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Tübingen, Germany

{maosen.wang, andreas.zell}@uni-tuebingen.de

ABSTRACT
We consider the problem of biosonar landmark classifi-
cation as an example of random and non-stationary sig-
nal classification in which finding robust and structure in-
dependent features for classification is not trivial. Time-
frequency domain studies show that despite the seemingly
randomness of those signals, there are local temporal simi-
larities, independent of the position of occurrence in echoes
of each object that reflect the intrinsic similarities between
the echoes and also a self similarity in the objects. In this
paper we suggest a time resolved spectrum kernel for ex-
tracting the local similarities (subsequence similarity) in
time series in general, and as an example in biosonar sig-
nals. We implemented this kernel using dynamic program-
ming and could get accurate results using a low number of
echoes needed for training compared with the methods in
which finding specific features in each echo were followed.
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1 Introduction

Bats can distinguish objects and their prey by emitting a
series of ultrasound signals (chirps) that generally sweep
covering frequencies from 22 to 100 kHz. Auditory scene
analysis involves the grouping and segregation of sounds
to perceptually classify information about auditory objects.
The perception of sound is influenced by the spectral and
temporal characteristics of acoustic signals [1]. When bats
navigate in a natural habitat, the landmarks available to
them are trees. To understand how bats perceive the ob-
jects we need to know the encoding mechanism of received
echoes and the distribution of information in the time and
frequency domain. Inspired by the bat biosonar system,
researchers have utilized ultrasonic sensing techniques for
mobile robots (biomimetic robots) and tried to classify dif-
ferent textures and landmarks using received echo signals.

McKerrow used a CTFM (Continuous Transmission
Frequency Modulated) system and modelled the echoes
with the acoustic density profiles, used the frequency com-
ponents and energy spectra and found features, which char-

acterize the acoustic density profiles of plants in a classi-
fication task [2]. Kuc [3] suggested a transformation of
echo to pseudo-action potential as temporal point process
to understand how bats recognize landmarks in the field.
Müller [4] presented a neuro-spike representation of echoes
in which each echo is transcribed into a spike code using
a parsimonious model, and classified four foliages using
three features derived from interspike intervals. Gao et. al
[5] presented a template matching algorithm for classifi-
cation of several types of brick walls, picket fences and
hedges using sonar echoes. M. Wang et al. [6, 7, 8] used
different structural features in the frequency domain and
also template matching for the classification task.

In summary, we can conclude from the study of the
above references and our experiments that the robustness
of features for the classification task depends heavily on
the experimental setup. For example, the orientation of
plants due to windy weather or sudden rain can result in
large changes in the reflected echoes. Hence, in this case
the only temporal based features can be inefficient. But on
the other hand, the local temporal similarities between dif-
ferent echoes of one object as an indication of its texture
is a significant issue that should be considered. In this pa-
per we explain our experimental setup in which we have
considered the robustness and efficiency of features aim-
ing at practical application in biosonar based robot naviga-
tion. We show that the efficient method for our classifica-
tion task should consider both local temporal similarity and
the power spectrum of echoes and suggest a kernel based
classification method considering those parameters.

2 Problem

We used a sonar head system consisting of three ultrasound
transducers, one for emission chirp signals (Polaroid 7000)
and two for reception (Polaroid 6000). The emitted pulse
was a linearly frequency modulated chirp sweeping from
20kHz to 120kHz in 1 ms (Fig.1). We used three artificial
trees with a similar height but different density and size of
leaves as shown in Fig. 2.

Compared with the method of other researchers for
sensing the object [4, 3], we used a different method. We
used a 0.5 degree angular stepsize for our scans, each
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Figure 1. Biosonar head (left). Emitted chirp signal and its
frequency content (right).

