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Abstract— We study the initiation of action potentials (APs) in
in vivo recordings of cortical neurons from cat visual cortex.
Recently, it was shown that cortical neurons are not simple
threshold devices, emitting an AP each time a fixed voltage
threshold is reached, but that the emission of an AP partly
depends on the rate of change of the membrane potential
preceeding an AP. In this paper we investigate systematically
which features of the membrane potential lead to an AP by
means of Machine Learning methods. We use Support Vector
Machines (SVMs) to discriminate between trajectories of the
membrane potential which lead to an AP within the next τ ms
and trajectories which do not lead to the initiation of an AP.
For every point in a trajectory of the membrane potential (MP)
we compute a set of 11 features and use a forward selection
algorithm to find out the relevant features for the occurence of
an AP. Based on the results we construct a reduced prediction
model. This model suggests that AP occurences can be predicted
best by a combination of the 1st temporal derivative of the MP
at distance τ to the AP maximum, the MP itself and the mean
MP over a longer range.

I. INTRODUCTION

The human brain is the most complex information process-
ing device known to date. Its basic computational units are
neural cells which dynamically transform synaptic inputs into
action potentials (APs) by an intrinsically nonlinear process.
This process enables networks of neurons to perform complex
computations [10], [11], [7]. Classically, neurons are viewed as
integrators, summing synaptic inputs and emitting an AP once
the neurons’ membrane potential (MP) reaches a threshold
voltage. This reductionistic view was extended by Hodgkin
and Huxley [6] who developed a biophysical theory, which
could explain the generation of APs. They showed that the
emission of an AP is a non-linear high-dimensional process
involving the detailed dynamics of voltage-dependent channels
in the membrane of a neuron. Although major advances
were achieved in describing the dynamics of the underlying
voltage-gated channels individually in great detail, emergent
mechanisms which result from their dynamical interplay were
investigated only recently [8], [1]. In these studies it was

predicted that the voltage at which an AP initiates partially
depends on the velocity with which the membrane potential
depolarates. This prediction was confirmed in recent experi-
ments, which investigated the generation of APs in cortical
neurons. They demonstrated that APs initiate at a low voltage
when the membrane potential depolarized quickly and at a
high voltage when the membrane potential depolarizes slowly
[2].

From a functional point of view the mechanism of AP
initiation has a strong qualitative impact on the information
processing in the brain. In simplified models it was demon-
strated that seemingly minor details of the AP generating
mechanism can fundamentally alter the nature of the encoding
of synaptic inputs into sequences of APs, as shown in [5], [12].

The goal of this paper is to clarify, which features of the
MP lead to the occurence of an AP in cortical neurons in-
vivo. For this purpose we investigated 9 in-vivo recordings of
neurons from cat visual cortex. Neurons in-vivo are subject
to an immense synaptic bombardment, leading to large fluc-
tuations of their MP. Although the functional role of these
fluctuations is still unclear, it significantly alters the neurons’
dynamical properties [4], [16]. We analyzed the AP generation
in this “natural environment” and examined which patterns
in the subthreshold fluctuations of the MP could predict best
the occurrence of an AP. To do this, we defined a set of
11 features, which we computed for every MP point in a
recording.

To discriminate MP trajectories leading to APs from those
which did not lead to the generation of an AP, we employed
Support Vector Machines (SVMs). SVMs belong to the family
of “Kernel Methods” [13], [15], [14] and are one of the
most popular Machine Learning methods today. Without mak-
ing any a-priori assumptions about the relevance of certain
features, we used a forward selection algorithm [9] to find
out the features which contributed most to the classification
in each dataset. From all feature subsets that were selected
for a single recording we infered a reduced model, which



incorporated only those three features that were top ranked
for all traces. These were the 1st temporal derivative and the
height of the MP at AP onset, as well as the mean AP 5ms
prior AP onset. We evaluated the reduced model on all datasets
and showed that indeed the classification performance was at
least as good as when using all 11 features. Our results thus
suggest that the occurence of an AP is mostly determined
by the mean potential over a longer range, the height of the
potential shortly before the AP and the 1st temporal derivative
of the membrane potential shortly before the AP. Thereby
the feature with the largest impact was the first temporal
derivative whereas the influence of the two other features was
significantly lower. In conclusion our results imply that the AP
generation mechanism in cortical neurons in vivo acts rather
as a coincidence detector than as an integrator.

