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Abstract. With the invention of microarray technology, researchers are
able to measure the expression levels of ten thousands of genes in par-
allel at various time points of a biological process. The investigation of
gene regulatory networks has become one of the major topics in Systems
Biology. In this paper we address the problem of finding gene regulatory
networks from experimental DNA microarray data. We suggest to use
a multi-objective evolutionary algorithm to identify the parameters of
a non-linear system given by the observed data. Currently, only limited
information on gene regulatory pathways is available in Systems Biology.
Not only the actual parameters of the examined system are unknown,
also the connectivity of the components is a priori not known. However,
this number is crucial for the inference process. Therefore, we propose a
method, which uses the connectivity as an optimization objective in ad-
dition to the data dissimilarity (relative standard error - RSE) between
experimental and simulated data.

1 INTRODUCTION

Gene regulatory networks (GRNs) represent the dependencies of the different
actors in a cell operating at the genetic level. They dynamically determine the
level of gene expression for each gene in the genome by controlling whether a
gene will be transcribed into RNA or not. A simple GRN consists of one or more
input signalling pathways, several target genes, and the RNA and proteins pro-
duced from those target genes. In addition, such networks often include dynamic
feedback loops that provide further network regulation activities and output. In
order to understand the underlying structures of activities and interactions of
intra-cellular processes one has to understand the dependencies of gene products
and their impact on the expression of other genes. Therefore, finding a GRN for
a specific biological process would explain this process from a logical point of
view, thus explaining many diseases.

Therefore, the model reconstruction of gene regulatory networks has become
one of the major topics in bioinformatics. However, the huge number of system
components requires a large amount of experimental data to infer genome-wide
networks. Recently, DNA microarrays have become one of the major tools in the



research area of microbiology. This technology enables researchers to monitor
the activities of thousands of genes in parallel and can therefore be used as a
powerful tool to understand the regulatory mechanisms of gene expression in a
cell. With this technique, cells can be studied under several conditions such as
medical treatment or different environmental influences.

Microarray experiments often result in time series of measured values indi-
cating the activation level of each tested gene in a genome. These data series
can then be used to examine the reactions of the cell to external stimuli. A
model would enable biologists to predict the reactions of intracellular signalling
processes. To re-engineer or infer the regulatory processes computationally from
these experimental data sets, one has to find a model that is able to produce
the same time series data as the experiments. The idea is then that the model
reflects the true system dependencies, i.e. the dependencies of the components
of the regulatory system.

Several approaches have been made to address this problem. Many of them
are only relying on the distance between the experimental data and the simu-
lated data coming from the mathematical model, but the biological plausibility
of the system is almost always neglected. And although Biologist know, that
regulatory systems are sparse, i.e. one gene relies on average on a small number
of other genes, this fact can be found only in some publications.

In this paper we propose a methodology for reverse engineering sets of time
series data obtained by artificial expression analysis by combining two objectives
into a multi-objective optimization problem. The first objective is the dissim-
ilarity between the experimental and the simulated data (RSE). The second
objective is the connectivity of the system. Both objectives are to be minimized
to gain a system, which fits the data and at the same time is only sparsely con-
nected and therefore biological plausible. With this approach, we systematically
examine the impact of the connectivity of the regulatory network on the overall
inference process.

The remainder of this paper is structured as follows. Section 2 of this paper
presents an overview over related work and lists associated publications. Detailed
description of our proposed method will be given in section 3 and example appli-
cations will be shown in section 4. Finally, conclusions and an outlook on future
research will be covered by section 5.

2 RELATED WORK

Researchers are interested in understanding the mechanisms of gene regulatory
processes and therefore in inferring the underlying networks. The following sec-
tion briefly describes the work that has been done in this area.