Figure 2. Three different trees as biosonar landmarks.
From left to right: Ficus, Bamboo, Schefflera.

tree was scanned 360 degrees in a circular movement of
the robot and we collected echoes from all orientations of
leaves and tree. The reflected echo contains the informa-
tion about the geometry of the tree and is the superposition
of all reflections. Fig. 3 shows the block diagram of the
data acquisition and preprocessing procedure of reflected
echoes. We passed the reflected echoes through a bank of
10 gammatone filters between 20 kHz and 120 kHz. In or-
der to extract the envelope of the filtered signals, they were
delivered to half-wave rectifiers.

The next step isframe blocking. In this step the sig-
nal is blocked to frames ofN samples and is separated

Figure 3. Block diagram of the preprocessing steps for re-
flected echoes.

from adjacent frames byM (M < N) samples and has
N −M overlaps. Considering the sampling frequency of
the data acquisition part (1 MHz) and the minimum width
of leaves of trees and axial resolution of transducers, we
selectedN = 32 and 50% overlap for frames. The next
step in the data preprocessing is to window each individ-
ual frame so as to minimize the signal discontinuities at
the beginning and end of each frame. We used aHamming
window for this purpose. The last step is to calculate the av-
erage energy of each band of gammatone filter bank in each
frame. The result is a feature matrix where each column is
a vector showing the average energy of each channel in one
time frame. Fig. 4 shows the examples of the preprocessed
echoes of Ficus and Schefflera trees. We use those feature
matrix for our classification task.

But as noted before, the problem is that the biosonar
signals are random and nonstationary in the temporal di-
mension. For example, the location of leaves in the plant
determines the acoustic energy throughout the frames and
small changes in the orientation of the plant result in
changes in those features along the frames of time. But,
as we see in Fig. 4, despite the seemingly randomness of
those signals there are some local similarities (shown byp)
in echoes from one tree. Then, if we can find the sizes of
windows in which we have maximum similarity between
data of one object it can help us to classify that object from
others. We consider the output of the block diagram shown
in Fig. 3, a time series in which each point is a time frame
and its value is a vector of features (the average energy of
each channel of gammatone filter bank). We should find
the subsequences of the time seriesindependent of the po-
sitions of occurrences that have maximum similarities in
echoes of each object. The intuition behind our idea is
that the structure of objects and, as an example, the size of
leaves or branches, should be considered in the classifica-
tion task. The size of the subsequence that we are looking
for, can be related to the size of the leaves or branches of
the tree. In another way, the energy reflected by the leaves
or branches of the tree can be related to the size of those
similar subsequences of the time series.

Kernel methods have widely been used for string clas-
sification. Examples of those kernels for text classifica-
tion and remote homology detection in protein families in-
clude the spectrum kernel [9], mismatch kernel [10], and
the string kernel proposed by Lodhi et al. [11]. Similar to
the remote homology detection in proteins, where a classi-
fier must detect a remote relation between an unknown se-
quence and a family of proteins, in our classification task,
the algorithms for finding similar time series should not
consider the whole time series but look for informative sub-
sequences, and we need kernels, which can extract similar-
ities between subsequences. Inspired by the work of Lodhi
et al. [11], we use a time-resolved spectrum kernel for our
classification task. We implement the spectrum kernel al-
gorithm for time series and use a fast algorithm to calculate
that kernel. In the next section we will discuss the method
and the constraints which should be considered.
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Figure 4. The energy spectrum in each time frame for Ficus
and Schefflera trees (output of gammatone filter centered
around 50 kHz). The time-resolved spectrum kernel tries
to find the local similarities in window of sizep in echoes
of one object.

3 Time-resolved spectrum kernel

A kernel function can often be considered as a measure of
similarity. Different kernels correspond to different nota-
tions of similarity. The structure of the data and our knowl-
edge of the particular time series suggest a way of compar-
ison that we can consider in our kernel function. The use of
a kernel makes it possible to perform the mapping into that
feature space and to calculate the inner product between
those maps. But the main task here is to find a mapφ that
reflects the suitable and common features of those time se-
ries and gives a good indication of the similarity we would
like to capture. The time-resolved spectrum kernel simply
measures the whole similarities of all subsequences of the
time series in consideration, independent of their positions.
The more two time series share similar subsequences, the
more similar they are.

