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Abstract- In this paper we address the problem of find-
ing valid solutions for the problem of inferring gene
regulatory networks. Different approaches to directly
infer the dependencies of gene regulatory networks by
identifying parameters of mathematical models can be
found in literature. The problem of reconstructing reg-
ulatory systems from experimental data is often multi-
modal and thus appropriate optimization strategies be-
come necessary. Thus, we propose to use a clustering
based niching evolutionary algorithm to maintain diver-
sity in the optimization population to prevent premature
convergence and to raise the probability of finding the
global optimum by identifying multiple alternative net-
works. With this set of alternatives, the identification of
the true solution has then to be addressed in a second
post-processing step.

1 INTRODUCTION

With the description of complete genome sequences, DNA
microarray technology has become a powerful tool for
genome-wide expression profiling and analysis [31]. It al-
lows the simultaneous examination of thousands of genes
in a single experiment and thus the cellular dynamics un-
der various environments. The analysis of such behavior
is one of the key elements in the functional analysis of the
genome. A large amount of knowledge on various biolog-
ical systems, e.g. gene regulation, metabolic regulations,
and signal transduction are being continually accumulated
over the years, though there remains a large portion that is
not well understood.

The construction of a network model, which can describe
the behavior of the biochemical system, is an important but
very difficult task addressed in recent bioinformatics. The
purpose of such a gene regulatory network (GRN) is to rep-
resent the rules of regulation defining the gene expression.
It is regarded as an abstract mapping of the more compli-
cated biochemical network, which includes other compo-
nents such as proteins, metabolites, etc. The knowledge of
the genetic network may then be used as the guidance for
further biological experiments to explore higher level of in-
teraction. Fig. 1 shows an example of such a regulatory
system.

In the literature, several mathematical models can be
found that address the problem of analyzing gene regula-
tion. A good overview of related work can be found in
[4, 3]. The models used to simulate GRNs are divided into
two major classes, stochastic and deterministic models. In
stochastic models, e.g. Bayesian networks, the dependen-
cies between the components of a system are modeled by
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Figure 1: Genetic network introduced in [9]. This gene net-
work consists of two genes (gene 1 and gene 4). X1 and
X4 are mRNA concentrations produced by gene 1 and 4,
respectively. X2 is an enzyme translated from X1 and X3

is an inducer protein catalyzed by X2. X5 is a regulator
protein translated from X4. X3 and X5 are assumed to su-
press/activate the mRNA transcription of genes 1 and 4. The
five components of our analysis are indicated in gray.

probabilistic transition values. There are many publications
on this kind of model, [11, 6, 12]. The second class models
these dependencies in a deterministic manner. Several de-
terministic models have been examined over the last years
such as linear weight matrices introduced in [30, 16, 17].
Other deterministic models include S-systems, which con-
sist of a set of differential equations describing the changes
in expression over time. S-Systems have been examined in
[13, 15, 28] but also by others. Arbitrary differential equa-
tions can be used to model regulatory structures as showed
with Genetic Programming (GP) in [21, 1].

The analysis of gene expression using evolutionary
algorithms (EAs) is a frequently used approach and com-
mon to the methods mentioned above. EAs have proven
to be successful in identifying parameters of mathematical
models representing GRNs. Their general principles and
application will be described in the following sections.

The mathematical modeling of regulatory systems raises
two problems:

1. Solutions that appear optimal under the objective
function, but which do not correspond to the true
model. These exist, because the system is under-
determined.

2. Suboptimal solutions, to which the optimization
methods may converge.



The first mentioned problem results from the ambiguity
in the experimental data. Due to the high number of network
components in contrast to the small number of experimen-
tal samples, the overall problem is highly under-determined.
Hence, there exist several network structures that satisfy the
given time course dynamics of the experiment. This issue
has already been addressed by several publications, one ex-
ample can be found in [25], where the problem is resolved
by exploiting additional data in the inference process. A
similar approach has been proposed in [18].

