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Abstract— This paper addresses the problem of object classi-
fication in a biosonar based mobile robot in a natural environ-
ment using a boosting method. We present an algorithm based
on gradient boosting for biosanar-based robots that recognize
different objects such as different trees via reflected sonar
echoes. Gradient boosting is a machine learning approach, that
builds one strong classifier from many base learners. We present
two kinds of base learners for the gradient boosting: Ordinary
Least Squares (OLS) and kernel-based base learners. Compared
with our previous works, in which we presented a time resolved
spectrum kernel to extract the similarities between echoes,
we get more efficient and accurate results with the newly
proposed boosting method. We compare the methods in terms
of sensitivity, specificity, accuracy and Matthew’s correlation
coefficient and also the runtime of training and testing.

I. INTRODUCTION

Bats can distinguish objects and their prey by emitting
a series of ultrasound signals (chirps) that generally sweep
covering frequencies from 22 to 100 kHz. They can sepa-
rately perceive the delays of two concurrent echoes as little
as 2 ms apart and resolve reflecting points as close together
as 0.3 mm in range [10]. The acoustic image of a sonar target
is apparently derived from time-domain or periodicity infor-
mation processing by the nervous system. Inspired by the bat
biosonar system, researchers have utilized ultrasonic sensing
techniques for mobile robots (biomimetic robots) and tried to
classify different textures and landmarks using received echo
signals. Biosonar sensing involves the production of chirps,
the reception of echoes from targets, signal analysis and
target matching. By comparing the returning echoes (which
are individually the superposition results of the reflected
echoes) we aim at recognizing the objects. Gao et. al [11]
presented a deformable template matching algorithm for
classification of several types of brick walls, picket fences
and hedges using sonar echoes. M. Wang et al. [13], [12]
used different structural features in the frequency domain
and also cross correlation as template matching algorithm
for that task. In our previous works [18], [19] we suggested
a kernel named Time-resolved spectrum kernel for matching
the subsequences of time series (sonar echoes) and extracting
the local similarities of echoes. The results outperformed
other matching techniques [13], [12]. The time-resolved
spectrum kernel simply measures the whole similarities of all
subsequences of the time series in consideration. The more
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two time series share similar subsequences, the more similar
they are. A linear combination of kernels with different
subsequence size (p-spectrum kernels) was a measure of
similarity between two time series. Despite the accurate rate
of classification, the training and testing speed were slow
and the method is not applicable for real applications.

In this paper, we implement a simple yet powerful method
for the problem at hand using boosting. Originally, booting
has been proposed in the 90’s (Freund and Schapire, 1996
[1]) as a method for classification and regression in which a
fitting method or estimator, called the base learner, is fitted
multiple times on re-weighted data and the final boosting
estimator is then constructed via a linear combination of
those base learners. In different works, it has been shown that
boosting method outperformed other machine learning meth-
ods for high-dimensional data. It is empirically illustrated in
Bühlmann and Yu [3] that boosting has mainly an advantage
for data with high-dimensional predictors. Hoffmann et al.
[2] used gradient boosting to classify high dimensional EEG
signals in brain-computer interfaces and Jiao et al. [5] used
this method for high dimensional protein classification and
obtained satisfying results.

Similar to the above researches, we are also facing high-
dimensional data in classification of sonar signals reflected
by different kinds of trees (Fig. 3). In this paper, we study
the efficiency of boosting methods for our classification task.
We use the gradient boosting method with two kinds of base
learners. The first one uses Ordinary Least Squares (OLS)
regression and the other one uses the kernel function as base
learner.

Compared with our previous works [18], [19], in which
we presented a time resolved spectrum kernel to extract
the similarities between echoes, we got more efficient and
accurate results with the newly proposed boosting method.

The content of the rest of the paper is as follows: In
Sec. II we describe the hardware and the experimental setup
used for this work and the preprocessing of the data. In
Sec. III the gradient boosting is described in detail. In Sec.
IV we present two base learners for gradient boosting. The
experimental results are presented in Sec. V, and Sec. VI
draws the conclusion of this work.

