
Parallelization of Multi-Objective Evolutionary

Algorithms using Clustering Algorithms

Felix Streichert, Holger Ulmer, and Andreas Zell

Center for Bioinformatics Tübingen (ZBIT), University of Tübingen,
Sand 1, 72076 Tübingen, Germany,

streiche@informatik.uni-tuebingen.de

Abstract. While Single-Objective Evolutionary Algorithms (EAs) par-
allelization schemes are both well established and easy to implement, this
is not the case for Multi-Objective Evolutionary Algorithms (MOEAs).
Nevertheless, the need for parallelizing MOEAs arises in many real-world
applications, where fitness evaluations and the optimization process can
be very time consuming. In this paper, we test the ‘divide and conquer’
approach to parallelize MOEAs, aimed at improving the speed of conver-
gence beyond a parallel island MOEA with migration. We also suggest
a clustering based parallelization scheme for MOEAs and compare it to
several alternative MOEA parallelization schemes on multiple standard
multi-objective test functions.

1 Introduction

For some time, Evolutionary Algorithms (EAs) have developed into feasible opti-
mization approach for many industrial applications. Especially, Multi-Objective
EAs (MOEAs) receive a lot of attention, because many practical optimization
problems are often multi-objective. Unfortunately, EA approaches often require
huge amounts of fitness evaluations to solve a given optimization problem. This
holds true especially in case of multi-objective optimization problems, where the
search space may be of same size, but a significantly larger portion of it needs
to be explored to obtain the whole Pareto-front.
There are two kind of limitations on fitness evaluations that make EAs and
MOEAs infeasible for many real world applications. First, a fitness evaluation
requires real-world experiments, which can be both costly and time consuming.
Or second, the fitness evaluation is computationally to expensive to allow opti-
mization through EAs and MOEAs in reasonable time.
The first kind of limitation can only be solved by making EAs and MOEAs more
efficient by means of improved evolutionary operators, supporting the EA with
problem specific knowledge or local search heuristics. Alternatively, a surrogate
model of the fitness function can be used instead of true fitness function evalu-
ations. This approach can be applied both to EAs [10] and MOEAs [8].
The second problem is all about speed and can be resolved by using paralleliza-
tion schemes for EAs and MOEAs on multiple processors. Due to the population
based approach of EAs, Single-Objective EAs are very easy to parallelize. There



2

is a lot of literature on parallel EAs [3] and we will outline three major paralleliza-
tion schemes for Single-Objective EAs in Sec. 2.1. But parallelization schemes
for MOEAs are not as frequent, a good over view is given in [18], although the
need for efficient parallelization schemes is even greater.
The fact that MOEAs search for a whole set of solutions (the Pareto-front) in-
stead of a single solution, suggests dividing the optimization problem into mul-
tiple subproblems, which are hopefully more efficient to solve. This approach is
called the ‘divide and conquer’ approach and offers the prospect of paralleliza-
tion schemes, which are even more efficient than non-parallelized MOEAs. The
problem is, how to find a suitable partitioning of a given optimization problem
without additional a priori knowledge about the topology of the search space?
And second, is the ‘divide and conquer’ approach actually feasible? We suggest
to use clustering algorithms to analyze the current population to find a suit-
able search space partitioning to aid the ‘divide and conquer’ approach and test
whether or not an advantage of the ‘divide and conquer’ idea can be observed
on standard benchmark functions.
The remaining publication is structured as follows: First, we outline the current
state of the art regarding parallelization schemes for single and multi-objective
EAs in Sec. 2 and we give details on the new clustering based parallelization
scheme for MOEAs in Sec. 3. Then, the new algorithm is compared to other
MOEA parallelization schemes on multiple test functions in Sec. 4. Finally, we
discuss whether or not the ‘divide and conquer’ approach is actually feasible
and how we intend to proceed with our future research on parallelizing MOEAs
given in Sec. 5.

