easy to prove the convexity of the above objective function. We suppose
f(x, y) = x′y−1x, h(K) = Ky and g(K) = KD′K + λI, considering the
convexity of f , h and g, we conclude the convexity of f(h, g) and so the above
objective function. Then, any local optimum answer for the objective function
is a global one of that, too. One suggested method (Kim et. al [13]) was to
use the convex optimization and bring the objective function in the from of
Semi-Definite Programming (SDP) via the Schur complement technique [15].
In their method, the SDP solver of SeDuMi [14] was used to solve the SDP.

Instead of that method we use a newly suggested method for local optimiza-
tion known as Mesh Adaptive Direct Search method that needs less run time
(approximately one third in our experiments) on a similar machine.

3.2 Mesh Adaptive Direct Search method

MADS (defined by Audit and Dennis [9]) is a class of algorithms for nonlinear
optimization. It is a modification of the generalized pattern search (GPS [16])
algorithm for local optimization. In summary, this algorithm computes a series
of points that get closer and closer to the optimal point. It searches a set
of random selected points, called a mesh, around the current point-the point
computed at the previous step of the algorithm. The mesh is formed by adding
the current point to a scalar multiple of a set of vectors called the mesh
size (pattern). (The GPS algorithm uses fixed direction vectors, whereas the
MADS algorithm uses a random selection of vectors to define the mesh). The
point in the mesh that improves the objective function becomes the current
point at the next step. The value of the objective function either decreases or
remains the same from each current point to the next. The routine continues
until a stopping criterion is fulfilled. The formal definitions and algorithm from
[9] follow:

Suppose that f : Rn → R∪{+∞} is a given function under general constraint
x ∈ Ω ⊆ Rn, Ω 6= 0.

If Ω 6= Rn (constraint optimization), the algorithm attempts to locate a min-
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imizer of function f over Ω by means of a barrier function:

fΩ =





+∞ if p /∈ Ω

f otherwise.

The algorithm does not require the use of the approximations or derivatives
of f (free-derivative method). This is useful (especially in our case) when ∇f
is not available or can not be accurately estimated.

MADS is an iterative algorithm where at each iteration k a finite number of
trial points are generated and their objective function values are compared
with the current incumbent value fΩ(x) as the best objective function value
found so far. Each of these trial points lies on the current mesh, constructed
from a finite fixed set of nD directions D ⊂ Rn scaled by a mesh size parameter
∆m

k ∈ R+. The mesh size parameter controls the coarseness or fineness of
search at iteration k. ∆m

k+1 is adjusted from ∆m
k depending on the success of

that iteration.

Dn×nD
must be a positive spanning set, i.e., nonnegative linear combinations

of its elements must span Rn, and each direction dj ∈ D (j ∈ [1, nD]) must
be the product of some fixed nonsingular generating matrix G ∈ R by an
integer vector zj ∈ Zn. We consider Z a matrix whose columns are zj, for
j = 1, 2, ..., nD, and use matrix multiplication, D = GZ. If Sk is the set
of points where the objective function f had been evaluated at the start of
iteration k, at iteration k, the current mesh is defined as:

Mk =
⋃

x∈Sk

{x + ∆m
k Dz : z ∈ NnD}

The above definition ensures that all previously visited points lie on the mesh,
and that new trial points can be selected around any of them.

Each iteration consists of SEARCH and POLL steps. In the SEARCH step
the value of fΩ at any finite number of mesh points is evaluated. When a
improved mesh point, at which fΩ is less that minx∈Sk

fΩ, is generated, the
iteration may stop, or it may continue to find a better improved mesh point.
Otherwise the POLL steps begins and the algorithm generates and evaluates
fΩ around the current incumbent xk, where fΩ(xk) = minx∈Sk

fΩ(x). The poll
size parameter ∆p

k limits the distance between xk and the new trail points.
The set of new trail points is called a frame and xk is the frame center. This
frame is generated using xk, ∆p

k, ∆m
k , and D to obtain a set Dk of positive

spanning directions.
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At iteration k, the MADS frame is defined to be the set:

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂ Mk

in which Dk is a positive spanning set (0 /∈ Dk) and for each d ∈ Dk:

• d 6= 0 is nonnegative integer combination of the directions in D,
• ∆m

k d, the distance from the frame center, is bounded by a constant times

the poll size parameter: ∆m
k ‖d‖ ≤ ∆p

k max
{∥∥∥d′

∥∥∥ : d
′ ∈ D

}
,

• limits of the normalized set Dk are positive spanning sets [17].