But these strategies remove the cause of the previously
mentioned problem of ambiguity of under-determined sys-
tems rather than offering a solution to it. Therefore, the
present paper addresses the second problem and focusses
mainly on constructing multiple alternative genetic net-
works automatically from gene expression data. These al-
ternatives can then be evaluated either by an expert or by
further processing with the algorithms mentioned above.
Further on, biological knowledge can be used to determine
the correct network by incorporating additional constraints
into the optimization process [26].

Standard methods using optimization techniques like
EAs suffer from the fact that they quickly focus on a single
valid solution that satisfies the given experimental data
or are not able to find any valid solution. Thus, the true
system is found only in some of the inference processes.
Therefore, finding multiple solutions, which all similarly
comply with the experimental constraints, is the first step in
finding the true solution. The second step is then to identify
the correct solution in the list of possible network structures
gained by step one. In this work, we suggest to use niching
EAs to address the first step. Using this type of algorithm,
we are able to show that niching algorithms reliably meet
the requirements of step one by generating a limited set of
alternative solutions, which contains the true system with a
high probability.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the proposed algorithm and the mathemati-
cal model used in the optimization process. The results are
listed in section 3 and the conclusions and an outlook are
given in section 4.

2 METHOD

On an abstract level, the behavior of a cell is represented
by a directed graph with N nodes representing N genes.
Each gene gi produces a certain amount of RNA xi when
expressed and changes the concentration of the RNA level
over time: ~x(t+1) = h(~x(t)) , ~x(t) = (x1, · · · , xn). Here,
function h represents the changes of the vector of expression
levels from one state to the next.

2.1 S-Systems

As already mentioned, there are several approaches to math-
ematically model a regulatory system. S-Systems are one
possibility. They employ a general formalism, which al-
lows for capturing the non-linearity and general dynamics

of the gene regulation. S-Systems are a type of power-law
formalism suggested by [23], and can be described by a set
of nonlinear differential equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (1)

where Gi,j and Hi,j are kinetic exponents, αi and βi are
positive rate constants and N is the number of equations in
the system. The equations in Eqn. 1 can be seen as divided
into two components: an excitatory and an inhibitory com-
ponent. The kinetic exponents Gi,j and Hi,j determine the
structure of the regulatory network. In the case Gi,j > 0,
gene gj induces the synthesis of gene gi. If Gi,j < 0, gene
gj inhibits the synthesis of gene gi. Analogously, a posi-
tive (negative) value of Hi,j indicates that gene gj induces
(suppresses) the degradation of the mRNA level of gene gi.

Since the modeling of genetic networks involves abstrac-
tion and mapping of interactions, the generality of this for-
mula is essential. However, they suffer from the high num-
ber of model parameters (2N2 + 2N ). And although high
performance computing has made significant progress over
the last decade, this is still a major issue for larger biological
systems.

2.2 Linear Weight Matrices

To overcome this problem, network models can be used
that do not rely on that high numbers of parameters. One
model of this class are linear weight matrices [30]. In this
approach, the regulative interactions between the genes are
represented by a weight matrix, W , where each row of W
represents all the regulatory inputs for a specific gene. The
regulatory effect of gene gj on gene gi at time t is simply
the expression level of gj multiplied by its regulatory influ-
ence on gi, wij . The total regulatory input to gi is derived
by summing across all the genes in the system and in the
following referred to as ri(t) (see Eqn. 2).

ri(t) =
∑

j

wijxj(t) (2)

Here, a positive value for wij indicates that gene gj is
stimulating the expression of gene gi. Similarly, a negative
value indicates repression, while a value of zero indicates
that gene gj does not influence the transcription of gene gi.
By modeling regulatory interactions with a weight matrix,
we can use mathematical matrix approaches found in the
field of neural networks for subsequent analyses of the re-
sultant models.