3.1 Definitions

Definition 1. A time sequences = s1...sn is a sequence
of data points at successive times(s1, s2, ..., sn) with si ∈
�d, 1 ≤ i ≤ n. Concerning the notation, we denote:
|s| the length ofs ands(i − p + 1 : i) thep-length subse-
quence ofs from positioni− p + 1 to positioni.
Definition 2. We denoteI|s|p the set of indices, defining all
thep-long contiguous subsequence ofs:

Is
p = {i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|}

and si is a subsequence ofs in positions given byi =
(i1, i2, ..., ip). For u ∈ Σp×d, the infinite set of all subse-
quences with sizep and dimensiond, the implicit embed-
ding mapφ bringss to vector spaceF , φ : s→ (φu(s)) ∈
F . Theu component of our feature vector is defined as:

φp
u(s) =

∑
i∈Is

p, u∈Σp×d

ϕu(si)

whereϕ is an implicit map that satisfies:

κp(si, tj) =< ϕu(si), ϕu(tj) > , for i ∈ Is
p, j ∈ It

p

in which κp is a kernel function that measures the local
similarity between twop-length contiguous subsequences
si and tj of the time series in consideration. In words,

φp
u(s) is a sum over all similarities betweenp-long sub-

sequences ofs and u. The dot product of those feature
vectors represents the time resolvedp-spectrum kernel
(spectrum kernel with subsequence size ofp):

Kp(s, t) = 〈φp
u(s), φp

u(t)〉 =
∫
Rd×p φp

u(s)φp
u(t)du

=
∑

i∈Is

p

∑
j∈It

p

∫
Rd×p ϕu(si)ϕu(tj)du

=
∑

i∈Is

p

∑
j∈It

p

κp(si, tj)

Considering the definitions ofIs
p andIt

p, we can say:

Kp(s, t) =
|s|∑
i=p

|t|∑
j=p

κ(s(i−p+1 : i), t(j−p+1 : j)) (1)

The evaluation ofκp requiresO(p) computations, and
the cost for computation ofKp(s, t) is of orderO(p|s||t|).
In stringp-spectrum kernels, a very fast method for compu-
tation ofKp(s, t) is to use an efficient data structure known
as ’trie’ (retrieval tree) in which we build a suffix tree for
the collection ofp-length subsequences ofs andt, obtained
by moving ap-length sliding window across each ofs and
t, and then calculate the kernel by traversing the tree. But
because of an infinite subsequence set, that method is not
applicable for the time series spectrum kernel unless the
time series is quantized, symbolized and converted to a
string. In this case we are faced with the quantization errors
and the method for quantization and symbolization can af-
fect the efficiency of the kernel method. Instead of that we
use dynamic programming to calculate the time-resolved
spectrum kernel while accepting some constraints. We ac-
cept a constraint on choosing the kernel functionκp(si, tj),
we suppose:

κp(si, tj) =
p∏

i=1

κ∗(sii, tji
) (2)

in which κ∗ is an arbitrary function (discussed later)
that measures the similarity between two data points.
Considering Equations 1 and 2, we define an auxiliary
kernel,p-suffix kernelKS

p (s′, t′) as:

KS
p (s′, t′) =

{
κp(s′(|s′|−p+1:|s′|),t′(|t′|−p+1:|t′|)) if min(|s′|,|t′|)≥p
0 otherwise.