To ensure the convergence, the radii of successive frames must converge to
zero at a slower rate than the mesh size parameter. It means ∆m

k+1 ≤ ∆p
k+1

and it must satisfy

lim
k→∞

inf ∆p
k = lim

k→∞
inf ∆m

k = 0

The algorithm evaluates fΩ at points in the frame Pk until it finds an improved
point t with fΩ(t) < fΩ(xk) or until it has evaluated fΩ at all of the points
in Pk. When the POLL step fails to generate an improved mesh point then
the frame is called a minimal frame, and the fame center pk is said to be a
minimal frame center and the poll size parameter should be updated.

At iteration k, the mesh size parameter is updated according to:

∆m
k+1 =





∆m
k /4, if pk is a minimal frame center

4∆m
k , if an improved mesh point is found, and∆m

k ≤ 1
4

∆m
k , Otherwise.

and the poll size parameter as:

∆p
k =

√
∆m

k

These rules guarantee that ∆m
k is always a power of 1/4 less than or equal to

one, and ∆m
k ≤ ∆p

k for all k. We can select a default minimum value of mesh
size as stopping criterion to be fulfilled.

In summary, the MADS algorithm is described as follows:
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Algorithm Mesh Adaptive Direct Search Algorithm

step 0 [Initialization] Given x0, ∆m
k ≤ ∆p

k and Dn×nD
a positive spanning

set. Set ∆m
0 = 1, and the Iteration counter k:=0

step 1 [SEARCH step] Evaluate fΩ on a finite subset of trial points on the
mesh Mk as defined above. If an improved trail point t that fΩ(t) < fΩ(xk)
is found, declare k successful and go to step 3.

step 2 [POLL step] Evaluate fΩ at points from the frame Pk until xk+1 that
fΩ(xk+1) < fΩ(xk) is found. If no such point exists declare k unsuccessful.

step 3 [Parameter update] If iteration k was declared unsuccessful, then set
pk+1 = pk (minimal frame center). Otherwise pk+1 is an improved mesh
point. Update ∆m

k+1 and ∆p
k+1. If an appropriate stopping criteria has not

been met, set k:=k+1 and go to step 1.
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Fig. 5. (a) Biosonar head and (b) Emitted chirp signal and its frequency content.

4 Experiment and Results

We used a sonar head system consisting of three ultrasound transducers,
one for emission chirp signals (Polaroid 7000), two for reception (Polaroid
6000)(Fig. 5.a) and tried to classify three trees as landmarks (Fig. 1). The
emitted pulse was a linearly frequency modulated chirp sweeping from 20kHz
to 120kHz in 1 ms (Fig. 5.b). The reflected echo contains the information
about the geometry of the tree.

Fig. 6 shows the block diagram of the data preprocessing procedure of reflected
echoes. We passed the reflected echoes through a bank of 10 gammatone filters
between 20 kHz and 120 kHz. In order to extract the envelope of the filtered
signals, they were delivered to half-wave rectifiers. The next step is frame
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Fig. 6. Block diagram of the preprocessing steps for reflected echoes.

blocking. In this step the signal blocked to frames of N samples, is separated
from adjacent frames by M (M < N) samples and has N − M overlaps.
Considering the sampling frequency of the data acquisition part (1 MHz) and
the minimum width of leaves of trees and axial resolution of transducers,
we selected N = 32 and 50% overlap for frames. The next step in the data
preprocessing is to window each individual frame so as to minimize the signal
discontinuities at the beginning and end of each frame. We used a Hamming
window for this purpose. The last step is to calculate the average energy of
each band of gammatone filter bank in each frame. The result is a feature
matrix, where each column is a vector showing the average energy of each
channel in one time frame. Fig. 2 shows the examples of the preprocessed
echoes of Ficus and Schefflera trees.

We consider the output of the block diagram shown in Fig. 6, a time series
in which each point is a time frame and its value is a vector of features (the
average energy of each channel of gammatone filter bank). The task is to
classify the echoes of each object using those features.