With the regulatory state of each gene, we are now able
to model the response of each gene to the given input. The
impact of ri(t) on gene gi is calculated using a so called
”squashing” function (Eqn. 3).

xi(t + 1) =
mi

1 + e−(αiri(t)+βi)
(3)

where ri(t) is the mentioned regulatory state of gene gi,
and αi and βi are gene specific constants that define the



shape of the squashing function for gene gi. The result-
ing expression level is only a relative value between 0 and
1, with 0 representing complete repression and 1 represent-
ing maximal expression. Thus, these relative levels have
to be converted into the real expression space. In addition,
the genes can have different levels of maximal expression.
Hence, we multiply the calculated relative gene expression
level xi by the maximal expression level for each gene mi,
to get the final expression level for gi xi(t + 1) as shown in
equation (3).

2.3 Evolutionary Algorithms

Evolutionary algorithms are stochastic optimization tech-
niques that mimic the natural evolution process of repeated
mutation and selection as proposed by Charles Darwin.
They have proven to be a powerful tool for solving complex
optimization problems and in particular combinatorial
problems. Three main types of evolutionary algorithms
have been proposed in the last decades: Genetic Algorithms
(GA), mainly developed by J.H. Holland [10], Evolution
Strategies (ES), developed by I. Rechenberg [20] and
H.-P. Schwefel [24], and Genetic Programming (GP) by
J.R. Koza [14]. Each of these uses different solution
representations and different operators working on them.

The following sections list the details and the settings for
each optimization algorithm that was used in the compari-
son experiments. Overall, four different algorithms were
used for comparison. The experiment settings of the algo-
rithms, which are described in the following, were repeated
20 times to gain sound statistics.

2.3.1 Multi-Start Hill-Climber (MS-HC)

As a first algorithm, we examined the performance of a stan-
dard hill climber method on the inference problem. MS-
HCs represent a rather primitive technique but they can be-
come useful in simple and low dimensional multi-modal
solution spaces. The MS-HC performs several local hill
climbing searches in parallel, where each one is randomly
initialized. In the present work, we used a 10-start hill
climber (10S-HC)with a real-value variable encoding and
a fixed mutation step size with a total number of 1, 000, 000
fitness evaluations per run.

2.3.2 Genetic Algorithm (GA)

The second algorithm was a real-value encoding GA that
used a population of 200 individuals, tournament selection
strategy with a tournament group size of 8 and a uniform-
crossover-operator with a crossover probability of pc = 1.0
and a mutation probability of pm = 0.1. The decision
variables were binary encoded and one-point mutation was
applied to the genotype. Each GA optimization process
evolved the individuals in the population for 5, 000 genera-
tions resulting in a total number of 1, 000, 000 fitness eval-
uations per run.

Additionally, we used a multi-start GA to directly com-
pare the results to those of the proposed method. This 10-

start GA (10S-GA) was run with 50 individuals over 2, 000
generations to have the same total number of fitness evalua-
tions per run.

2.3.3 Evolution Strategies (ES)

The third algorithm was a standard (µ,λ)-ES with µ = 10
parents and λ = 100 offspring together with a Covari-
ance Matrix Adaptation (CMA) mutation operator [8] with-
out recombination. In case of the ES, the probabilities
of crossover and mutation were chosen as pc = 0.0 and
pm = 1.0. Overall, the ES evolved the individuals for
10, 000 generations resulting in the same number of total
fitness evaluations per run as the GA to allow the results to
be compared.

As in case of the GA, a multi-start ES was also tested.
We used a 10-start (5,20)-ES (10S-ES) with the same
settings as described above but with a total number of
5, 000 generations.

The parameters of the GA and the ES have been used
in previous experiments and especially the CMA mutation
operator has been found extremely useful for the inference
problem. Unfortunately, most niching techniques are not
suited for this type of optimization problem. For example
sequential niching by Beasely et al. [2] results in pseudo
optima, which can only be identified by an additional expen-
sive post-processing step. Fitness sharing [7], on the other
hand, alters the search space dynamically and changes the
fitness values by adding something similar to noise. But this
renders the CMA ineffective. An alternative niching tech-
nique that leaves the search space unchanged is the cluster-
ing based niching EA, which is described in the following.