2 Related Work

As outlined before, EAs are well suited for parallelization, due to the population
based search strategy. First, because individual alternative solutions of a popu-
lation can be evaluated in parallel, same holds true for mutation and crossover.
And second, although selection typically occurs on the whole population in a
standard EA, selection could also act on a local subset of a population for sev-
eral generations instead, without suffer major losses in performance. These two
properties are usually used to parallelize EAs.

2.1 Parallel Evolutionary Algorithms

The most common parallel EAs can be grouped into one of three categories [3]:
The Island Model utilizes the second property by running independent sub-
population on multiple processors. To prevent premature convergence and to
increase convergence speed, every mrate generations the w best individuals are
migrated from one subpopulation to another. This approach is well suited for
computer clusters, due to the limited amount of communication.
The Master-Slave Model concentrates on the first property: a central master
process stores a global population and distributes only fitness evaluations and



3

eventually mutation and crossover over multiple so called ‘slave’ processors. This
approach requires the fitness evaluation to be significantly more time-consuming
than the necessary communication. Except the additional communication over-
head this parallelization scheme behaves like a standard EA.
The Diffusion Model was developed for massively parallel computers, which
provide numerous processors with a local but fast communication network. It
uses both properties, an individual is evaluated and mutated on a single proces-
sor and selection and crossover is limited to few neighbors often given by the
network topology.

2.2 Parallel Multi-Objective Evolutionary Algorithms

The Island Model can also be used for parallelizing MOEAs [14, 9]. The most
straightforward implementation of island MOEAs runs a number of MOEA pop-
ulations independently, each trying to obtain the complete Pareto-front and ev-
ery mrate generations migration takes place. Beyond this simple strategy many
researches believe that a ‘divide and conquer’ approach on multi-objective opti-
mization problem could be more successful, because individual subpopulations
could specialize on certain areas of the Pareto-front and thus be more efficient.
One approach in this direction was proposed by Miki et al. [13]. That paper also
applied an island MOEA, but at regular intervals, the subpopulations are gath-
ered, sorted according to an alternating objective, and then redistributed onto
the different processors. This approach allows the subpopulation to specialize on
given objectives during the optimization, and was also used in [4, 5].
Another approach by Deb et al. uses the dominance principle [1] to guide the
individual subpopulation to different sections of the global Pareto-front [7]. Un-
fortunately, the individual search directions have to be set beforehand, which
requires ‘a priori’ knowledge of the shape of the Pareto-front, and moreover this
approach cannot be applied to convex Pareto-fronts.
The cone separation technique uses a geometrical approach to subdivide a given
Pareto-front [2], see Fig. 1 for an example. A reference point R is given by the
extreme values of the current Pareto-front and R is the origin of k subdividing de-
marcation lines. The authors point out, that in order to have each subpopulation
focusing on a specific region in objective space, the demarcation lines for each
region have to be treated as zone constraints using the constrained dominance
principle [6]. Again, this approach has several drawbacks. In case of discontinu-
ous or non evenly distributed Pareto-fronts small or empty subpopulations can
be generated, which do not reflect any problem inherent structure. And finally,
the geometrical subdivision scheme of cone separation becomes rather compli-
cated in case of more than two objectives.
The Master-Slave Model for MOEA is simple but efficient and has been im-
plemented several times, see for example [11]. But since it behaves exactly like a
standard non-parallelized MOEA, but requires heavy communication and relies
on specialized computer architectures, we did not consider it for comparison.
The Diffusion Model. To our best knowledge there is no publication on a
MOEA implementation of the diffusion model.



4

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5
Test Function T1

f
1

f 2

R 

Fig. 1. Exemplary partitioning using the
cone separation approach [2].

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5
Test Function T1

f
1

f 2

Cluster Centroids

Fig. 2. Exemplary partitioning using k-
Means (k = 5) on the Pareto-front.