We gathered the sonar data, 720 echoes for each tree. After the preprocess-
ing steps for each echo (Fig. 6), we selected randomly 100 echoes of each
tree and then calculated Knorm

i (s[m], s[n]) for i ∈ [1, l], m, n ∈ [1, 100] and
σ ∈ {1, 10, 100, 1000} (Eq. 7), where s[m] and s[n] are the m-th and n-th of
pre-processed echoes and l is the length of the windowed time series (in our
experiment 90). Using the optimal kernel selection noted above, we found the
optimal value for θi in Eq. 12 and calculated the matrix K:

K(i, j) = K(s[i], s[j]) =
l∑

k=1

θopt
i Knorm

l (s[i], s[j]) (18)
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in which i, j ∈ [1, 300] and s[i] is i-th echo. For Ficus echoes i ∈[1,100], for
Bamboo i ∈ [101,200] and for Schefflera i ∈[201,300]. In this study, we found
that suitable values for σ (Eq. 7) are in the range [10,100].

A SVM learns a classification function f(x) of the form:

f(x) =
∑

i;xi∈χ+

λiK(x, xi)−
∑

i;xi∈χ−

λiK(x, xi) (19)

where non-negative λi weights are computed during training by maximizing
a quadratic objective function and K(., .) is the kernel matrix. Given this
function, a new data x is predicted to belong to the positive dataset, if the
value of f(x) is positive, otherwise it belongs to the negative dataset. After
training the classifier, we used the remaining data (1860 echoes) for testing.

Figure 7 shows the accuracy of the classifier for those trees with different
warping costs (γ) and σ = 100, based on the number of echoes as observation.
It shows a high accuracy even for a low number of echoes. We see that the
parameter γ can affect the accuracy of the classifier and the accuracy of the
time-resolved spectrum kernel [7] (γ=0, without warping) increases in each
tree by changing the parameter γ.

Table 1 shows the accuracy of the classifier when it decides based on only
one observation. Best accuracyies for Ficus, Bamboo and Schefflera trees are
gained for γ = 0.1, γ = 0.3 and γ = 0.2, respectively. This parameter lets
the kernel to consider a warping (with a cost) for the subsequences of the
time series and extract their similarity. Considering that parameter in our
classification task is justifiable, because the echoes reflected by the adjacent
leaves of each tree can have somehow similar patterns but not exactly the
same, so we need to have a parameter (γ) that can let the kernel capture
those similarities, too. The optimal value of that parameter for each tree can
be related to the physical specification of each tree. We see if γ gets closer to
1 (no cost for warping) the accuracy decreases.

Comparing with the previous works of our group (Wang et al. [18]), The
new classifier shows a notable improvement in accuracy. The best result for
classification gained before was through template matching in 2D biosonar
acoustic images (using a 2D Discrete Cosine Transform). The classification was
made via extracting the maximum normalized cross correlation between the
acoustic templates (Fig. 9). As shown in Fig. 8, we could get higher accuracy
in both single and repeated observations (even with fewer echoes) compared
with Fig. 9 (note the different horizontal and vertical axes).
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Fig. 7. The accuracy of the classifier using our suggested kernel with different warp-
ing costs (σ = 100) for a) Ficus, b) Bamboo and c)Schefflera. For γ = 0, the kernel
is similar to the time-resolved spectrum kernel [7].

5 Conclusion

In the previous study [7] we presented a spectrum kernel for local similarity
extraction in time series. That kernel measured the local similarities without
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γ Ficus Bamboo Schefflera

γ = 0 86.2 89.5 90.2

γ = 0.1 89.1 90.1 91.3

γ = 0.2 88.6 91.4 93.8

γ = 0.3 87.6 93,1 91,1

γ = 0.5 80.1 81.3 82.1

γ = 0.1 59.2 67.4 58.1
Table 1
Classification rate based on different values of γ

considering the warping. In this paper we used a more general kernel that
considers the warping in p-length subsequences and measures the similarity
between two time series by adding all local similarities of subsequences in-
dependent of their positions. This kernel is useful for similarity extraction in
time series, which contain randomly position local similarities, representing
the texture of an object. With different values of p we obtain different ker-
nel scores. We presented a method to extract an optimal linear set of those
kernels based on the Fisher criterion in kernel space. With this criterion, the
obtained kernel ensures the maximum similarity score of signals of one object
and the minimum similarity score between signals of two different objects. We
used a Mesh Adaptive Direct Search method (MADS) to solve our optimiza-
tion problem. Compared with other matching methods for biosonar signals,
we obtained better results with our suggested kernel based method.
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