2.3.4 Clustering Based Niching EA (CBN)

This method is designed to identify multiple global and lo-
cal optima in a multi-modal solution space. The basic idea
of CBN-EA is to transfer the biological concept of non-
interbreeding species living in separated ecological niches
into evolutionary algorithms to preserve diversity in the op-
timization population. Thus, the CBN-EA searches for clus-
ters of EA individuals in the solution space by means of
clustering algorithms. These clusters can then be separated
into isolated sub-populations. Individuals of different sub-
populations are not allowed to interbreed, while within a
sub-population ordinary evolutionary processes occur. Ad-
ditional mechanisms to split sub-populations, if necessary,
enable dynamic specialization, and the merging of sub-
populations that become too similar enforces only one sub-
population per niche.

The methods of choice to track multiple global/local
optima in a multi-modal search space are either so called
multi-start approaches or niching techniques for Evolution-
ary Algorithms. Unfortunately, the performance of multi-
start approaches like the parallel LC algorithm (multiple lo-
cal searches with clustering) [29] or the sequential niching
approach [2] strongly depend on the search method applied
and may even introduce deceptive local optima as in case



of the sequential niching approach. Evolutionary niching
techniques on the other hand often tend to alter the search
space and to disrupt the evolutionary optimization process.
For example the well established fitness sharing technique
[7] may prevent convergence below the level of the sharing
distance σshare in the search space.

The Clustering Based Niching EA (CBN-EA) joins
evolutionary approaches with the multi-start approaches
by using clustering methods to identify sub-populations
converging to global/local optima in an evolutionary run
and then separating each into independent evolutionary
optimization processes. This approach has two main
advantages over most alternative evolutionary techniques.
First, the CBN-EA approach does not interfere with the
general optimization procedure and does not alter the
search space, thus sophisticated search operators, like for
example an ES with CMA mutation, can be applied without
any additional precautions. Secondly, with additional tech-
niques of population state management a re-initialization
the CBN-EA returns a compact list of global/local optima
based on a halting window criterion on each sub-population
and it is also able to track arbitrary numbers of global/local
optima.

S0 = createInitialPop();
R = emptyList();
while isNotTerminated() do

// species evolution phase;
foreach Si do simulateEAGeneration(Si);
// species differentiation phase;
if numOfClusters(S0) ≥ 1 then split(S0);
foreach Si 6=0 do

if numOfClusters(Si) ≥ 1 then split(Si);
S0.add(Si.getLoners());

end
// species convergence phase;
TLP = createEmptyPop();
foreach Si 6=0 do TLP.addCentroidOf(Si);
foreach Ri do TLP.add(Ri);
if numOfClusters(TLP) ≥ 1 then mergeSpecies();
// population state management;
foreach Si 6=0 do

if Si.isConverged() then
R.add(Si.getBest());
Si.reinitialize();
S0.add(Si);
Si.remove();

end
end

end
Algorithm 1: Pseudo-code of the CBN-EA proce-
dure with species evolution, differentiation, conver-
gence and population state management phases.

The general CBN-EA procedure is given in Alg. 1. After
the initialization of the undifferentiated sub-population
S0 and the initialization of an empty result list, the gen-

erational cycle of CBN-EA is entered, which has four
distinct phases. First, the species evolution phase, where
the sub-populations pass through one or multiple standard
EA generation cycles. Secondly, the species differentiation
phase. In this phase a clustering method is used to decide
whether or not specialized sub-populations are to be created
and whether some individuals (referred to by the authors
as straying loners) should belong to the undifferentiated
sub-population S0. Then, the species convergence phase
is entered, where it is decided whether or not multiple
sub-populations converge on the same niche and are thus to
be merged. And finally, the population state management
phase, which allows to balance the sub-population size
if necessary, tracks the state of convergence for each
sub-population and allows re-initialization of converged
sub-populations while memorizing the obtained result in
the list of identified global/local optima R. The final result
of the CBN-EA is then the list of identified global/local
optima R without any further post-processing. A more
detailed description of the algorithm and its implementation
can be found in publications from the authors [27].