3 Clustering Based Parallelization Scheme

We consider the island model together with the ‘divide and conquer’ principle of
the cone separation approach to be an intuitive and promising approach to par-
allelize MOEAs. But we believe further that the geometric subdivision scheme of
cone separation not likely to be able to identify any problem inherent structures
nor local search spaces, which would allow a successful ‘divide and conquer’ ap-
proach. Therefore, we decided to use clustering algorithms instead, to search for
an suitable partitioning for each individual problem instance.
Clustering algorithms have been used together with EAs searching for niches
in multi-modal search spaces [19, 16]. Therefore, it is most straightforward to
apply cluster algorithms to pursue a ‘divide and conquer’ approach for parallel
MOEAs in arbitrary dimensions.
Following the paper on cone separation, we utilize an island MOEA for par-
allelizing an NSGA-II implementation [6], see Alg. 1. Each mrate generations,
all subpopulations Pi,remote are gathered, clustered and redistributed onto the
available processors. For clustering, we decided to use k-Means clustering on
the current Pareto-front, because k-Means allows use to choose the number of
clusters according to the number of available processors k. In case the size of
the current Pareto-front is smaller than k, next level Pareto-fronts are also used
for clustering. We further distinguish between two variants for clustering, first
a search space based clustering and second an objective space clustering. Fig. 2
gives an impression of an objective space based clustering.
To limit subpopulations to their specific region, we implement zone constraints
based on the constrained dominance principle [6] using the cluster centroids. In
case an individual is assigned to a different cluster centroid than the current
subpopulation belongs to, the individual is marked as invalid. This interpreta-
tion complies with the implementation of cone separation, but we also try the
parallel MOEAs without zone constraints.



5

g = 0;
for (i = 0; i < k; i++) do Pi,remote.initialize();
foreach Pi,remote do Pi,remote.evaluate();
while isNotTerminated() do

foreach Pi,remote do
Pi,remote.evolveOneGeneration();
Pi,remote.evaluate();

end
if (g%mrate == 0) then

/*Migration and/or partitioning scheme */

Plocal.initialize();
foreach Pi,remote do Plocal.addPopulation(Pi,remote);
foreach Plocal.cluster(k) do Pi,remote = Plocal.cluster(k).getCluster(i);
if useConstraints then foreach Pi,remote do Pi,remote.addConstraints();

end
g = g +1;

end

Algorithm 1: General scheme of the clustering based parallelization scheme for
MOEA, with k number of processors used, mrate the migration rate, Pi,remote a
remote population and Plocal the local population.

4 Experimental Results

We compare the new clustering based parallelization scheme with both objective
space based K-Means (kosMOEA) and search space based K-Means (kssMOEA)
on four different test function, see appendix, to three other approaches. First, an
island model MOEA implementation without migration (pMOEA). We expect
this approach to serve as worst case scenario, because this approach is only able
to limit the chance of premature convergence to local optima and suffers sig-
nificantly from decreasing population size with increased number of processors,
see Tab. 1. Second, an island model MOEA with migration (iMOEA) where the
subpopulations can profit from each others achievements. And finally, the cone
separation MOEA (csMOEA). We further compare the pMOEA and the iMOEA
to both the cluster based and the cone separation MOEAs with zone constraints
in Sec. 4.1 and without zone constraint in Sec. 4.2.
Each MOEA implementation use NSGA-II [6] and every mrate = 2 migration
or search space partitioning is allowed. In case of migration (iMOEA) we mi-
grate w = 5 individuals between each subpopulation. We apply the MOEAs
with real-valued genotype and use self-adaptive local mutation [15] and discrete

Table 1. Population and archive size of Pi,remote per number of processors.

Processors 1 2 3 4 5 6

Population size 600 300 200 150 120 100

Archive size 300 150 100 75 60 50



6

Fig. 3. Performance on T1 depending on
the number of processors used.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

f
1

f 2

Pareto−front

Fig. 4. The T1 test function and
it’s search space.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.35

0.4

0.45

0.5

0.55 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.35

0.4

0.45

0.5

0.55 k = 6

S−
M

et
ric

Fig. 5. Comparison of the parallelization schemes for k=4 (6) on T1, with mean of
S-Metric, extreme values, standard deviation and 95% confidence interval.