In the next section we will first give a brief review on SVMs
and highlight the relevant features for our study. Afterwards we
will describe our method in detail. In section III we present the
results of the application of our method on in-vivo recordings
from cat visual cortex. In section IV we summarize our results
and conclude.

II. METHODS

A. Support Vector Machines - a Brief Review

Support Vector Machines (SVMs) were introduced in 1995
by V. Vapnik and C. Cortes [3], [15], [14] and are one of the
most popular Machine Learning methods today: Given some
empirical dataset D = {(xi, yi) ∈ X × {±1}|i = 1, ..., N}
with xi ∈ X being observations in some arbitrary input
domain and yi ∈ {±1} the class labels we want to construct
a decision hyperplane f(x) = sign (〈w, φ(x)〉+ b) in some
Hilbert space H. Thereby φ : X → H is a (possibly nonlinear)
map of the original data into feature space H. The hyperplane
is constructed such that margin size (that is the distance of the
hyperplane to points closest to it in feature space) is maximal.
This is achieved by solving the quadratic program

min
w,ξ,b

1
2
‖w‖2 +

C

N

N∑

i=1

ξi (1)

subject to yi(〈w, φ(xi)〉 + b) ≥ 1 − ξi

ξi ≥ 0

where C > 0 is a constant that regularizes the trade-off
between minimizing the training error 1

N

∑
ξi and maximizing

the size of the margin 1/‖w‖ in feature space. Equivalently
one can solve the dual of (1):

max
α

∑

i

αi − 1
2

∑

i,j

αiαjyiyj〈φ(xi), φ(xj)〉 (2)

subject to
∑

i

αiyi = 0

αi ∈ (0, C]

Thereby the apearing dot products 〈φ(xi), φ(xj)〉 in (2) can
be implicitly computed via a so called kernel function k :
X ×X → R. Popular examples of kernel functions are e.g. the

radial basis function, which allows nonlinear class separation,
but also the ordinary dot product 〈·, ·〉 can be viewed as a
special kernel (the linear kernel) with the property X = H
and φ = id.

A special property of SVMs is, that only points for which
αi �= 0 contribute to the decision function. They are called sup-
port vectors (SVs). Geometrically they correspond to points
lying on or within the margin. They are the extreme examples
within each class, i.e. examples which are most similar to those
of the opposite class. In fact by removing all training examples
except the support vectors one recovers the same solution as
when using all data. This property is called sparseness of the
solution.

An alternative formulation to the so called C-SVM Eq. (1),
introduced by Schölkopf [13] is the ν-SVM:

min
w,ξ,ρ,b

1
2
‖w‖2 − νρ +

1
N

N∑

i=1

ξi (3)

subject to yi(〈w, φ(xi)〉 + b) ≥ ρ − ξi

ξi ≥ 0, ρ ≥ 0

Here ρ/‖w‖ is the size of the margin in feature space and ν ∈
(0, 1] the regularization constant. Schölkopf et al. proved that
ν is both, an upper bound on the fraction of training errors and
a lower bound on the fraction of support vectors. Furthermore,
for N → ∞ ν equals both, the fraction of training errors and
the fraction of support vectors [13]. Like for the C-SVM a
dual formulation for (3) can be found which allows the usage
of arbitrary kernel functions.

We now turn to the description of our method, which
employs SVMs as an essential tool for classification, in detail.