=




p−1∏
i=0

κ∗(s′
|s′|−i

,t′|t′|−i
) if min(|s′|,|t′|)≥p

0 otherwise. .

wheres′ = s(1 : |s′|), t′ = t(1 : |t′|), 1 ≤ |s′| ≤ |s| and
1 ≤ |t′| ≤ |t|. Then we express thep-spectrum kernel in



term of its suffix version as:

Kp(s′, t′) =
∑|s′|

i=1

∑|t′|
j=1KS

p (s′(1 : i), t′(1 : j))

If we add a new data pointx to the time seriess′,
using the above equation we can calculateKp(s′x, t′):

Kp(s
′x, t′) =

|s′x|∑
i=1

|t′|∑
j=1

KS
p (s′x(1 : i), t′(1 : j))

=
|s′|∑
i=1

|t′|∑
j=1

KS
p (s′(1 : i), t′(1 : j)) +

|t′|∑
j=1

KS
p (s′x, t′(1 : j))

= Kp(s
′, t′) +

|t′|∑
j=1

KS
p (s′x, t′(1 : j))

On the other hand, if we add another new data pointy to the
time seriest′, considering equation 2 and the above defini-
tion ofKS

p , we can say:

KS
p (s′x, t′y) = κ∗(x, y)KS

p−1(s
′, t′)

It is clear that:Kp(s, t) = Kp(s′, t′) if s = s′, t = t′. Now,
we define a recursive computation forKp:

Definition 3: Recursive computation of the time resolved
spectrum kernel.

Kp(s′x, t′) = Kp(s′, t′) +
|t′|∑
k=1

KS
p (s′x, t′(1 : k)) (3)

KS
p (s′x, t′(1 : k)) = κ∗(x, t′k)KS

p−1(s
′, t′(1 : k − 1)) (4)

KS
0 (s′, t′) = 1 for all s′, t′,
KS

i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic program-
ming technique. We have recursions over the prefixes of
the time series and the lengths of the subsequences and we
do the routine above untilx = s|s| and|t′| = |t|.

To prevent that with larger sizes of subsequences the
kernel achieves a higher similarity score we normalize the
kernel: Knorm

i (s, t) = Ki(s,t)√
Ki(s,s)Ki(t,t)

This operation scales the similarities in the range [0,1]. In
practice and specially in our classification task, it makes
sense to consider the similarity of subsequences having dif-
ferent sizes and calculate a linear combination of different
i-spectrum kernels with different weightingαi ≥ 0. The
weighted kernel is:

K(s, t) =
l∑

i=1

αiKnorm
i (s, t) (5)

As we see from the above pseudo-code, the evaluation of
theKnorm

i is of orderO(|s||t|) and the overall complexity

Algorithm Time resolved spectrum kernel
Input : Time seriess andt of lengthn andm,

max subsequence lengthl;
Output: Array of spectrum kernelK[] with

different sizes of subsequence-length
from 1 tol);

KPS(0 : n, 0 : m, 0) = 1; (* KPS(i, j,p)1

storesKS
p (s(1 : i), t(1 : j)) *)

KP (0 : n, 0 : m) = 0; (* KP(i, j) stores2

Kp(s(1 : i), t(1 : j)) *)
for p← 1 to l do3

KPS(0 : n, 0, p) = 0;4

KPS(0, 0 : m, p) = 0;5

for i← 1 to n do6

P (0)=0; (* P(k) stores the second term7

on the right side in Eq. 3 *)
for k ← 1 to m do8

KPS(i, k, p) =9

κ∗(si, tk)KPS(i− 1, k − 1, p− 1);
P (k) = P (k − 1) + KPS(i, k, p);10

KP (i, k) = KP (i− 1, k) + P (k);
end11

end12

K[p] = KP (n,m); (* Kp(s, t) *)13

end14

return K[]15

of our algorithm to calculate a linear combination of allp-
spectrum kernels isO(p|s||t|) while if Equation 1 is used
the complexity is of orderO(p2|s||t|).

We consideredκp(si, tj) (Equation 2) as a multiple
of similarities between data points. Different choices of
that function allow different methods of comparing sub
similarities. As a suitable selection we consider:

κ∗(sii, tji
) = exp

−(sii
−tj

i

)2

2σ2

to measure the similarity between two data points, then:

κp(si, tj) =
p∏

i=1

κ∗(sii, tji
) = exp

(
−
||si − tj||2

2σ2

)
(6)

κp(si, tj) is the gaussian kernel of widthσ and suitable for
measuring the local similarity of subsequences in the time
series.

