
Efficient Parameter Selection for Support Vector
Machines in Classification and Regression via

Model-Based Global Optimization
Holger Fröhlich, Andreas Zell

Center For Bioinformatics Tübingen (ZBIT)
Sand 1, 72076 Tübingen, Germany

E-mail: {froehlic,zell}@informatik.uni-tuebingen.de

Abstract— Support Vector Machines (SVMs) have become one
of the most popular methods in Machine Learning during the
last years. A special strength is the use of a kernel function
to introduce nonlinearity and to deal with arbitrarily structured
data. Usually the kernel function depends on certain parameters,
which, together with other parameters of the SVM, have to be
tuned to achieve good results. However, finding good parameters
can become a real computational burden as the number of
parameters and the size of the dataset increases. In this paper we
propose an algorithm to deal with the model selection problem,
which is based on the idea of learning an Online Gaussian
Process model of the error surface in parameter space and
sampling systematically at points for which the so called expected
improvement is highest. Our experiments show that on this way
we can find good parameters very efficiently.

I. INTRODUCTION

Support Vector Machines (SVMs) have become one of
the most popular methods in Machine Learning during the
last years. There exist formulations for classification as well
as regression problems. A special strength is the use of a
kernel function to introduce nonlinearity and to deal with
arbitrarily structured data. Usually the kernel depends on
certain parameters, which, together with other parameters of
the SVM, have to be tuned to achieve good results. For
instance in classification using a simple RBF kernel we have
the width σ of the RBF function and the soft margin parameter
C to be tuned, while in regression we have also the additional
parameter ε to control the width of the ε-tube. If we consider
arbitrary kernel functions, like e.g. for strings, trees or graphs,
the number of parameters D and hence the size of the
parameter space P = R

D may also be higher. The importance
of the tuning procedure is an often neglected issue. Supposed
we are given some measure of quality Q : P → R, which
for each set of parameters p estimates the generalization error
Q(p) of the SVM, then we are interested in those parameters
p̂, for which Q becomes minimal, i.e.

p̂ = arg min
p

Q(p) (1)

This is the so called model selection problem, and ideally we
would like to find the global optimimum of (1). Note that
we cannot assume the different parameters to be independent.
This prevents us from tuning each parameter separately from
the rest.

The standard method to deal with problem (1) is to use
a simple grid search on the log-scale of the parameters in
combination with cross-validation on each candidate vector
p of parameters. If, however, the number of parameters
becomes higher, this leads to an explosion of necessary SVM
trainings. Consider e.g. we test log2 C ∈ {−2, ..., 14}, log2 ε ∈
{−8, ...,−1}, log2 σ ∈ {−8, ..., 8} in a regression experiment
with a simple RBF kernel. This would lead to 17·8·17 = 2312
5-fold cross-validation runs. Of course there are ways to speed
things up a little bit, since we can roughly estimate C from
the range of function values, the order of σ from the median
(or mean) distance between points in the original space and ε
from the noise level in our data [3]. However, even then the
general problem remains, because all these estimates can just
be viewed as first guesses. The situation becomes much more
complicated, if we consider kernels on non-vectorial data.

For SVMs in classification, Chapelle et al. proposed a very
efficient approach for model selection by performing a gradient
descent on either the radius-margin or the span-bound [2], [1].
A drawback of this method is, however, the need for a gradient
computation which for general kernel functions might either
not be possible or at least be very difficult. Additionally, the
radius-margin and the span-bound are just upper bounds on the
true risk and the leave-one-out error, respectively, and, despite
good experimental results, in general it is unknown how close
these bounds are. It is also worth mentioning that the gradient
descent may get stuck in local optima. In case of Support
Vector Regression (SVR) the method is not applicable.

Aside from this approach, there exist several methods for
tuning the SVM/SVR parameters C (and ε), if the kernel
parameters are given. E.g. Kwok et al. use a Bayesian interpre-
tation of the SVM/SVR to estimate C (and ε) via MacKay’s
evidence procedure [9], [8]. In a recent publication Hastie et



al. introduce an algorithm that can fit the entire path of SVM
solutions in classification for every value of the parameter C
with essentially the same computational cost as fitting one
SVM model [6].