The earliest models to simulate regulatory systems found in the literature
are boolean or random boolean networks (RBN) [8]. In boolean networks gene
expression levels can be in one of two states: either 1 (on) or 0 (off). The quan-



titative level of expression is not considered. Two examples of algorithms for
inferring GRNs with boolean networks are given by Akutsu [1] and the RE-
VEAL algorithm by Liang et al. [11]. Boolean networks have the advantage that
they can be solved with only small computational effort, but they suffer from
the disadvantage of being tied to discrete system states.

In contrast to discrete models like RBNs, qualitative network models allow
for multiple levels of gene regulation. An example for this kind of approach is
given by Thieffry and Thomas in [20], where a qualitative model was successfully
inferred. Akutsu et al. suggested a heuristic for inferring such models in [2]. But
those models use only qualitative dependencies and therefore only a small part
of the information hidden in the time series data.

Quantitative models based on linear models for gene regulatory networks like
the weighted matrix model introduced and inferred by Weaver et al. [22] consider
the continuous level of gene expression. Another algorithm to infer quantitative
models is the singular value decomposition method by Yeung et al. [23]. Draw-
back of these models is that they are restricted to linear dependencies, which
makes it difficult to model biological networks due to the fact that biological
systems are known to be non-linear.

A general example for a mathematical non-linear model is the S-System,
which was introduced by Savageau [15] in the 90s. S-Systems for inferring reg-
ulatory mechanisms have been examined by Maki et al. [12], Kiguchi et al. [10]
or Tominaga et al. [21]. Non-linear models and especially the S-System face the
severe disadvantage of having many model parameters to be inferred (2(N +N2)
with N the number of genes). Tominaga et al., for example, bypassed this prob-
lem by inferring only a subset of genes of the original system (2 genes out of 5).
Methods using S-Systems or other non-linear models regard only a small num-
ber of components within the regulatory network to be reverse engineered, i.e.
a total number of genes N ≤ 10.

So far, only parameterized models have been considered in this section. Other
approaches, for example non-parameterized models, to infer regulatory systems
from time series data using artificial neural networks [9] or bayesian networks
[7] have been recently published, but face some drawbacks as well. Bayesian net-
works, for example, do not allow for cyclic networks, which are known to exist
in biological systems. Another kind of non-parameterized model are arbitrary
differential equations, which can also be used to model regulatory structures as
Ando et al. showed with genetic programming (GP) in [3]. In this publication,
GP was used to set up a system of suitable differential equations, whose time
series are then compared to the experimental data.

Although the standard single-objective algorithms, which were used in some
cases for parameter optimization for the parameterized models, tend to find
completely connected networks and thus biologically implausible solutions, the
number of connections was not considered to be of any importance. Knowing
that the system that is to be inferred is sparse by the very nature of biological
systems together with the necessity to find a model with the same time dynamic



behavior, the problem of finding a set of parameters for a mathematical model
is obviously multi-objective; thus, MOEAs should be used.

Further more, previously work on this topic showed that, due to the multi-
modal character of the solution space, several sets of parameter exist, which fit
the data satisfactorily. Thus, standard optimization techniques are easily caught
in local optima, i.e. finding a solution with a good RSE but with no structural
resemblance with the true system. This is known to be a major problem in the
inference process [18, 13, 6, 14]. Because MOEAs preserve the diversity of the
solution within a population by maintaining the Pareto-front and are therefore
able to find multiple optima hopefully including the global optimum.

As a conclusion of this, the dissimilarity between the simulated data and the
experimental data has to be minimized and at the same time, the connectivity is
to be minimized too. All this suggest to use MOEAs for the inference of GRNs.
Thus, we propose a new approach to the inference problem of regulatory sys-
tems, namely two MOEA implementations.

3 METHODS

In this section we want to give the details of the mathematical model used to
simulate the gene regulatory system in the inference process together with a
description of the multi-objective EA.

3.1 Model

On an abstract level, the behavior of a cell is represented by a gene regulatory
network of N genes. Each gene gi produces a certain amount of RNA xi when
expressed and therefore changes the concentration of this RNA level over time:
x(t + 1) = h(x(t)) , x(t) = (x1, · · · , xn).