The CBN-EA proposed in this publication is based on
an ES (CBN-ES). To reduce the computational complex-
ity of the optimization process, we used a halting win-
dow of h = 15 generations without improvement to de-
termine a sub-population to be converged. The solution of
a converged sub-population is then memorized and the in-
dividuals are randomly re-initialized. DBScan was used for
clustering of the individuals of the optimization population,
which allows for arbitrary numbers of clusters. This cluster-
ing algorithm identifies clusters by connecting individuals if
the distance ‖xi − xj‖ between them is lower than a given
threshold value σdist. All interconnected groups of individ-
uals, whose group size exceeds a minimum value MinPts
are identified as cluster. The ‘density-based’ clustering al-
gorithm offers several advantages: first, it allows clusters of
varying size and shape. Secondly, it can identify clusters of
a priori unknown number. Thirdly, the algorithm allows for
loners, which do not belong to any species and finally, it re-
quires only two parameters that are easy to interpret. Details
of the clustering algorithm can be found in [22, 5].

In the present implementation, we used a maximum dis-
tance to differentiate between clusters σdist = 0.1 and the
minimum number of individuals required to form a cluster
MinPts = 3. To be comparable to the other algorithms,
the CBN-ES optimized 200 individuals over 5, 000 genera-
tions using also a total number of 1, 000, 000 fitness evalu-
ations per run.

2.4 Fitness

For evaluating the fitness of the individuals, i.e. the similar-
ity of the time dynamics between the experimental and the
simulated data resulting from the parameters coded in the
individuals, we used the following equation for calculation
of the fitness value, referred to as the relative squared error
or relative standard error (RSE).



fRSE =
N∑

i=1

T∑

k=1

{(
x̂i(tk)− xi(tk)

xi(tk)

)2
}

(4)

where N is the total number of genes in the system, T is
the number of sampling points taken from the experimental
time series and x̂ and x distinguish between estimated data
of the simulated model and data sampled in the experiment.
The overall optimization problem is then to minimize the
fitness values of objective function fRSE . This fitness func-
tion has already been used by several publications on this
problem.

3 RESULTS

Our approach was tested on artificial gene regulatory net-
works with a total number of genes of 5 ≤ N ≤ 20 using
the two mathematical models described in section 2, namely
linear weight matrices and S-Systems. To test the proposed
method, we created artificial microarray data sets with ran-
domly created models. These data sets were then used to
reverse engineer the underlying regulatory system by the
compared algorithms. Because GRNs are sparse systems
in nature, we created regulatory networks randomly with a
maximum cardinality of k ≤ 3, i.e. each of the N genes
depends on three or less other genes within the network.

To evaluate the different algorithms, we counted the
number of different solutions found in the inference process
and the number of hits, i.e. the number of times the al-
gorithm was able to find the true system. A solution was
counted as a hit if the euclidian distance between the para-
meters of the evolved model and the true system was smaller
than a threshold dhit = 1.0. Typically, the standard GA
and ES return only one solution. In case of the multi-start
experiments, we used the same DBScan clustering method
as a postprocessing step to identify unique solutions. The
CBN-ES on the other hand only proposes converged sub-
populations as potential solutions.

3.1 5-dimensional example

As a first example, we used a randomly created linear
weight matrix and an S-System with a total number of sys-
tem components of N = 5. An example for such a regula-
tory network is given with the template for the topology of
the 5-dimensional network shown in Fig. 1. Each of these
artificial regulatory systems was then simulated to gain data
sets and inferred by the four different algorithms.

Table 1 gives the statistics for each model and optimiza-
tion algorithm. Listed in the table are the overall number
of different network solutions found, the number of runs in
which the true system has been found, the ratio of hits, the
total number of runs, and the fitness value averaged over the
best individuals.

As can be seen, the standard evolutionary algorithms are
able to find the correct solution in about 20% to 25% of the
runs. In the remaining runs, both the GA and the ES get
stuck in local optima indicated by the low number of hits.
The multi-start hill climber performs equally to the standard

evolutionary algorithms, whereas the MS-GA and the MS-
ES perform relatively well with hit ratios of 35% to 40%.
The CBN-ES on the other hand is able to find the true sys-
tem in 80% and 75% of the runs, respectively. This is also
represented by very good fitness values in respect to the fit-
ness function given in equation 4. The averaged fitness for
the MS-GA and the MS-ES are comparably high because
some of the resulting models yielded very high fitness val-
ues.