B. Our Approach

1) In-vivo Recordings: We analyzed 9 in-vivo recordings
from cat visual cortex, where each recording contained at least
100 APs. The recordings exhibited only spontaneous activity,
generated from the surrounding network, leading to low firing
rates < 2Hz. The experimental details and the data acquisition
are published in [17]. Each recording consists of a discrete
time trajectory TV = {(ti, V (ti))|i = 1, ..., N} of length N
with membrane potentials V (ti) at times points ti. All datesets
except the last 3 were recorded at a time resolution of 0.1ms
while the last three had a resolution of 0.05ms. The times of
the AP maxima in the following are denoted by t̂1, ..., t̂�.

2) Preprocessing and Feature Construction: We first low-
pass filtered all recordings using a 5-point sliding window
average. The MP at every point ti was embedded in a 11-
dimensional feature space, resulting in a vector x(ti). The
single coordinates of the feature space were defined as:

• the MP V (ti)
• the 1st to 5th derivatives dkV

dtk (ti) of the MP
• the mean MP potentials V̄r(ti), r = 0.5, 1, 2.5, 10ms

before ti.
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Fig. 1. Small piece of an example trajectory with negative examples marked
thicker.

3) Negative Examples: We next constructed the set of those
examples {x(n)

i }, which do not lead to the generation of an AP.
They will be called negative examples in the following. They
were chosen such that their distance was more than 10ms to
the following AP and more than 2ms from the preceeding AP
(Fig. 1). This safety distance excluded the small trajectories
between two burst APs and ensured that negative examples
were not close to the AP initiation where active conductances
play an important role.

4) Positive Examples: As the set of positive examples
{x(p)

i } we chose all trajectories ending at time points t̃j − τ .
Thereby the time points t̃j are all those times of AP maxima t̂j
which have a time distance of at least 10ms to the preceeding
AP. This procedure reliably removed all burst APs.

Obviously, for small distances τ , the set of positive and
negative examples can be trivially distinguished by the height
of the MP. To ensure that the classification is not trivial we
increased the value of τ in steps of 0.1ms until the two
sets could not be separated by a threshold with regard to
any feature. The distance was then further increased until the
number of points which overlapped in any feature was at least
as large as the number of APs in the whole recording. Figure 2
illustrates this construction by showing the first feature plotted
against the second feature. Both classes overlap and a simple
threshold separation in the first or second feature individually
is not possible. The positions t̃j − τ are in the following also
called the onset positions of APs.

5) Subsampling of Negative Examples : Compared to the
length of the whole trajectory TV , a AP is a quite rare event.
This implies that in a recording we have only few positive
examples compared to a huge number of negative examples
(approx. 105 as many as positive examples). To achieve a high
accuracy of our classifier and to reduce the computational
cost we thus selected a subset of negative examples, which
were most similar to the set positive examples, i.e. which
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Fig. 2. Example of the first two features of positive (’+’) and negative
examples (dots) plotted against each other (τ = 0.7ms). The subsampled
negative support vectors are marked thicker. Positive and negative examples
overlap with regard to all features individually (see text).
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Fig. 3. Positive and negative examples in an example trajectory (τ = 0.7ms).
End points of positive examples are marked with red crosses, end points of
negative examples are marked a little bit thicker than the rest of the trajectory.
Selected support vectors are marked with big green dots. Negative examples
are all those which overlap with the positive ones with regard to all features
plus or minus one standard deviation (see text). Note that the third AP is
neglected, because it follows the previous AP too closely.

were hardest to classify. Obvious candidates for this are those
negative examples which overlap with the positive ones. To
have a sufficient coverage of the whole space we extended
this set of overlapping negatives by all those negatives which
lay within one standard deviation of the features of the positive
examples.

Figure 2 shows a scatter plot, graphing the first two features
of positive and negative examples. The number of negative
examples m′ (dots) exceeds the number of positive examples
m (crosses) by several orders of magnitude. Training a SVM
with this data would lead to an unnecessary computational
burden. On the other hand, a uniform random subsampling of