II. BIOSONAR BASED ROBOT

A. Hardware

The implementation of the whole system consists of a
mobile robot (Robin) with two PCs, a digital signal process-
ing package, and a biosonar system (Fig. 1). The biosonar
system includes a National Instruments NI6110 analog I/O



Fig. 1. Biosonar system configuration

0 0.2 0.4 0.6 0.8 1
−1

0

1
 Emitted chirp signal

msec

A
m

pl
itu

de

0 50 100 150
0

0.5

1

frequency (kHz)

A
m

pl
itu

de

Fig. 2. Biosonar head (left). Emitted chirp signal and its frequency content
(right).

card, a mini servo controller (module SSCII), a BNC2110
connector, and the biosonar head. The NI6110 card and the
BNC2110 connector transfer chirp signals and receive the
reflected echoes. The biosonar head (Fig. 2) consists of 3
Polaroid sensors in a triangular layout, similar to the layout
of a bat’s mouth and ears: two Polaroid 600 sensors spaced
12.5 cm apart as ears, a Polaroid 7000 sensor as mouth in
the middle between two ears. Each of the two ears has two
degrees of angular freedom provided by two servo motors.
These can be finely rotated to acquire local support. The
Polaroid ultrasonic ranging system is most commonly used
by the robotics research community. The emitted pulse was a
linearly frequency modulated chirp sweeping from 20kHz to
120kHz in 1 ms (Fig.2). The maximum sampling speed of the
NI6110 card is 5 MHz. We utilized 1 MHz in our research.
The NiMH charger box provides the sensors with a 150V
power supply. The mobile robot Robin is an autonomous
mobile service robot that has two PCs inside, one is in charge
of navigation control, the other one is responsible for signal
data processing, feature extraction and decision making.

B. Landmarks and Sensing Strategy

Through echolocation in darkness, a bat can perceive not
only the position of an object, but also its 3D structure [6].
The recognizable target in nature works as a landmark for
its navigation. For our sensory task – biosonar based mobile
robot navigation in natural environments – these landmarks
should be rich and easy to be found there. The criteria for
selecting natural landmarks include observability, frequent

Fig. 3. Three different trees as biosonar landmarks. From left to right:
Ficus, Bamboo, Schefflera.

Fig. 4. Block diagram of the preprocessing steps for reflected echoes.

occurrence, uniqueness, temporal stability, fast and robust
classification, and lateral compactness [7]. Considering those
aspects, we selected three artificial trees with similar height
of 1.7 m as shown in Fig. 3.

Compared with other researchers [8], [9], we used a
different method for sensing the objects. We used a 0.5
degree angular stepsize for our scans, each tree was scanned
360 degrees in a circular movement of the robot and we
collected echoes from all orientations of leaves and tree. The
reflected echo contains the information about the geometry
of the tree and is the superposition of all reflections.

C. Data Processing

Fig. 4 shows the block diagram of the data acquisition
and preprocessing procedure of reflected echoes. We passed
the reflected echoes through a bank of 10 gammatone filters
between 20 kHz and 120 kHz. In order to extract the
envelope of the filtered signals, they were delivered to half-
wave rectifiers.

The next step is frame blocking. In this step the signal
blocked to frames of N samples, is separated from adjacent
frames by M (M < N) samples and has N −M overlaps.
Considering the sampling frequency of the data acquisition
part (1 MHz) and the minimum width of leaves of trees and
axial resolution of transducers, we selected N = 32 and 50%
overlap for frames. The next step in the data preprocessing is
to window each individual frame so as to minimize the signal
discontinuities at the beginning and end of each frame. We
used a Hamming window for this purpose. The last step is to
calculate the average energy of each band of gammatone
filter bank in each frame. The result is a feature matrix,
where each column is a vector showing the average energy of
each channel in one time frame. Fig. 5 shows the examples
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Fig. 5. Features: examples of the energy spectrum (output of gammatone
filter centered around 50 kHz) for Ficus, Bamboo and Schefflera trees.

of the preprocessed reflected echoes from Ficus, Bamboo
and Schefflera trees. We use this feature matrix for our
classification task.

After the preprocessing steps for each echo (Fig. 4), we
have a Matrix K of time series in which each cell is a time
frame and its value is the average energy of each channel of
gammatone filter. Furthermore we have

K = C × S (1)

where K is the number of features, with C the number of
channels and S the number of samples in each channel.
Now, the problem is very similar to a multichannel EEG
classification. We use the gradient boosting algorithm for
the sonar classification task as Hofmann et al. [2] did for the
event classification from EEG signals.