To model and to simulate regulatory networks we decided to use S-Systems
since they are well-documented and examined. But there are alternatives as
listed in section 2, which will be the subject of research in future applications.

S-Systems are a type of power-law formalism which has been suggested by
Savageau [15] and can be described by a set of nonlinear differential equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (1)

where Gi,j and Hi,j are kinetic exponents, αi and βi are positive rate constants
and N is the number of equations in the system. The equations in (1) can be seen
as divided into two components: an excitatory and an inhibitory component.

The kinetic exponents Gi,j and Hi,j determine the structure of the regulatory
network. In the case Gi,j > 0 gene gj induces the synthesis of gene gi. If Gi,j < 0
gene gj inhibits the synthesis of gene gi. Analogously, a positive (negative) value
of Hi,j indicates that gene gj induces (suppresses) the degradation of the mRNA
level of gene gi.



3.2 Multi-objective Algorithm

For examining the connectivity and the RSE in parallel, we used a multi-objective
EA, which optimizes the parameters of G, H, αi and βi in respect to the follow-
ing two optimization objectives:

I.) For evaluating the RSE fitness of the individuals we used the following
equation for calculation of the fitness values:

f1 =
N∑

i=1

T∑

k=1

{(
x̂i(tk)− xi(tk)

xi(tk)

)2
}

(2)

where N is the total number of genes in the system, T is the number of sam-
pling points taken from the experimental time series and x̂ and x distinguish
between estimated data of the simulated model and data sampled in the exper-
iment. The problem is to minimize the fitness value f1.

II.) The second optimization objective is to minimize the connectivity of the
system, as biologically the gene regulatory network is known to be sparse. The
connectivity is defined in two different ways: first, the maximum connectivity of
the genes, i.e. the total number of interactions of the system:

fa
2 =

N∑

i=1

(|sign(αi)|+ |sign(βi)|) +
N∑

i=1

N∑

j=1

(|sign(Gi,j)|+ |sign(Hi,j)|) (3)

And secondly, the median average connectivity of all genes, i.e. the median
average number of interactions of each gene:

f b
2 = median(

fa
2

N
) (4)

3.3 Test Cases

The optimization experiments were performed with different configurations. In
the first test class (Test class I: Hybrid), an EA with hybrid encoding indi-
viduals was used to minimize the connectivity of the regulatory model, which
was recently developed by the authors [19]. This individual combines a binary
and a real valued genotype that are evolved in parallel. The binary variables
are used to determine a topology or structure of the network and the double
encoded optimization variables represent the corresponding model parameter.
The individuals always encode all possible model parameters but only some of
them are used for simulation according to the binary representation of the topol-
ogy. Nevertheless, the unused variables are continuously evolved and subject to
random walk and might be incorporated in the simulation if the bitset changes.



This enables the optimizing algorithm to escape local optima. This algorithm
has to optimize 2(N + N2) real valued parameters for the S-System plus 2N2

bits for each entry Gi,j and Hi,j , thus in total 2N + 4N2 variables.

Test class II (MA) is a memetic algorithm, where an individual of the
MOEA represents the topology together with an evolution strategy, which searches
for the best parameters for the given topology. The memetic algorithm uses
a MOEA population to evolve populations of topologies of possible networks.
These topologies are encoded as bitsets, where each bit represents the existence
or absence of an interaction between genes and therefore of non-zero parame-
ters in the mathematical model. The evaluation of the fitness of each individual
within the MOEA population applies a local search to find suitable parameters.
For evaluation of each structure suggested by the MOEA population an evolu-
tion strategy is used, which is suited for the parameter optimizing problem, since
it is based on real values. The ES optimizes the parameters of the mathematical
model used for representation of the regulatory network. This algorithm was in-
troduced by the authors in [17]. The current implementation is working on both,
G and H, thus having the same number of bits as the algorithm in the previous
case (2N2). For future implementations it would be interesting to encode only
the logical dependency between genes and set the corresponding bits in G and
H at the same time. The difference between the hybrid encoding of I and the
II is that the latter is optimizing only the S-System parameters for those values
of the bitset that are true. Therefore, this algorithm has a dynamic range of
the total number of model parameters between 0 (no connectivity at all) and
2(N + N2) for the complete S-System.