4 Classification method and results

We gathered the sonar data,720 echoes for each tree, as
explained in section 2. After the preprocessing steps for
each echo (Fig. 3), we have a time series in which each
point is a time frame and its value is an array of features
(the average energy of each channel of gammatone filter ).
Using the kernel method told in the previous section, we
want to extract the similarities between the echoes for our



KPS(:, :, 1) = KS
1 ε t1 t2 t3

ε 0 0 0 0
s1 0 k∗(s1, t1) k∗(s1, t2) k∗(s1, t3)
s2 0 k∗(s2, t1) k∗(s2, t2) k∗(s2, t3)
s3 0 k∗(s3, t1) k∗(s3, t2) k∗(s3, t3)
KS

2 ε t1 t2 t3
ε 0 0 0 0
s1 0 0 0 0
s2 0 0 k∗(s2, t2)k∗(s1, t1) k∗(s2, t3)k∗(s1, t2)
s3 0 0 k∗(s3, t2)k∗(s2, t1) k∗(s3, t3)k∗(s2, t2)
KS

3 ε t1 t2 t3
ε 0 0 0 0
s1 0 0 0 0
s2 0 0 0 0
s3 0 0 0 k∗(s3, t3)k∗(s2, t2)k∗(s1, t1)

Table 1. Calculation ofKS
p usingKS

p−1 for s = s1s2s3 and

t = t1t2t3. Kp(s, t) =
3∑

i=1

3∑
j=1

KS
p (s(1 : i)t(1 : i)) andKS

0 = 1.

classification task. According to Equation 5 and 6, we need
to find parametersαi, andσ. For simplicity, we considered
equal values ofα in the range[p1, p2] as follows:

αi =
{

1 p1≤i≤p2
0 otherwise

p1 and p2 are the minimum and maximum sizes of
subsequences used to extract the similarities in each
tree. To find suitable values for those parameters, we
used a simplegrid search on p1 and p2. We selected
randomly 100 echoes of each tree and then calculated
Knorm

i (s[m], s[n]) for i ∈ [1, l], m,n ∈ [1, 100] and
σ ∈ {1, 10, 100, 1000} wheres[m] ands[n] are them-th
andn-th of pre-processed echoes andl is the length of the
time series (in our experiment 90). Then we found the
optimum valuesp1 andp2 in the range [1,l] for eachσ, by
maximizing the average value of the kernels:

max K =
p1,p2

100∑
m=1

100∑
n=1




p2∑
i=p1

Knorm
i (s[m],s[n])

p2−p1




we found that a suitable value forσ is in the range [10,100]
for all trees. Table 2 shows the optimum values forp1 and
p2 with σ = 10. We see that for ficus and Bamboo, which
have smaller leaves thep1 has lower value. Again, for sim-
plicity, we considered equal values ofp1 andp2 for all trees
in our classification method.

Table 2.Optimum Values forp1 andp2.

tree p1 p2

Ficuss 5 25
Bamboo 8 23
Schefflera 11 32

For the classification task, we used a discriminative

method. Given a set of positive training dataχ+ and a set of
negative dataχ−, an SVM learns a classification function
f(x) of the form:

f(x) =
∑

i;xi∈χ+

λiK(x, xi)−
∑

i;xi∈χ−

λiK(x, xi) (7)

where non-negativeλi weights are computed during train-
ing by maximizing a quadratic objective function and
K(., .) is the kernel . Given this function, a new datax
is predicted to belong to the positive dataset, if the value
of f(x) is positive, otherwise it belongs to the negative
dataset.