In this paper, we want to consider the general case of
tuning parameters for a kernel function which depends on
several parameters (and is not necessarily differentiable) and
additional SVM parameters in regression as well as clas-
sification. Our goal is to have a general approach for the
model selection problem. To our best knowledge the only work
covering this situation is the paper by Momma and Bennett
[11]. Their proposed algorithm employs the pattern search
method by Dennis et al. [5], a derivative-free method, which,
beginning from a starting point, investigates the neighbors of
a parameter vector. Thereby the transition from one point in
search space to another is defined by a fixed neighbor sampling
pattern and the length of the search step. The length of the
search step is shrinked at each iteration until convergence is
reached. The pattern search is started at a random location.
To avoid local optima and in order to increase robustness of
the method Momma and Bennett propose to use bagging or
model averaging.

In contrast, our idea is to treat the model selection problem
directly as a global optimization problem. The general intuition
is to learn a model, namely an Online Gaussian Process (GP)
[4], from the points in parameter space we have already
visited. We will argue, that in contrast to the original SVM
model, training and testing of the Online GP can be performed
very cheaply. New points in parameter space are sampled
according to the expected improvement criterion as defined by
Jones et al. in the EGO algorithm [7], which balances global
and local search.

In the following section we will describe our method in
detail. Section III contains extensive experimental evaluations
in comparison to a grid search and the pattern search approach
with a following discussion in section IV. Finally, in section
V we conclude.

II. THE ALGORITHM

A. Our Method

Online Gaussian Processes [4] have been introduced re-
cently as an elegant extension of Gaussian Processes (GPs)
(e.g. [10], [13]) to the scenario of online learning. A Gaussian
Process is stochastic process. A stochastic process is a col-
lection of random variables {G(x)|x ∈ X} where X is some
domain (e.g. R

D). The stochastic process is defined by giving
the probability distribution for every finite subset of variables
G(x1), ..., G(xn) in a consistent manner. A Gaussian Process
is a stochastic process which can be fully specified by its
mean function µf (x) = E[G(x)] and its covariance function
k(x, x′) = E[(G(x)−µf (x))(G(x′)−µf (x′))]. Any finite set
of points will have a joint multivariate Gaussian distribution.
For the sake of simplicity usually it is assumed that µf (x) ≡ 0.
This can be achieved by e.g. normalizing the target values in

the training data to mean 0 and removing any known trend in
the data.

In case of batch learning we are given a fixed dataset D =
{(xi, yi)|xi ∈ X , yi ∈ R, i = 1, ..., N} of N data points
and a fixed covariance or kernel function k : X × X → R

which maps pairs of x-values to their covariance. The form
of the covariance function is used as a prior over functions.
An often used covariance function is e.g. the Gaussian kernel.
In this case it is a standard result (c.f [10], [13]) that the
posterior predictive distribution ppost(y∗|D) corresponding to
some test point x∗ is y∗ ∼ N (µ̂(x∗), σ̂(x∗)), and µ̂(x∗) and
σ̂(x∗) can be computed by simple matrix manipulations from
the covariance matrix and the observed output values yi.

In case of online learning we are given data D =
{(xi, yi)|xi ∈ X , yi ∈ R, i = 1, ..., t} up to the current time
step t. We want to update our GP model which has been
constructed on D before, as soon as the next example zt+1 =
(xt+1, yt+1) arrives. Let p̂t denote the Gaussian Process ap-
proximation after processing t examples and y = (y1, ..., yt)T .
We use Bayes’ rule to derive the updated posterior distribution
over predicted values y∗ at some point x∗ [4]:

ppost(y∗|zt+1) =
p(zt+1|y∗)p̂t(y∗)∫
p(zt+1|y)p̂t(y)dy

(2)

Usually the direct computation of (2) will be intractable,
especially because ppost is no longer Gaussian, but Csato and
Opper show that indeed the expected model value µ̂(x∗) can
be written as

µ̂(x∗) =
t∑

i=1

k(x∗, xi)αt(i)

with coefficients αt(i) which can be computed via
a recursive update formula using the covariances
k(x∗, x1), ..., k(x∗, xt+1), i.e. the model can be updated
as soon as a new example arrives by using the covariances
of the new example with the old ones. A special feature
of Gaussian Processes is the fact, that besides the expected
model output we can receive an estimation of the variance
σ̂2(x∗) of the model at point x∗, which can be computed via
a recursive update formula as well.