Furthermore, a third test class (Test class III: Skeletalizing) was imple-
mented, where a technique called skeletalizing was used [21]. This is an exten-
sion to a standard real-coded GA that introduces a threshold value tskel, which
represents a lower boundary for the parameters Gi,j and Hi,j in the mathe-
matical model. If the absolute value of a decoded decision variable of the GA
drops below this threshold during optimization the corresponding phenotype
value is forced to 0.0 indicating no relationship between the components. Thus,
|Gi,j | < tskel → Gi,j = 0.0. This algorithm has the same total number of para-
meters to optimize as the MA described above.

Overall, a total number of three different algorithms was tested on two prob-
lem instances (f1, f

a
2 ) and (f1, f

b
2) with artificial experimental data to examine

the impact of the connectivity on the overall optimization process.

3.4 Algorithm Settings

The settings and chosen parameter for each of the three algorithm test classes
will be given in the following sections.



Test Class I: Hybrid The multi-objective runs were performed using a real-
valued NSGA-II algorithm with a population size of 500 individuals, crowded
tournament selection with a tournament group size of tgroup = 8, Uniform-
crossover recombination with pc = 1.0 and a mutation probability pm = 0.1.
(Details on the implementation is given in Deb et al. [4]).

Test Class II: MA The memetic algorithm used also an NSGA-II to evolve
a population of possible topologies with crowded tournament selection with a
tournament group size of tgroup = 8, Uniform-crossover with pc = 1.0 and a
mutation probability pm = 0.1. The local optimization was performed using a
(µ,λ)-ES with µ = 10 parents and λ = 20 offsprings together with a Covariance
Matrix Adaptation (CMA) (see Hansen and Ostermeier [5]) mutation operator
without recombination.

Test Class III: Skeletalizing This test class was a standard real-coded NSGA-
II using a population of 500 individuals, crowded tournament selection with a
tournament group size of tgroup = 8, Uniform-crossover with pc = 1.0 and a
mutation probability of pm = 0.1 together with the threshold value tskel = 0.05.

To keep track of the Pareto-front the multi-objective algorithms maintained
an archive of (population size/2) individuals and used this archive as elite to
achieve a faster convergence. Each test class experiment terminated after 100, 000
fitness evaluations. Each example setting was repeated 20 times.

We further compared the MOEAs to a standard (µ,λ)-ES with µ = 10 parents
and λ = 20 offsprings together with CMA and no recombination. We tested this
ES on the artificial systems with 20 multiruns and evaluated the overall best
individual found in the runs.

4 APPLICATIONS

To illustrate our method, we established two regulatory network systems, which
were simulated to gain sets of expression data. After creating the data sets,
we used our proposed algorithm to reverse engineer the correct model parame-
ters. The following section show this for a 5-dimensional and a 10-dimensional
example.

4.1 Artificial Gene Regulatory Network

Due to the fact that GRNs in nature are sparse systems, we created regula-
tory networks randomly with a maximum cardinality of k <= 3, i.e. each of
the N genes depends on three or less other genes within the network. The total
connectivity of the 5-dimensional example was 36, i.e. the number of non-zero
parameters was 36. As a second and, due to the increased number of partic-
ipating genes, more difficult test case, we created another regulatory network
randomly with a maximum cardinality of k <= 3. The total connectivity of the
10-dimensional example was 78.



Target The time dynamics of the systems can be seen in Fig. 1 and 2, respec-
tively. In the figures, each xi represents the RNA level of a certain gene. At this
point, we do not differentiate between closely related molecules like mRNA and
distantly related like proteins.
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Fig. 1. 5-dimensional GRN. The numbers
indicate the component genes.
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Fig. 2. 10-dimensional GRN. The numbers
indicate the component genes.