To measure the robustness of our algorithm, we ran-
domly selected 100 echoes of each tree (total 300 echoes)
to train the classifier. Considering the sameσ, p1 andp2

(σ = 10, p1=5, p2=30) for all trees, we calculated the ker-
nel matrixK:

K(i, j) = K(s[i], s[j]) =
∑p2

l=p1
Knorm

l (s[i], s[j])
in which i, j ∈ [1, 300] and s[i] is i-th echo, where for
Ficus echoes,i ∈[1,100], for Bambooi ∈ [101,200] and
for Schefflerai ∈[201,300].

After calculation of the kernel matrixK, we used the
LIBSVM package for Support Vector Machines (SVMs)
regression and classification [12]. It lets us use our own
kernel matrix to train the classifier. We used the remaining
data (1860 echoes) for test. Consideringx as a test exam-
ple,K(x, xi) is the kernel score ofx to the training dataxi

andf(x) is the result of the classifier (Equation 9).

Table 3.Performance of our method in biosonar landmarks clas-
sification with 100 randomly selected echoes for training.

tree Specificity (%) Sensitivity (%) Accuracy (%)
Ficus 85.2 87.5 86.3
Bamboo 87.1 90.1 89.3
Schefflera 92.6 93.4 93.8

Table 3 shows the average performance of the clas-
sifier. It should be noted that the classifier decides based
on only one observation. If we use more observations and
decide based on the average of the probability that an ob-
servation belongs to a class (f(x) value in Equation 9) the
accuracy increases. With this approach and using only 10
random observations, we could increase the accuracy of the
classifier for those trees to nearly 98%. (Fig. 5.a).

Comparing with our previous works, it shows a no-
table improvement in accuracy. In the previous work of
Wang et al. [6], the best result for classification was
gained through template matching in 2D acoustic images
from biosonar echo (using a 2D Discrete Cosine Trans-
form). The classification was made via extracting the max-
imum normalized cross correlation between the acoustic
templates (Fig. 5.b). As shown in Fig. 5, we could get
higher accuracy in both single observation and repeated ob-
servations (see for example 10 observations).
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Figure 5. The accuracy of classifiers using different num-
ber of echoes for test.a). Time-resolved spectrum kernel
method. b). Template matching using acoustic images of
echoes (Wang et al. [6]).

To compare with other methods, we implemented sev-
eral other methods for the feature matching and classifica-
tion of biosonar data, like Dynamic Time Warping and Hid-
den Markov models. The best accuracy of those methods
was less than 70%. The key point in our method is that it
looks for patterns and similarities in the subsequences with-
out dependency on the order of those subsequences while
other methods look for them across the whole time series.

5 Conclusions and Further works

We considered the problem of biosonar landmark classifi-
cation as an example of random and non stationary signal
classification in which finding robust features for classifi-
cation is not trivial. We regarded both the local temporal
similarity and the power spectrum of echoes and suggested
a kernel based classification method that extracts those lo-
cal similarities, independent of the position of occurrences
in echoes of each object. We proposed the time-resolved
spectrum kernel and made a relation between those kernels
and geometric specification of the objects. Our results pro-
vide evidence that this kind of kernel can be used for pat-
tern extraction and classification in random signals. We
think this kind of kernel is also suitable for pattern recog-
nition in signals with inherent self similarity and for esti-
mating periodicity in arbitrary time series like speech and
biomedical signals. In our method, to keep the problem
simple, we made a not very accurate assumption for theαi

parameters of the kernel with an equal value for allαi. But
that parameter, the weight of the similarity (kernel score)
of thep-size subsequences, can represent the self similarity
of one part of the object, for example the size of leaves, and
also can show the geometric characteristics of that object.
In future, we will try to find the optimum value of those
parameters while maximizing the accuracy of the classifier
using optimization algorithms. On the other hand, one may
suggest a faster algorithm to calculate the time-resolved

kernel or even propose better kernels for our classification
task. For further work we also hope to implement the ker-
nels that consider warping in the subsequences of time se-
ries and use them for our classification task.
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