1-point-crossover. For mutation/crossover operators we use a mutation probabil-
ity of pm = 1.0, a crossover probability of pc = 0.5 and two parents for crossover.
We compare the different parallel MOEA implementations on four test functions,
three of them given from literature, see appendix. To see how each implementa-
tion scales with increased number of processors, we use up to six processors on
each test function. To allow comparison we decrease the size of the subpopula-
tions Pi,remote with increased number of processors, see Tab. 1, while allowing
25,000 overall fitness evaluations for each optimization run.
For comparison, we use the hyper-volume under the accumulated population
Plocal (S-Metric) of each parallel MOEA implementation averaged over 25 multi-
runs for each problem instance and processor configuration. The S-Metric is to
be minimized, and typically converges to nonzero values.

4.1 Results with zone constraints on T1-T4

Comparing pMOEA, iMOEA to csMOEA, kosMOEA and kssMOEA with zone
constraints on T1 is rather disappointing, see Fig. 3. As expected, the pMOEA
without migration performs worst and it suffers from a nearly linear decline due
to reduced population size and fitness evaluations per subpopulation. With mi-
gration the iMOEA still suffers from a significant decline from increased number
of processors, but the iMOEA performs significantly better than the pMOEA.



7

Fig. 6. Performance on T2 depending on
the number of processors used.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

f
1

f 2 Pareto−front 

Fig. 7. The T2 test function and
it’s search space.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.7

0.75

0.8

0.85

0.9

0.95

1
k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.7

0.75

0.8

0.85

0.9

0.95

1 k = 6

S−
M

et
ric

Fig. 8. Comparison of the parallelization schemes for k=4 (6) on T2, with mean of
S-Metric, extreme values, standard deviation and 95% confidence interval.

Surprisingly, the ‘divide and conquer’ approaches csMOEA, kosMOEA and kss-
MOEA with zone constraints only outperform the simple pMOEA without com-
munication, but all perform worse than the iMOEA with communication.
The differences between the ‘divide and conquer’ approaches are not really sig-
nificant, as show by the overlapping confidence intervals in Fig. 5.
The same result can be seen on the T2 test function, see Fig. 6. The pMOEA
without migration suffers from a linear decline in performance while the iMOEA
with migration performs best, despite the significant loss in performance with
increasing number of processors. But on the T2 test function the ‘divide and con-
quer’ approaches with zone constraints do not even perform significantly better
than the pMOEA without migration, see Fig. 8.
The disappointing performance of the ‘divide and conquer’ approaches can been
linked to the evident contiguousness of the Pareto-front in case of T1 and T2.
Therefore, we foster more hopes while approaching the T3 test function, see Fig.
10. But again the ‘divide and conquer’ approaches with zone constraints per-
forms very disappointing, see Fig. 9. While the iMOEA with migration performs
slightly more stable than on T1 and T2 with increasing number of processors,
only the kosMOEA is able to outperform the simple pMOEA without migration
significantly, but is still much worse than the iMOEA.
Having a closer look on the T1-T3 test functions, see appendix, reveals that
the Pareto-fronts are not only contiguous in objective space, but also in search
space. The Pareto-optimal solutions consist of vectors where xi�=1 = 0. A single



8

Fig. 9. Performance on T3 depending on
the number of processors used.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

Pareto−front 

Fig. 10. The T3 test function and
it’s search space.