III. GRADIENT BOOSTING ALGORITHM

We here give a summary of the gradient boosting al-
gorithm from [4]. Given a set of random input variables
x = {x1, ..., xn} and a random output variable y and
some samples {yi, xi}Ni=1, we want to find an approximation
function F ∗ that can predict y from x such that over the joint
distribution of y, x values, the expected value of a specific
loss function L(y, F (x)) is minimized:

F ∗(x) = arg min
F (x)

Ey,xL(y, F (x)) (2)

= arg min
F (x)

Ex[EyL(y, F (x))|x]

Examples of different loss functions include squared error
(y − F )2 and absolute error |y − F | for regression, and
negative binomial log-likelihood, log(1 + e−2yF ), when y ∈
{−1, 1} for classification.

F (x) is a member of parameterized class of functions
F (x;p), where p = {p1, p2, ...} is a finite set of parameters
whose joint values identify individual class members. In the
gradient boosting method, we have the additive expansions
of the form

F (x; {βm, am}Mm=1) =
M∑

m=1

βmh(x; am) (3)

in which p = {βm, am}. The generic function h(x; a) is
called a base or weak learner and is a simple function of x
with parameters a = {a1, a2, ..., aM}. The task is to find the
parameters of weak learners through solving Eq. 2. For that,
a typical parameter optimization method “greedy-stagewise”
is used in which we optimize {βm, am} after all of the
{βi, ai}(i = 1, ...,m−1)} are optimized. Then, the recursive
representation of the optimization method is as follows:

{βm, am} = arg min
β,a

N∑
i=1

l(yi,Fm−1(xi) + βh(xi; a)) (4)

where the joint distribution of (x,y) is estimated by a finite
data sample {yi, xi}N1 , and we have

Fm = Fm−1 + βmh(x; am) (5)

βmh(x; am) is an incremental boost and the best greedy
direction step towards the data-based estimate of F ∗(x).
Friedman [4] suggested a steepest-descent method to find
that direction:

−gm(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(6)

It gives the best steepest-descent step direction at
Fm−1. We find the parameters am that produces hm =
{h(xi; am)}Ni=1 most parallel to −gm ∈ R

N . So we have:

am = arg min
a,ρ

N∑
i=1

[−gm(xi)− ρh(xi; a)]2 (7)

and then Eq. 4 is converted to:

βm = arg min
β

N∑
i=1

L(yi, Fm−1(xi) + βh(xi; am)) (8)

We consider a regularization term to avoid the resulting
overfit problem by a large number of weak learners. This
can be done by adding a shrinkage factor 0 < ν ≤ 1 to the
Eq. 5:

Fm = Fm−1 + νβmh(x; am) (9)

This can greatly improve the generalization performance
of the algorithm. The general framework of the gradient
boosting is as follows:



Algorithm A general gradient boosting framework

F0(xi) = 0, ∀i ;1

for m← 1to M do2

gm(xi) =
[

∂L(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

;
3

am = arg min
a,ρ

N∑
i=1

[−gm(xi)− ρh(xi; a)]2 ;
4

βm = arg min
β

N∑
i=1

L(yi, Fm−1(xi) + βh(xi; am));
5

Fm = Fm−1 + νβmh(x; am);6

end7

In our classification task, we convert F (xi) into a random-
ized predictor by using the soft-max function :

p(yi = 1|xi) =
eF (xi)

eF (xi) + e−F (xi)

and use the Bernoulli log-likelihood for the loss function:

L(y, F ) = log(
N∏

i=1

p(yi = 1|xi)yip(yi = 0|xi)1−yi)

=
N∑

i=1

[
2yiF (xi)− log(1 + e2F (xi))

]

=
N∑

i=1

L(yi, F (xi))

which results in:

L(yi, F (xi)) = 2yiF (xi)− log(1 + e2F (xi)) (10)

and gm in Eq. 6 is obtained with:

gm(x
i
) = 2(yi − pm(yi = 1|xi)) (11)

and Eq. 8 is converted to:

βm = arg min
β

{
N∑

i=1

2yi (Fm−1(xi) + βh(xi; am))

−
N∑

i=1

log
(
1 + e2(Fm−1(xi)+βh(xi;am))

)}

The pseudocode for the gradient boosting algorithm is
given in the following.

After initialization, we calculate h and β to update the
new F . This procedure is continued until a certain number
of iterations M is reached. To prevent the overfitting or
underfitting problems, we select optimum values of M and
ν in a cross-validation test.