Our goal is to learn an Online GP model from the points
in parameter space we have already visited. Beginning from
a number of initial points that can be determined by Latin
hypercube sampling, we update our model at each search
step. That means at each search step we refine our Online
GP regression model f : P → R of the error surface of the
SVM model. Following Jones et al. [7] we set the number
of initial points to be around 10D. We chose a Gaussian
covariance function for the Online GP with hyperparameters
being adapted by maximum likelihood (c.f. [10]).

At a first glance one might ask what we win by e.g.
modelling the error surface of a SVR model in parameter
space via another regression model. Indeed, there is only a



0 1 2 3 4 5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
target
measured data
current minimum
model

Fig. 1. The uncertainty of the model at some point p (black circle) can be
modelled as the realization of a random variable.

gain if we assume that the training time for the Online GP is
very small compared to that of the full SVM model. However,
this is a reasonable assumption, since the number of training
points for the Online GP and hence the number of evaluations
of the error surface of the SVM model mainly depends on the
dimensionality of the parameter space, which is very small
compared to the number of training points for the SVM.

There is the remaining question how, given our current
Online GP model, we can find the next sample point in
parameter space. Here we use the expected improvement
criterion as defined by Jones et al. in the EGO algorithm [7]:
Formally, the improvement I(p) at some point p in parameter
space is defined as I(p) = max(0, Qmin − Y ), where Qmin

is our current minimum of the estimated generalization error
of the SVM model and Y = N (µ̂(p), σ̂(p)) (see fig. 1).
Note, that µ̂(p) is the expected model value at p. Indeed,
I is a random variable, because Y is a random variable (it
models our uncertainty about µ̂(p)). To obtain the expected
improvement we simply take the expectation

E[I(p)] = (Qmin − µ̂(p))Φ
(

Qmin − µ̂(p)
σ̂(p)

)
(3)

+σ̂(p)φ
(

Qmin − σ̂(p)
σ̂(p)

)

where Φ and φ are the standard normal distribution and density
function.

The expected improvement can be viewed as a function
E[I(p)] : P → R and can be evaluated cheaply over the whole
parameter space in contrast to the costly evaluations of the
error surface of the SVM model (see fig. 2). This is, because
we just need the predictions of the ready trained Online GP,
which is fast. Now the idea is to sample at that point next, for
which the expected improvement becomes maximal, i.e. we

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.4

−0.2

0

0.2

F(x)=sin(π x)/(π x) * (sin(x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

Expected Improvement

target
measured data
model
current minimum

Fig. 2. The expected improvement for an example function. The next sample
point would be set where the expected improvement is highest (arrows).

are looking for

p̃ = arg max
p

E[I(p)] (4)

This is a global optimization problem for itself, but in contrast
to our original problem (1) the solution can be computed
cheaply, e.g. by the DIRECT algorithm [12], because of the
reasons described above. DIRECT is a sampling algorithm
which requires no knowledge of the objective function gra-
dient. Instead, the algorithm samples points in the domain,
and uses the information it has obtained to decide where to
search next. The DIRECT algorithm will globally converge to
the maximal value of the objective function [12]. The name
DIRECT comes from the shortening of the phrase “DIviding
RECTangles”, which describes the way the algorithm moves
towards the optimum.

Now we have all ingredients which describe our algorithm
to tune SVM and kernel parameters. In the listing 1 we give
an overview over the whole procedure, which we call EPSGO
(Efficient Parameter Selection via Global Optimization): Be-
ginning from an intial Latin hypercube sampling we train
an Online GP, look for the point with the maximal expected
improvement, sample there and update our Online GP. Thereby
it is not so important that our Online GP really correctly
models the error surface of the SVM in parameter space, but
that it can give a us information about potentially interesting
points in parameter space where we should sample next.
We continue with sampling points until some convergence
criterion is met. In our case we decided to stop, if the
difference between the current best value of Q and the old
one is small, and the squared difference between the maximal
expected improvement and the average expected improvement
is less than 10% of the standard deviation of the expected
improvement. These statistics of the expected improvement



can be computed using Latin hypercube sampling over the
whole parameter space (– note again, that these calculations
are very fast). The idea is to make sure, that the expected
improvement over the whole space is almost equally small.
To prevent long searches we also stopped, if Qmin did not
change during the last 10 iterations.