Further on, it can be seen that in case of the S-Systems,
generally more possible solutions are found by the algo-
rithms. This can be explained by the flexibility of the S-
System, which allows this model to represent the given dy-
namics with different network solutions and thus with dif-
ferent genetic interactions. This behavior illustrates the al-
ready mentioned problem of ambiguity.

3.2 10-dimensional example

For the second experiment setting, we used randomly cre-
ated networks with a total number of system components
of N = 10 for both model types, weight matrix as well as
S-System. As in the 5-dimensional example before, each
algorithm was repeated 20 times to gain a sound multi-run
statistic.

The results of the inference process is given in Tab. 2
for each of the model and optimization algorithm, respec-
tively. As in the results of the 5-dimensional example, the
CBN-ES outperforms standard GA and ES, the multi-start
EA, and the multi-start hill climber. The proposed method
identifies the correct solution in around 55% to 60% of the
runs. The multi-start EAs are again superior to the standard
methods, as can be seen from both the hit ratio and the av-
eraged fitness values.

3.3 20-dimensional example

For the last example for evaluating the inference algorithms,
we used an artificial system with N = 20 components.

The statistics for the 20-dimensional regulatory network
are given in Tab. 3. As expected, the CBN-ES again per-
forms better than all of the other algorithms, finding more
solutions with overall better fitness as indicated by the aver-
age fitness value. Due to the higher dimension, the CBN-ES
finds the true system in 35.0% and 20.0% of the optimiza-
tion runs, respectively. The standard algorithms find the true
system in only 5.0% to 15.0% of the experimental runs.

4 DISCUSSION

The following sections summarize the clustering based ap-
proach and its results and give an outlook on future work.

4.1 Conclusions

The problem of inferring GRNs is a very difficult process
due to the limited data available and the large number of un-
known variables in the system. One of the problems found
in the literature is that conventional methods repeatedly run
into local optima, thus not necessarily being able to find the



Table 1: Inference results for the 5-dimensional regulatory net using linear weight matrices and S-Systems. The table gives
the overall number of different network solutions found in the optimization process. The next two columns give the number
of runs in which the true system has been found and the ratio of hits and number of runs. Additionally, the averaged fitness
value of the best individuals of all runs is given.

Model Algorithm Solutions Hits Hit ratio Average fitness

Weight Matrix GA 1 5 25.0% 3.976
(40 parameters) ES 1 4 20.0% 3.451

10S-HC 3 3 15.0% 4.187
10S-GA 6 8 40.0% 2.111
10S-ES 4 7 35.0% 2.454

CBN-ES 8 16 80.0% 0.124
S-System GA 1 4 20.0% 3.351

(60 parameters) ES 1 4 20.0% 3.342
10S-HC 7 2 10.0% 4.571
10S-GA 11 8 40.0% 2.158
10S-ES 10 6 30.0% 2.591

CBN-ES 15 15 75.0% 0.152

Table 2: Inference results for the 10-dimensional regulatory net using linear weight matrices and S-Systems. The table
gives the overall number of different network solutions found, the number of runs in which the true system has been found,
the ratio of hits, the number of runs, and the averaged fitness value.

Model Algorithm Solutions Hits Hit ratio Average fitness

Weight Matrix GA 1 4 20.0% 5.883
(130 parameters) ES 1 5 25.0% 5.231

10S-HC 4 2 10.0% 6.510
10S-GA 6 6 30.0% 4.851
10S-ES 5 7 35.0% 4.678

CBN-ES 11 12 60.0% 0.899
S-System GA 1 3 15.0% 7.212

(220 parameters) ES 1 3 15.0% 7.266
10S-HC 7 3 15.0% 8.045
10S-GA 13 5 25.0% 5.004
10S-ES 12 5 25.0% 5.055

CBN-ES 19 11 55.0% 0.822

Table 3: Inference results for the 20-dimensional regulatory net using linear weight matrices and S-Systems. The table
gives the overall number of different network solutions found, the number of runs in which the true system has been found,
the ratio of hits, the number of runs, and the averaged fitness value.