the negative examples would produce many examples which
are quite far away from our decision line and hence do not
contribute to the classification, i.e. they are not support vectors.
This would lead to a suboptimal performance of the classifier.
Thus our goal should be to select our negative training data
among those which will likely become support vectors later.
As we know from subsection II-A, for ν-SVMs the parameter
ν is a lower bound on the fraction of support vectors. Hence,
by setting ν = 2m/(m′ + m) and training a SVM on the
whole data, we get approximately 2m support vectors of which
around m should be negative examples. This firstly leads to a
nicely balanced dataset and secondly it automatically produces
those examples, we should concentrate on during training.
Note that we are not interested in the decision hyperplane
itself here, but just in the selected support vectors. In Fig. 2
the selected negative examples are marked by thick green dots.
The SVM training was performed using a linear kernel, and
the data was normalized to mean 0 and standard deviation 1
before training. To get a better impression, Fig. 3 displays an
example trajectory with overlapping negative examples and
selected support vectors. Alltogether we now have a set of
positive examples (crosses) and a set of negative examples
(big dots) which can be used to design a model. Only these
two sets were considered in the following in order to find out
the relevant features.

6) Finding Out The Relevant Features in a Recording: To
find out the relevant features in a recording we employed a
forward selection algorithm [9]. Starting with an empty set of
features, we successively added those feature which, if added
to the existing ones, lead to the lowest 5-fold cross-validation
error. This procedure was continued until all features had been
included. The order of inclusion into the feature set induces
a ranking of the features. In the end the feature set with the
lowest cross-validation error was returned.

During the feature selection we used a linear C−SVM,
because in general training is a little bit faster compared to
the ν-SVM. We chose the parameter C via a 5-fold cross-
validation from the grid 2−4, ..., 25 at each stage of the feature
selection algorithm. Like above, before training each feature
for the whole data was normalized to mean 0 and standard
deviation 1.

7) Construction of a Generalized Reduced Model: As a
result of the forward selection algorithm we obtained a ranked
feature subset for each recording which could classify best
the positive and negative examples in the training set. It is,
however, not a-priori clear that a feature set, which performs
well on one recording will also perform as good on another
recording, i.e. if the prediction model generalizes well across
different recordings. We thus constructed a reduced model in
which we included only those features, which were ranked
most frequently among the 5 best features for each single
recording.

8) Evaluation of the Reduced Model: This reduced model
was evaluated subsequently for every recording using 5-fold
cross-validation. Thereby each training set consisted of 4/5 of
the examples obtained by the procedure described in II-B.5

TABLE I

OVERVIEW OF THE DIFFERENT DATASETS USED IN OUR EXPERIMENTS.

Dataset #AP #Test Instances #Negative SVs τ (ms)

1 121 216661 121 1.1
2 188 1376364 188 0.6
3 177 38241 178 0.9
4 258 22400 259 0.7
5 252 27028 253 0.7
6 183 41674 183 0.7
7 128 1463434 128 0.6
8 1098 2909598 1097 0.6
9 385 3867932 385 0.6

and the testing set of all examples in the recording that were
not used for training. As before, a linear C-SVM was used. To
prevent overfitting the parameter C was adapted via an extra
level of 5-fold cross-validation within each cross-validation
procedure. To determine the relative impact of each feature
on the classification, we computed the weight vector w of the
decision hyperplane:

w =
∑

i

αiyixi

were αi are the Lagrangian multipliers obtained by solving
the quadratic program Eq. (2). This was possible, because we
used a linear kernel. The absolute value |wj | can be viewed as
a measure for the relative influence (weight) of feature j on
the decision hyperplane f(x) = sign (〈w,x〉 + b). During the
evaluation we computed the mean of the weight vectors over
all cross-validation folds for each recording, and normalized
each compound of the mean weight vector by its standard
deviation.

III. RESULTS

We applied our method to 9 in-vivo recordings of spon-
taneous activity from cat visual cortex. Table I shows an
overview of the different datasets with respect to the number
of APs, the selected distance τ from AP maxima, the number
of subsampled negative examples (negative SVs) selected by
the ν-SVM and the number of overall test examples.

Table II shows which features were selected for each dataset
in the order of their inclusion together with the 5-fold cross-
validation error on the reduced set of examples obtained by
the procedure described in section II-B.5.