B. Relationship to Existing Global Optimization Methods

The EPSGO algorithm can be viewed as a special variant of
the EGO algorithm proposed by Jones et al. [7] for globally
optimizing costly target functions. While the EGO algorithm
uses a DACE model, which has to be retrained from time to
time, we use an Online GP which can be updated efficiently as
soon as a new sample point arrives. Jones et al. use a branch-
and-bound algorithm to maximize the expected improvement,
while we take the DIRECT algorithm, which has no nead for
the computation of bounds.

III. EXPERIMENTS

We evaluated our method on 5 classification and 4 regres-
sion datasets from the UCI Machine Learning repository1:
the Iris, Glass, Wine, Cleveland Heart and Wisconsin Breast
Cancer dataset for classification, and the Boston Housing,
Triazines, Pyrimidines and Auto-MPG dataset for regression.
Additionally, we included a noisy sinc (sin(x)/x) function
(10% normally distributed random noise) in the range -15
to +15 as a standard example for regression and a variant
of Wieland’s two spirals with 200 points per class and 3
coils (fig. 3, fig. 4). All data was normalized to mean 0 and

1http://www.ics.uci.edu/~mlearn/MLSummary.html

Algorithm 1 The EPSGO algorithm

Input: function Q to measure gen. error
l,u: parameter bounds

Output: Qmin, p̂, # Q-evaluations (neval)

D = dim(P)
create N = 10D sample points p1, ...,pN

in [l,u] using Latin hypercube sampl.
compute Q(pi), i = 1, ...,N
Qmin = mini Q(pi)
p̂ = arg mini Q(pi)
train Online GP
neval = N
REPEAT

p̃ = arg maxp E[I(p)] (computed by DIRECT)
compute std. dev. and mean of E[I(p)]
Qnew = Q(p̃)
if Qnew < Qmin

Qmin = Qnew

p̂ = p̃
end
update Online GP
neval = neval + 1

UNTIL convergence

standard deviation 1 before training. On all experiments we
chose a RBF kernel with width σ. Additional SVM parameters
were C for classification, and C and ε for regression tasks,
respectively. A one-against-one approach was used to deal
with the multiclass case in the classification experiments. As
quality measure Q for each set of parameters we used 5-fold
cross-validation. We compared our EPSGO method to a grid
search with log C ∈ {−2, ..., 14}, log σ ∈ {−5, ..., 7} and (for
the regression datasets) log ε ∈ {−8, ...,−1} by means of an
extra level of 5-fold cross-validation. On the Triazines and
Pyrimidines dataset we used the predefined training and testing
folds. We also compared our algorithm to the pattern search
method of Momma and Bennett with and without bagging
(PS/PS-Bag) and a bagged version of EPSGO (EPSGO-Bag).
The bagging was performed over 5 models, i.e. we have 5
times the computational effort as without bagging.

Table I shows the results of the comparisons of EPSGO to
a grid search and the pattern search method without bagging
(PS). On the classification data EPSGO needs less than 10% of
the search steps of a grid search and leads to almost identical
results. On the regression data the advantage becomes even
more obvious. Here we need around 1% of the search steps,
and in 1 case (noisy sinc function) we obtain a signficicantly
better result than with grid search. Thereby significance was
tested by means of a paired t-test at 5% signficance level.
Compared to the PS method, EPSGO in 7 cases obtains
significantly lower error rates, which shows that the pattern
search method without bagging often suffers from the problem
of local minima and lacks robustness. At the same time on
average the number of search steps performed by EPSGO is
comparable to those performed by the PS method (table III).

The next comparisons are made between the bagged version
of the pattern search method (PS-Bag), the EPSGO algorithm
and a bagged version of the EPSGO algorithm (EPSGO-Bag)
(table II). Obviously PS-Bag neads 5 times the number of
search steps of PS. However, this significantly higher amount
of computation time only in 4 cases leads to a significant lower
error rate of PS-Bag compared to EPSGO. In 6 cases EPSGO
is significantly better. The bagged version of EPSGO, EPSGO-
Bag, in 6 cases obtains significant lower error rates, while
never being significantly worse than PS-Bag. This again shows
the higher robustness and insensitivity to local minima of the
EPSGO approach compared to the PS approach. The number
of search steps performed by EPSGO-Bag on the regression
data on average is slightly higher than those performed by
PS-Bag (table III). Compared to EPSGO EPSGO-Bag obtains
significantly lower error rates in 3 cases.