12345pMOEA iMOEA csMOEA kssMOEA kosMOEA
1

1.05

1.1

1.15

1.2

1.25

1.3 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
1

1.05

1.1

1.15

1.2

1.25

1.3 k = 6

S−
M

et
ric

Fig. 11. Comparison of the parallelization schemes for k=4 (6) on T3, with mean of
S-Metric, extreme values, standard deviation and 95% confidence interval.

solution on the true Pareto-front could explore the whole Pareto-front simply
by mutating x1. Therefore, it remains doubtful, and the experimental evidence
does not support the claim, whether the ‘divide and conquer’ approach can be
applied successfully on these test functions.
On the contrary frequent exchange of information, e.g. individuals, seems to

be essential to explore these types of contiguous Pareto-fronts efficiently, as can
be concluded from the good performance of the iMOEA with migration. From
this perspective zone constraints could be considered as hindering. In case a
subpopulation succeeds in reaching the true Pareto-front any lateral exploit is
punished and further exploitation prevented, if it leaves the local zone. There-
fore, the local success is difficult to communicate to neighboring zones, although
the individuals would be redirected into the neighboring zone during migration.
To investigate this problem further, we first introduce a new non-contiguous test
function T4. Secondly, we disable the zone constraints on T1-T4 in Sec. 4.2.
The non-contiguous test function T4 is a simplified version of the real world
multi-objective portfolio selection problem [12], for a detailed definition and pa-
rameters for T4 see appendix. For the T4 problem the distribution of N = 5
assets is to be optimized, minimizing risk (f1) and loss (f2). The other n − N
variables act as local penalties and need to be set to zero. To make this problem
non-contiguous we add a cardinality constraint limiting the number of assets
with non-zero weights to

∑N
i=1 |sign(xi)| = 2. This results in a Pareto-front



9

Fig. 12. Performance on T4 depending on
the number of processors used.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

Pareto−front 

Fig. 13. The T4 test function and
it’s search space.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4 k = 6

S−
M

et
ric

Fig. 14. Comparison of the parallelization schemes for k=4 (6) on T4, with mean of
S-Metric, extreme values, standard deviation and 95% confidence interval.

with multiple local fronts, but only four global fronts, see Fig. 13. We adjust
the parameters of this problem in such a way, that the number of global Pareto-
fronts is within the number of processors used in this experiment. The portfolio
selection problem and the way to resolve the cardinality constraints using repair
together with Lamarckism is described in [17].
Due to the multi-modal characteristics of the T4 test function, even the mean

results for k = 1 are subject to considerable noise. For the same reason that
both the pMOEA and the iMOEA are able to improve with increasing number
of processors due to the reduced chance of premature convergence, see Fig. 13.
Regarding the clustering based approaches there are two interesting elements. On
the one hand the kosMOEA and the kssMOEA improve significantly for k ≥ 4,
which complies with the number of global Pareto-fronts. And on the other hand
that the kssMOEA performs significantly better than the kosMOEA, which is
confirmed by the clearly separated confidence intervals for k = 4(6) in Fig. 14.
This is related to the fact that most local Pareto-fronts can only be separated
in search space and not in objective space.

4.2 Results without zone constraints on T1-T4

As discussed in Sec. 4.2 we believe, that the zone constraints could have a nega-
tive effect on the performance of the ‘divide and conquer’ approaches. Therefore,
we deactivate the zone constraints for csMOEA, kssMOEA and kosMOEA in the



10

Fig. 15. ‘Divide and conquer’ approaches
with zone constraints on T1.

Fig. 16. ‘Divide and conquer’ approaches
without zone constraints on T1.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.35

0.4

0.45

0.5

0.55 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.35

0.4

0.45

0.5

0.55 k = 6

S−
M

et
ric

Fig. 17. ‘Divide and conquer’ approaches without zone constraints on T1 for k=4(6).