IV. SELECTION OF THE BASE LEARNER

The function h can have any form that can be optimized
over the parameter a to fit the training data. In this paper we
consider two kinds of base learner as follows:

Algorithm Gradient boosting with Bernoulli log-
likelihood loss function

p0(yi = 1|xi) = 0.5, F0(xi) = 0, ∀i ;1

for m← 1to M do2

gm(x
i
) = 2(yi − pm−1(yi = 1|xi)), ∀i ;3

h = arg min
ĥ,a

N∑
i=1

(−gm(xi)− ĥ(xi; am))2 ;
4

5

βm = arg min

{
N∑

i=1

2yi (Fm−1(xi) + βh(xi; am))

−
N∑

i=1

log
(
1 + e2(Fm−1(xi)+βh(xi;am))

)}

Fm = Fm−1 + νβmh(x; am);6

pm(yi = 1|xi) = eFm(xi)

eFm(xi)+e−Fm(xi)
, ∀i;7

end8

A. Ordinary Least Squares (OLS) Base Learner

The simplest function to use here for h is the OLS
regressor as:

h(x) = α1x + α2 = aX

where

a =
[

α1

α2

]
, X =

[
x
1

]
By solving the Ordinary Least Squares (OLS) regression,

we find the parameter a= [α1;α2] in Eq. 7:

a = (XXT)−1XTg

B. Kernel-based Base Learner

Kernel based regression methods are considered as the
problem of finding the function f that minimizes the ob-
jective function

min
f∈H

1
m

m∑
i=1

L(f(xi), yi) + μ||f ||2 (12)

where H is the Reproducing Kernel Hilbert Space (RKHS)
generated by the kernel k(., .) and μ is a parameter that
trades off the quality of the regression function and the
regularization term.

Recently different research has been done to use the idea
of kernel in the boosting procedure [15], [16], [17] based
on the representer theorem. According to the representer
theorem (Kimeldorf et al.[14]) the optimal f(x) has the form:

f(x) =
N∑

i=1

αik(xi, x) (13)

Similar to Eq. 5 in which F (x) is a summation of base
learners, f(x) is also a summation of kernel functions.
Compared with the other works [15], [16], we use the



TABLE I

THE PERFORMANCE OF CLASSIFICATION IN SONAR SIGNALS USING GRADIENT BOOSTING METHOD

Method TREE Spec. (%) Sen. (%) Acc. (%) Mcc.
OLS regression Ficus 93.0 87.5 86.33 0.77
OLS regression Bamboo 97.1 95.0 96.1 0.91
OLS regression Schefflera 84.0 94.0 91.0 0.8
Kernel regression (σ = 0.1) Ficus 88.1 93.0 91.1 0.81
Kernel regression (σ = 0.1) Bamboo 99.1 80.0 86.6 0.80
Kernel regression (σ = 0.1) Schefflera 75.0 95.0 88.6 0.75
Kernel regression (σ = 10) Ficus 92.1 96.0 95.1 0.79
Kernel regression (σ = 10) Bamboo 99.1 93.0 95.3 0.93
Kernel regression (σ = 10) Schefflera 84.0 96.0 92.9 0.82

following simple base learner to bring the concept of the
kernel function in the boosting procedure. We consider:

h(x, γ) = α1k(x, xγ) + α2 = aK

where

a =
[

α1

α2

]
, K =

[
k
1

]

and again we use OLS regression to find the parameters a
and γ.

(h, γ) = arg min
ĥ,a,γ

N∑
i=1

(
−g(xi)− ĥ(x, γ, a)

)

Optimizing the parameter γ means that each kernel func-
tion is selected once at most. This guarantees that the effect
of some kernel functions is not excessively magnified and so
prevents over-fitting in the boosting procedure.

V. EXPERIMENT AND RESULTS

We gathered the sonar data, 720 echoes, each one 10000
data points, for each tree shown in Fig. 3. After preprocess-
ing, those echoes were converted to 720 matrices of features,
where in Eq. 1, K = 1980 (number of features), C = 20
(number of channels) and S = 99 (number of data points or
frames in each channel). So, in our boosting procedure, N,
the number of examples is 720 and the number of features
is 1980. But in training and in each boosting step, instead
of using all features at once, we use only the features in
each channel (S = 99) and find the regressor h for that and
repeat the boost step for all channels. Then, in testing we use
the corresponding regressor (base learner) of all channels to
estimate the final F (x). In all experiments the maximum
number of iterations of the boosting algorithm, M , and the
shrinkage factor, ν, were set to 100 and 1 respectively. For
the kernel regression we chose the Radial Basis Function
(RBF) kernel with different values of σ. After using 5-fold
cross validation, the prediction quality was then evaluated
by specificity (Spec.), sensitivity (Sen.), accuracy (Acc.) and
Matthew’s correlation coefficient (Mcc.) as follows:

Sen. =
TP

(TP + FN)

Spec. =
TN

(TN + FP )

Acc. =
TP + TN

(TN + FN + TP + FP )

Mcc. = TP×TN−FN×FP√
(TN+FN)(TP+FN)(TN+FP )(TP+FP )

where TP = true positive, TN = true negative, FP =
false positive and FN = false negative. Table I shows the
results of the classifier.