Model Algorithm Solutions Hits Hit ratio Average fitness

Weight Matrix GA 1 3 15.0% 10.483
(460 parameters) ES 1 2 10.0% 11.311

10S-HC 3 1 5.0% 15.160
10S-GA 9 6 30.0% 8.463
10S-ES 10 7 35.0% 8.666

CBN-ES 12 7 35.0% 4.083
S-System GA 1 2 10.0% 11.212

(840 parameters) ES 1 1 5.0% 12.266
10S-HC 7 1 5.0% 14.143
10S-GA 13 2 10.0% 10.600
10S-ES 12 2 10.0% 10.805

CBN-ES 26 4 20.0% 5.689



optimal solution. Therefore, we introduced an algorithm
that increases the probability of finding the correct regu-
latory network by inferring experimental microarray data
in this paper. We showed that standard evolutionary algo-
rithms suffer from the problem of finding solutions within
the solution space that comply with the data but do not
resemble the original system. The proposed cluster-based
niching algorithm efficiently preserves the diversity of net-
work candidates in the optimization process and results in
multiple alternative solutions, thus addressing the first prob-
lem mentioned in the introduction. Moreover, the algorithm
was often able to find the correct network in the multi-modal
search space.

We showed that the CBN-EA was able to find better so-
lutions with respect to the fitness than the standard meth-
ods independent of the mathematical model used for the
simulation of the regulatory network. Further on, the GA
based inference algorithm performed slightly better than the
one with an ES implementation. This is most likely be-
cause GAs have the advantage of a larger initial population
size and thus likely having a better coverage of the solu-
tion space. However, this issue has to be addressed in fu-
ture work to be verified. Both standard EAs outperform the
naive hill climber due to the multi-modal nature of the so-
lution space. One potential reason for the superior perfor-
mance of the CBN-EA relative to other algorithms is that if
an individual has converged it is then re-initialized and thus
more solutions can be found. This halting-window strategy
can be implemented for GA and ES as well and will be ex-
amined in a future publication. Another possibility to over-
come the problem of multi-start EAs to explore the same
optima several times is an extension called clearing proce-
dure, which was introduced by Petrowski in [19].

The proposed method yielded more than one valid net-
work solution and although this seems like a disadvantage
on the first glimpse, only this enables us to actually find
the correct solution in an under-determined and ambiguous
environment. To overcome the resulting problem of pick-
ing the true solution from the list of valid solutions, one
has to use the CBN-EA together with other techniques to
clearly identify the overall optimal network model. This
postprocessing step can either be done by incorporating ad-
ditional microarray data sets to decrease the ambiguity in
the data or by using a priori known biological or biochemi-
cal constraints to eliminate some of the solutions found dur-
ing optimization. Furthermore, biologists are able to select
from the list of the resulting network solutions to exclude
some solutions that are not biologically plausible.

4.2 Outlook

In future work, we will exploit the ability of CBN-EA algo-
rithms to result in better solutions by combining them with
other enhancements of the inferring process. For example,
iterative methods [25] can be used to iteratively identify
the correct regulatory network model by incorporating
additional microarray data sets. Further on, enhancements
to the CBN-EA will be implemented, which introduce an
upper limit for the cluster size. With this, the CBN-EA

should be able to perform even better, because single basins
of attraction cannot hog the majority of the individuals.

Furthermore, we will continue to test our method with
real microarray data in close collaboration with biological
researchers at our facility. In future work we plan to use
real microarray data sets and to include a-priori information
into the inference process like partially known pathways or
information about co-regulated genes, which can be found
in literature or in public databases.

Additionally, other models for gene regulatory networks
will be examined for simulation of the non-linear interaction
system as listed in Section 1 to overcome the problems of
deterministic models used to infer stochastic processes like
intracellular signalling.
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