following experiments and compare them to the previous results.
On the T1 test function the performance of kssMOEA and kosMOEA is sig-

nificantly improved by deactivating the zone constraints, compare Fig. 15 and
Fig. 16. Now they equal the performance of the iMOEA with migration or even
perform slightly better, see Fig. 17. It is interesting to note that the objective
space based kosMOEA outperforms the kssMOEA. Unfortunately, the csMOEA
is not able to improve at a similar rate, but seems to perform slightly worse than
with activated zone constraints.
On the T2 test function again kssMOEA and kosMOEA are significantly better
without zone constraints, while the csMOEA again performs worse than with
active zone constraints, compare Fig. 18 and Fig. 19. Unfortunately, few out-
liners on random experimental runs cause the confidence intervals to overlap.
Therefore, interpretation is limited but we tend to conclude, that the cluster
based partitioning schemes for parallel MOEA without zone constraints perform
better or at least as well on the T2 test function as the iMOEA with migration.
The results on the T3 test function also confirm this conclusion, compare Fig.
21 and Fig. 22. Again both cluster based partitioning schemes for parallel MOEA
perform better without zone constraint and equals the performance of the iMOEA
with migration and clearly outperform the csMOEA. On the T3 test function
we can further show, that the K-Mean clustering based on objective space (kos-
MOEA) outperforms the K-Mean clustering based on search space (kssMOEA)
for k > 2, see Fig. 20. This can be accounted to the shape of the T3 function.



11

Fig. 18. ‘Divide and conquer’ approaches
with zone constraints on T2.

Fig. 19. ‘Divide and conquer’ approaches
without zone constraints on T2.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.7

0.75

0.8

0.85

0.9

0.95

1 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.7

0.75

0.8

0.85

0.9

0.95

1 k = 6

S−
M

et
ric

Fig. 20. ‘Divide and conquer’ approaches without zone constraints on T2 for k=4(6).

Here the Pareto-front is non-contiguous in objective space. The fact that the
kosMOEA outperforms the kssMOEA on T3 gives another example for success-
ful ‘divide and conquer’.
On the T4 test function we can still see how the cluster based approaches im-

prove with deactivated zone constraints, and still both improve significantly for
k ≥ 4, see Fig. 24 and 12. Additionally, we can see again in Fig. 26 that the
search space based kssMOEA outperforms the objective space based kosMOEA,
contrary to the T1-T3 test functions. This again gives positive evidence that the
‘divide and conquer’ appraoch is actually feasible.

5 Conclusions and Future Work

We were able to show that the superiority of the ‘divide and conquer’ approach
to parallelizing MOEAs, although charming and intuitive, is not easy to prove
on the typical MOEA test functions. In fact the standard island MOEA with
migration proves to be quite robust and hard to beat. We found that the simple
and contiguous structure of the standard test functions allows lateral exploration
once a good solution is found. This has been verified by removing the zone con-
straints, which may prevent a ‘divide and conquer’ approach to exploit a good
solution efficiently. Without zone constraints the cluster based parallelization
scheme, performs as well or better as the island MOEA with migration. Despite
the unfavorable test functions T1-T3 we were able to give a hint of the positive



12

Fig. 21. ‘Divide and conquer’ approaches
with zone constraints on T3.

Fig. 22. ‘Divide and conquer’ approaches
without zone constraints on T3.

pMOEA iMOEA csMOEA kssMOEA kosMOEA
1

1.05

1.1

1.15

1.2

1.25

1.3 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
1

1.05

1.1

1.15

1.2

1.25

1.3 k = 6

S−
M

et
ric

Fig. 23. ‘Divide and conquer’ approaches without zone constraints on T3 for k=4(6).