The classification results are shown in table I. As we see
from that table, the gradient boosting with kernel-based base
learner shows a slight improvement in accuracy and Mcc.
compared with the one that uses OLS base learner, and also
the value of σ in RBF kernels affects the performance of the
classifier.

In our previous works [18], [19], we presented a Time-
resolved spectrum kernel to extract the similarities between
the echoes. In those papers, it was shown an improvement
compared with the previous work of our group (Wang et al.
[12]), in which the classification was made through template
matching in 2D sonar acoustic image using a 2D Discrete
Cosine Transform.

Table II shows the results of the Time-resolved spectrum
kernel [19]. Comparing the Tables I and II one sees that
the boosting method could improve the performance of
classification.

The other point is the running time of the boosting
method. Table III shows the running time of the boosting
and spectrum kernel methods on a PC with an Intel Core
Duo processor (1.83GHz and 1GB RAM) while coded in
Matlab 7.0 and in a 5-fold cross validation test. From this
table, we see that the boosting approach is more efficient
than the spectrum kernel for the classification of sonar data
and needs much less time for training.

VI. CONCLUSION

In this paper, we proposed a new machine learning ap-
proach for object classification in biosonar based robots. We
used a regression approach in the gradient boosting which
proved to be both more accurate and efficient than other



TABLE II

THE PERFORMANCE OF CLASSIFICATION IN SONAR SIGNALS

USING TIME-RESOLVED SPECTRUM KERNEL [19].

TREE Spec. (%) Sen. (%) Acc. (%) Mcc.
Ficus 89.0 87.5 88.0 0.72
Bamboo 91.3 95.0 92.1 0.91
Schefflera 80.0 90.0 93.0 0.80

TABLE III

RUNNING TIME OF THE PROPOSED BOOSTING METHOD AND

TIME-RESOLVED SPECTRUM KERNEL IN A 5-FOLD CROSS VALIDATION

TEST.

Training time Testing time
Spectrum kernel 6 hours 2 mins
OLS regression Boosting 6 mins 10 seconds
Kernel regression Boosting 10 mins 20 seconds

previously proposed methods such as spectrum kernels and
template matching using acoustic images. We suggested a
simple base learner in the boosting method using the kernel
matrix and showed that it outperformed the simple OLS
regression. The main point of the signal preprocessing was
using a filter bank like that of the hearing system of bats.
With this filter bank, the one-dimensional sonar echoes were
converted into shorter length but more informative multi-
dimensional signals in which each dimension has the fre-
quency content of a similar filter in the hearing system. After
this conversion, the features were more distinguishable and
the boosting method was able to classify them efficiently and
we could get satisfying results. Without this filter bank, the
boosting method could not classify the raw echoes accurately.
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[14] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline
functions”, J. Math. Anal. Appli., vol. 33, pp. 82-95, 1971.

[15] P. Sun and X. Yao, “Boosting Kernel Models for Regression”, in Sixth
IEEE International Conference on Data Mining (ICDM’06), pp. 538-
591, 2006.

[16] L. Bo, L. Wang, and L. Jiao, “Training support vector machines
using greedy stagewise algorithm”, Lecture Notes in Computer Science
(PAKDD’05), vol. 3518, pp. 632-638, 2005.

[17] G. Dai and D.-Y. Yeung, “Boosting Kernel Discriminant Analysis
and Its Application to Tissue Classification of Gene Expression
Data”, International Conference on Adaptive and Natural Computing
Algorithms(ICANNGA 2005) , vol 32, pp 53-58, 2005.

[18] M. M. Beigi and A. Zell, “Synthetic Protein Sequence Oversampling
method for Classification and remote homology detection in imbal-
anced protein data”, 1st International Conference on Bioinformatics
Research and Development (BIRD 2007), Berlin, Germany, pp. 263-
277, 2007.

[19] M. M. Beigi and A. Zell, “A novel kernel-based method for local pat-
tern extraction in random process signals”, 15th European Symposium
on Artificial Neural Networks, Bruges, Belgium (ESANN 2007), pp.
265-270, April 2007.