IV. DISCUSSION

All in all we see that EPSGO/EPSGO-Bag achieve a sub-
stantially higher robustness and insensitivity to local minima
compared to the PS/PS-Bag. The obvious reason for this is,
that the pattern search dependens on the random initialization
of just 1 starting point. This dependecy can be reduced by



TABLE I

5-FOLD CROSS-VALIDATION ERROR ± STANDARD ERROR ON

CLASSIFICATION (FIRST PART OF TABLE) AND REGRESSION DATA

(SECOND PART). FOR THE CLASSIFICATION DATA THE MEAN

CLASSIFICATION LOSS IN %, FOR THE REGRESSION DATA THE MEAN

SQUARED ERROR IS REPORTED. SIGNIFICANT IMPROVEMENTS OF EPSGO

COMPARED TO PS ARE MARKED BY “*”, DETORIATIONS BY “-”.

SIGNIFICANT IMPROVEMENTS OR DETORIATIONS COMPARED TO GRID

SEARCH ARE MARKED BY “†” AND “—”. THE VALUE IN BRACKETS

SHOWS THE NUMBER OF SEARCH STEPS NEEDED UNTIL CONVERGENCE.

Data EPSGO grid search PS

2 spirals 0.25 ± 0.3∗ 0.75 ± 0.5 23.25 ± 9.8

Iris 3.43 ± 1.9∗ 4.74 ± 1.7 6.87 ± 3.1

Glass 29.15 ± 2.6 31.51 ± 3.3 29.6 ± 1.8

Wine 1.1 ± 0.7∗ 1.68 ± 1.1 10.27 ± 6.9

Heart 43.78 ± 2.6 43.42 ± 2.4 47.15 ± 2.4

Cancer 3.08 ± 0.3∗ 3.08 ± 2.7 7.77 ± 4.1

Sinc
·10−2 14.18 ± 2.3† 37.06 ± 2.1 19.51 ± 5.5

Housing
·10−2 15.35 ± 5.3 13.51 ± 2.2 16.98 ± 2.8

Triazines
·10−4 6.95 ± 3.4∗ 7.29 ± 3.7 25 ± 16

Pyrimidines
·10−2 0.2 ± 0.1∗ 0.23 ± 0.2 53.68 ± 13.6

Auto-MPG
·10−2 11.79 ± 1.7∗ 12.49 ± 1.9 19.51 ± 5.5

TABLE II

COMPARISON OF EPSGO, EPSGO-BAG AND PS-BAG. 5-FOLD

CROSS-VALIDATION ERROR ± STANDARD ERROR ON CLASSIFICATION

(FIRST PART OF TABLE) AND REGRESSION DATA (SECOND PART).

SIGNIFICANT IMPROVEMENTS OF EPSGO/EPSGO-BAG COMPARED TO

PS-BAG ARE MARKED BY “*”, DETORIATIONS BY “-”. SIGNIFICANT

IMPROVEMENTS OF EPSGO-BAG COMPARED TO EPSGO ARE MARKED

BY “†”, DETORIATIONS BY “—”.

Data EPSGO EPSGO-Bag PS-Bag

2 spirals 0.25 ± 0.3∗ 1.25 ± 0.7∗ 8.75 ± 2.9

Iris 3.43 ± 1.9− 0 ± 0† 0 ± 0

Glass 29.15 ± 2.6− 2.75 ± 3† 0 ± 0

Wine 1.1 ± 0.7− 0 ± 0 0 ± 0

Heart 43.78 ± 2.6− 2.61 ± 2.6† 4.29 ± 4.3

Cancer 3.08 ± 0.3 3.37 ± 0.6 3.66 ± 0.7

Sinc
·10−2 14.18 ± 2.3∗ 15.15 ± 2.2∗ 71.05 ± 21.7

Housing
·10−2 15.35 ± 5.3∗ 14.32 ± 3.2∗ 28.6 ± 3.8

Triazines
·10−4 6.95 ± 3.4∗ 6.24 ± 3.6∗ 59 ± 13

Pyrimidines
·10−2 0.2 ± 0.1∗ 0.59 ± 0.4∗ 1.5 ± 0.7

Auto-MPG
·10−2 11.79 ± 1.7∗ 12.84 ± 1.8∗ 19.09 ± 2.2

−15 −10 −5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
measured data
target

Fig. 3. Noisy sinc function.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Fig. 4. Two spirals with 200 points per class.