Obviously, the information about the true connectivity was not used in the
optimization process it served only for validation purposes.

4.2 Initial Results

In the initial implementation, the MOEA found the only one Pareto-optimal
solution with a connectivity of 0. This is caused by the trivial solution with zero
interactions. With a connectivity of 0, the system is static and does not change
over time. Because the expression levels of the system are in the range of 0.0 and
5.0, the data distance of the static case is very small compared to many of the
systems with a larger connectivity and often unstable dynamics. To bypass this
issue, we multiplied the data sets by a factor fscale = 1, 000, 000 and introduced
therefore a penalty for being static. During evaluation and postprocessing of the
results, we reversed this scaling to gain fitness values for the original data range.

4.3 5-dimensional example

The actual results of the three test classes are shown for the 5-dimensional
example in the next figures. Fig. 3 shows the Pareto-front results of the three
test classes accumulated over all 20 multiruns with the RSE as ordinate and the
total number of interactions in the inferred model as abscissa.

As one can see, with increasing number of interactions, the RSE is getting
better due to the ambiguity in the data sets. Because the optimizer has more
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Fig. 3. Pareto-front of the 5-dim example
(total connectivity)
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Fig. 4. Distances of the 5-dim example
(total connectivity)

parameters and thus more model variables to use for fitting the data, it becomes
more easy to actually reach the desired time series course. But as can be seen in
the figure to the right (Fig. 4), the euclidian distance between the true system
and the model found by the EA is getting worse, due to the sparseness of the
true system. This validates the results of previous work [17].

The next two figures show the Pareto-front and the parameter distance of the
5-dimensional example in the case that the median average number of interac-
tions of each gene was taken into account as the second optimization objective.
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Fig. 5. Pareto-front of the 5-dim example
(average connectivity)
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Fig. 6. Distances of the 5-dim example
(average connectivity)

There is almost no difference between the two definitions of connectivity as
can be see in the figure. All algorithms yield similar results as in the test case
of the total connectivity. And as in the previous results shown, there is no sig-



nificant difference between the two multi-objective implementations (MA and
hybrid). Both, the MA and the hybrid algorithm, outperform the skeletalizing
GA.

The star in the figures show the true solution with a total connectivity of
36. None of the tested algorithm is able to reach the true solution. This might
be partly due to the limited number of total fitness evaluations. But the major
problem for all EAs is that the solution space is highly multi-modal and in case
of the S-System very large.

For comparison, we tested additionally a standard ES on the artificial sys-
tems. These results are indicated in the figures with the rhombus symbol. As one
can see, the standard ES prefers fully connected networks. The averaged best
RSE fitness values in case of the 5-dimensional example are as good as those of
the multi-objective EAs. But the second objective, the distance between the op-
timized parameters and the true system, is much better for the MOEAs. The ES
found solutions, which fit the data comparably good, but show less resemblance
with the original system.

Overall, two conclusions can be drawn from the figures: first, the MA and
the hybrid algorithm perform significantly better than the algorithm taken from
the literature, i.e. the skeletalizing GA and a standard ES. Probably the ability
to preserve the diversity in the population supports the MOEA to find better
solutions.

Secondly, the memetic algorithm performs on average slightly better than
the hybrid encoding individual. One advantage for the MA in future applications
might be the fact that EAs tend to yield better solutions with a local search,
which refines the found parameters.

4.4 10-dimensional example

The conclusions from the previous section are validated by the results of the
10-dimensional example as given in Fig. 7 and 8.