effect from a ‘divide and conquer’ approach on the T3 function when objective
space clustering performs better than search space based clustering.
On the T4 test function on the other hand we were able to prove more clearly
that the ‘divide and conquer’ approach is actually feasible. And we believe that
the properties of the portfolio selection problem are more exemplary for many
real world or industrial application problems, than those of the T1-T3 functions.
Therefore, we believe the ‘divide and conquer’ approach is actually more feasible
for many real world multi-objective optimization problems.
Comparing our approach to cone separation, we found that cone separation per-
forms not as good as suggested in [2]. This may be due to the significantly bigger
population sizes used in this paper, the different termination criteria or different
representation and operators used. Besides the better performance observed in
this paper, the cluster based approach has the advantage over cone separation,
that it is easy to extend to multi-dimensional objective spaces. It also allows
us to identify problem specific structures, which allows the ‘divide and conquer’
approach to become more appropriable.
Finally, comparing our cluster based approach to the island MOEA allows us to
give an outlook on future work. On contiguous test functions the island MOEA
performs quite well, but alternative clustering techniques would enable our ap-
proach to distinguish between problem instances where a ‘divide and conquer’
approach can be useful and problem instances where it isn’t. Such an approach
could react more flexible and adopt the parallelization scheme to the specific



13

Fig. 24. Divide and conquer’ approaches
with zone constraints on T4.

Fig. 25. ‘Divide and conquer’ approaches
without zone constraints on T4.

12345pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4 k = 4

S−
M

et
ric

pMOEA iMOEA csMOEA kssMOEA kosMOEA
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4 k = 6

S−
M

et
ric

Fig. 26. ‘Divide and conquer’ approaches without zone constraints on for T4 k=4(6).

problem instance. For example, in case that a clustering algorithm identifies
a single cluster in a contiguous problem space, the parallelization scheme could
proceed with a simple island MOEA with migration. But in case multiple clusters
are encountered a ‘divide and conquer’ approach could become more efficient.
Further, we would also like to implement persistent clusters (subpopulations)
for the clustering based MOEA. This would enable us to monitor convergence
states and focus on unexplored or more promising areas of the search space. We
would also like to investigate more active migration strategies for ‘divide and
conquer’ approaches instead of implicit migration.

Acknowledgements: This research has been funded by ALTANA Pharma
AG, Konstanz, Germany.

References

1. J. Branke, T. Kauler, and H. Schmeck. Guidance in evolutionary multi-objective
optimization. Advances in Engineering Software, 32:499–507, 2001.

2. J. Branke, H. Schmeck, K. Deb, and R. S. Maheshwar. Parallelizing multi-objective
evolutionary algorithms: Cone separation. In Congress on Evolutionary Computa-
tion (CEC 2004), pages 1952–1957, Portland, Oregon, USA, 2004. IEEE Press.

3. E. Cantu-Paz. A survey of parallel genetic algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis, 10(2):141–171, 1998.



14

4. F. de Toro Negro, J. Ortega, J. Fernandez, and A. Diaz. PSFGA: A parallel genetic
algorithm for multi-objective optimization. In F. Vajda and N. Podhorszki, editors,
Euromicro Workshop on Parallel Distributed and Network-Based Processing, pages
849–858. IEEE, 2002.

5. F. de Toro Negro, J. Ortega, E. Ros, S. Mota, B. Paechter, and J. Martin. PSFGA:
Parallel processing and evolutionary computation for multi-objective optimization.
Parallel Computing, 30:721–739, 2004.

6. K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-
II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel, editors, Proceedings of the Parallel Problem Solving from Nature
VI Conference, pages 849–858, Paris, France, 2000. Springer. Lecture Notes in
Computer Science No. 1917.

7. K. Deb, P. Zope, and A. Jain. Distributed computing of pareto-optimal solu-
tions with evolutionary algorithms. In C. Fonseca, P. Fleming, E. Zitzler, K. Deb,
and L. Thiele, editors, Evolutionary Multi-Criterion Optimization, volume 2632 of
LNCS, pages 534–549. Springer-Verlag, 2003.

8. M. Emmerich and B. Naujoks. Metamodel assisted multiobjective optimisation
strategies and their application in airfoil design. In I. C. Parmee, editor, Adaptive
Computing in Design and Manufacture VI, pages 249–260, London, 2004. Springer.

9. H. Horii, M. Miki, T. Koizumi, and N. Tsujiuchi. Asynchronous migration of is-
land parallel GA for multi-objective optimization problems. In L. Wang, K. Tan,
T. Furuhashi, J.-H. Kim, and X. Yao, editors, Asia-Pacific Conference on Simu-
lated Evolution and Learning, pages 86–90, Nanyang University, Singapore, 2002.

10. Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing Journal in press, 2004.

11. R. Mäkinen, P. Neittaanmäki, J. Periaux, M. Sefrioui, and J. Toivanen. Parallel
genetic solution for multiobjective MDO. In A. Schiane, A. Ecer, J. Periaux, and
N. Satofuka, editors, Parallel CFD’96 Conference, pages 352–359. Elsevier, 1996.

12. H. M. Markowitz. Portfolio Selection: efficient diversification of investments. John
Wiley & Sons, 1959.

13. M. Miki, T. Hiroyasu, and S. Watanabe. The new model of parallel genetic algo-
rithm in multiobjective genetic algorithms. In Congress on Evolutionary Compu-
tation CEC 2000, volume 1, pages 333–340, 2000.

14. D. Quagliarella and A. Vicini. Subpopulation policies for a parallel multi-objective
genetic algorithm with applications to wing design. IEEE International Conference
on Systems, Man and Cybernetics, 4:3142–3147, 1998.

15. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
Chichester, U.K., 1977.

16. F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering based niching ea for
multimodal search spaces. In 6th International Conference on Artificial Evolution,
volume 2723 of LNCS, pages 293–304, Marseille, 27-30 October 2003.

17. F. Streichert, H. Ulmer, and A. Zell. Evaluating a hybrid encoding and three
crossover operators on the constrained portfolio selection problem. In Congress on
Evolutionary Computation (CEC 2004), pages 932–939, Portland, Oregon, USA,
2004. IEEE Press.

18. D. A. Van Veldhuizen. Considerations in engineering parallel multiobjective evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 7(2):144–
173, 2003.



15

19. X. Yin and N. Germany. A fast genetic algorithm with sharing using cluster
analysis methods in multimodal function optimization. In Proceedings of the In-
ternational Conference on Artificial Neural Nets and Genetic Algorithms, pages
450–457, Innsbruck, Austria, 1993.

20. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

Appendix: Test Functions

The test functions T1-T3 are from [20] and have the basic structure of:

f1(x̄) = x1 (1)
f2(x̄) = g(x̄)h (f1(x̄), g(x̄))

with x̄ ∈ [0, 1]n and n = 30. They differ only in the definition of g(x), h(x).
Test Function T1 has a convex Pareto-front, see Fig. 4:

g(x̄) = 1 +
9

n − 1

n∑

i=2

xi (2)

h(f1, g) = 1 −
√

f1/g

Test Function T2 has a concave Pareto-front, see Fig. 7:

g(x̄) = 1 +
9

n − 1

n∑

i=2

xi (3)

h(f1, g) = 1 − (f1/g)2

Test Function T3 has a discontinuous Pareto-front, see Fig. 10:

g(x̄) = 1 +
9

n − 1

n∑

i=2

xi (4)

h(f1, g) = 2 −
√

f1/g − (f1/g)sin(10πfi)

Test Function T4 resembles the constrained portfolio selection problem min-
imizing risk (f1) and loss (f2) of N assets. We limit to N = 5 assets such that
the number of local Pareto-fronts is well in the number of processors used. The
remaining n − N span the search space, see Fig. 13:

f1(x̄) =
N∑

i=1

N∑

j=1

xixjσij (5)

f2(x̄) =
N∑

i=1

xi · µi +
n∑

i=N+1

x2
i · xi mod N

with n = 30, N = 5, xi ∈ [0, 1],
∑N

i=1 xi = 1
and

∑N
i=1 |sign(xi)| = 2.

µi σij

0 1.0 0 0.1 0 0.3

1.0 0 0 0 0 0

0.2 0.1 0 0.7 0.3 -0.1

0.5 0 0 0.3 0.5 0

0.7 0.3 0 -0.1 0 0.2