TABLE III

AVERAGE NUMBER OF SEARCH STEPS NEEDED BY THE DIFFERENT

METHODS.

Method Classification Regression
EPSGO 24 ± 4 33 ± 2

PS 22 ± 0 32 ± 0
EPSGO-Bag 120 ± 23 206 ± 33

PS-Bag 110 ± 0 160 ± 0
grid search 384 3072



using bagging, as proposed by Momma and Bennett, which
imposes a much higher computational burden. However, it
is still a clearly observable disadvantage compared to our
EPSGO method. It is remarkable, that EPSGO without using
bagging (and hence being much faster than PS-Bag) in our
experiments signficantly outperforms PS-Bag more often than
vice versa.

For practical purposes it depends on the user’s point of view,
whether it is worth taking the higher computational effort of
bagging compared to the usual win of lower error rates. If one
wants to use bagging, then the EPSGO-Bag method offers a
robust way, which at the same time is not very sensitive to
local minima, to obtain low error rates while still being very
efficient compared to a grid search. Compared to the bagged
version of the pattern search EPSGO-Bag on average needs a
slightly higher number of search steps. If one does not want to
spend the extra time for bagging, then EPSGO without bagging
is a good alternative. It leads to results comparable to a grid
search, while performing a much faster search in parameter
space. This advantage increases, the more parameters we have
to tune.

V. CONCLUSION

We proposed an efficient method to perform model selection
for SVM which is not dependent on special properties of the
kernel, e.g. differentiability. Our method is very general and
applicable for classification as well as regression tasks. It is a
special variant of the EGO algorithm by Jones et al. [7] used
in global optimization. We use an Online Gaussian Process
to learn a model in parameter space and sample new points,
where the expected improvement is maximal. To efficiently
find the maximum of the expected improvement we employ
the DIRECT algorithm. Comparisions of our method to a usual
grid search show the high win of performance with regard to
the number of search steps needed. At the same time we obtain
error rates which are at least as good. Compared to the pattern
search method of Momma and Bennett our approach reveals
a better robustness and insensitivity to local minima. This is
observable even, if bagging is used in combination with the
pattern search.

REFERENCES

[1] O. Chapelle and V. Vapnik. Model selection for Support Vector
Machines. In S. Solla, T. Leen, and K.-R. Müller, editors, Adv. Neural
Inf. Proc. Syst. 12, Cambridge, MA, 2000. MIT Press.

[2] O. Chapelle, V. Vapnik, O. Bousqet, and S. Mukherjee. Choosing
Multiple Parameters for Support Vector Machines. Machine Learning,
46(1):131 – 159, 2002.

[3] V. Cherkassky and Y. Ma. Practical selection of svm parameters and
noise estimation for svm regression. Neural Networks, 17(1):113 – 126,
2004.

[4] L. Csato and M. Opper. Sparse online gaussian processes. Neural
Computation, 14(3):641 – 669, 2002.

[5] J. Dennis and V. Torczon. Derivative-free pattern search
methods for multidisciplinary design problems. In Proc. 5th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, pages 922 – 932, 1994.

[6] T. Hastie, S. Rosset, R. Tishbirani, and J. Zhu. The entire regularization
path for support vector machines. J. Machine Learning Research, 5:1391
– 1415, 2004.

[7] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of
expensive black-box functions. J. Global Optimization, 13:455 – 492,
1998.

[8] J. Kwok. The evidence framework applied to support vector machines.
IEEE Transactions on Neural Networks, 11(5):1162 – 1173, 2000.

[9] M. Law and J. Kwok. Bayesian support vector regression. In Proc. 11th
Int. Workshop on AI and Statistics (AISTATS 2001), pages 239 – 244,
2001.

[10] D. MacKay. Gaussian Processes - A Replacement for Supervised Neural
Networks? In Proc. Neural Inf. Proc. Syst., 1997. Lecture note.

[11] M. Momma and K. Bennett. A pattern search method for model selection
of support vector regression. In SIAM Conf. on Data Mining, 2002.

[12] C. Perttunnen, D. Jones, and B. Stuckman. Lipschitzian optimization
without the lipschitz constant. J. Optimization Theory and Application,
79(1):157 – 181, 1993.

[13] C. Willams. Prediction with gaussian processes: From linear regression
to linear prediction and beyond. Technical Report NRG/97/012, Aston
University, UK, 1997.