Again, the fitness values for fitting the data (RSE) are getting better for
increasing numbers of interactions in the regulatory system. The distance to the
true model parameters is getting worse. And as in the 5-dimensional example,
the solutions were not even close to the true solution, indicated with the star.
For the true connectivity, no algorithm was able to find the correct parameters.
The reason for this can be understood, if one looks closer at the topologies for
this connectivity. The algorithms examined the correct degree of dependencies
but with wrong interactions partners. In this case, it is obviously not possible to
find the correct values for the model parameters. The conclusion from this fact
is that more topologies have to be examined, which is easy to perform with the
MA or the hybrid algorithm and a higher number of total fitness evaluations.
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Fig. 7. Pareto-front of the 10-dim example
(total connectivity)
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Fig. 8. Distances of the 10-dim example
(total connectivity)

The standard ES performed better than in the previous example. The RSE
fitness values were comparably good as those of the totaly connected MOEA
results. And also the parameter distances of the ES results corresponded with
those of the MOEA solutions. But again, the ES was not able to find any solu-
tions that were not fully connected. Considering that the ES had as many fitness
evaluations as the MOEA, the MOEA performed much better. This supports the
claim of the usefulness of the increased diversity in a MOEA population.
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Fig. 9. Pareto-front of the 10-dim example
(average connectivity)
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Fig. 10. Distances of the 10-dim example
(average connectivity)

Again, the choice of the connectivity definition did not influence the overall
results as can be seen in figures 9 and 10. Both implementations resulted in
similar solutions in respect to the parameter distance and the RSE fitness.



5 DISCUSSION

5.1 Conclusions

In this paper we compared different multi-objective strategies to infer gene reg-
ulatory networks from time-series microarray data. The results of the test exam-
ples showed that the number of interactions has a crucial impact on the ability
of an EA to fit a mathematical model to a given time series. High numbers
of connections between system components yield in better results in respect to
the data fitness. This is due to the large number of model parameters and the
small number of data sets available, the system of equations is highly under-
determined. Therefore, multiple solutions exist, which fit the given data, but
show only little resemblance with the original target system. This problem is
known in literature but there are currently only few publications reflecting on
this issue. The multi-objective strategy showed promising performance in com-
parison to standard single-objective algorithms. MOEA are better at preserving
the diversity of the solutions in the population as standard algorithms do and are
able to better cope with the ambiguity issues than single-objective optimization
algorithms as we have shown in this paper. This is especially important for the
highly multi-modal solutions space in the case of inference problems.

On the other side, with increasing number of interactions, it becomes more
and more difficult to find the true system in respect to correct parameter values.
Because biological systems are sparse, algorithm have to take this fact into ac-
count to find better solutions. In this example, we knew that the true solutions
existed with the known connectivity. In real world applications, researches do
not know, which connectivity is the correct one. MOEAs are again a promising
approach to this problem as they result in a set of Pareto-optimal solutions from
which researchers can choose the most suitable model complying with, for exam-
ple, biological constraints. Biologist would be able to take one or more solutions
as hypotheses and examine them in additional experiments.

5.2 Outlook

Due to the ambiguity in the data, it is difficult for EAs to find the correct solution
as concluded above. Recently, the authors published a method to incorporate
data sets obtained by additional experiments [16]. As one future enhancement
of the proposed methods, we plan to incorporate such additional methods to
identify the correct network.

As the initial results showed, precautions have to be taken to prevent the
MOEA from finding the trivial solution of no connectivity. This can be done
for example by scaling the experiment data as we did in this publication or one
could introduce a penalty term to scale the objective function.

In future work we also plan to include a-priori information into the inference
process of real microarray data like partially known pathways or information
about co-regulated genes, which can be found in literature or in public data-
bases. Here, the dissimilarity to the known pathway could be included as a third



objective, which is also to be minimized. This would enable the MOEA to search
for models consistent with current biological knowledge, but would also allow for
alternative solutions where biological information is missing or faulty.

Furthermore, additional models for gene regulatory networks will be exam-
ined for simulation of the non-linear interaction system as listed in Sect. 2 to
overcome the problems with a quadratic number of model parameters of the
S-System.
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