We then evaluated how frequent each feature was ranked
among the first 5 (table III). Including only those features
which were ranked among the first 5 in at least 50% of all
cases we constructed a reduced model, which incorporated
the following features:

• the mean potential over a longer range (i.e. V̄5)
• the membrane potential at AP onset (i.e. at t̃i − τ )
• the 1st derivative of the membrane potential at AP onset
We tested the generalized model on all recordings as de-

scribed in the previous section. The number of false negatives
(FN) and the number of false positives (FP) are listed together
with the relative false negative (fnr) and false positive rates
(fpr) in table IV. The relative false negative rate is defined



TABLE II

SELECTED FEATURES FOR 9 REAL LIFE DATASETS IN THE ORDER THEY

WERE INCLUDED AND 5-FOLD CROSS-VALIDATION ERROR (%) ±
STANDARD DEVIATION (%).

Recording Features CV error (%)

1 dV
dt

, V , V̄5, V̄1 , V̄0.5 5.33 ± 3.12

2 d2V
dt2

, V , dV
dt

, d4V
dt4

, V̄0.5, V̄2.5, V̄10,
d3V
dt3

, d5V
dt5

, V̄1

0.79 ± 0.72

3 dV
dt

, V̄1, V̄10, d2V
dt2

, d4V
dt4

, V̄5, V̄2.5,
d5V
dt5

, V

15.07 ± 2.39

4 dV
dt

, V̄0.5, V̄5, d5V
dt5

, V 4.25 ± 2.86

5 dV
dt

, V , V̄10, d2V
dt2

, V̄0.5, V̄2.5, V̄0.5,
d4V
dt4

, d3V
dt3

, d5V
dt5

, V̄1

3.96 ± 1.86

6 dV
dt

, V̄1, V̄5, d3V
dt3

, d4V
dt4

, d5V
dt5

, V̄10,

V̄0.5, V̄2.5, V , d2V
dt2

,

7.89 ± 5.75

7 dV
dt

, V , V̄5, d2V
dt2

, d3V
dt3

, d5V
dt5

, V̄2.5,

V̄1, V̄0.5, V̄10, d4V
dt4

5.05 ± 1.74

8 dV
dt

, V , V̄10, d2V
dt2

, d5V
dt5

, V̄5, d4V
dt4

,

V̄0.5, d3V
dt3

, V̄1

5.33 ± 1.12

9 dV
dt

, V , V̄2.5, d3V
dt3

, V̄10, d4V
dt4

, d2V
dt2

,

V̄1, d5V
dt5

, V̄5

9.22 ± 2.26

TABLE III

ANALYSIS OF THE FREQUENCY OF THE RANKING OF THE FEATURES

AMONG THE FIRST BEST ONES IN ALL DATASETS.

Feature #Selected % Among First 5 %

V 9 100 7 77
V̄10 7 77 4 44
V̄5 7 77 5 55

V̄2.5 6 66 1 11
V̄1 8 89 3 33

V̄0.5 7 77 3 33
dV
dt

9 100 9 100
d2V
dt2

7 77 4 44
d3V
dt3

6 66 3 33
d4V
dt4

7 77 2 22
d5V
dt5

8 89 1 11

as fnr = FN/NEG, and the relative false positive rate as
fpr = FP/POS with POS being the number of positive ex-
amples and NEG the number of negative examples in the test
set. Additionally, we tested against the usage of all features.
The results of this experiment are shown in table V. Compared
to the usage of all features, our reduced model in 7 cases leads
to a significant improvement and to a significant detoriation
in only 2 cases. The significance was tested separately for
the number of false negatives and false positives by means
of a paired t-test at significance level 5%. This shows that in
general the reduced model, which incorporated only features
that we assumed to be most relevant for the occurence of an
AP, has a better generalization capability than the full model
using all features. This nicely corroborates our generalized
model.

We finally investigated the relative influence of each of the

TABLE IV

RESULTS ON THE EVALUATION EXPERIMENT USING OUR REDUCED

MODEL: NUMBER OF FALSE NEGATIVES (FN), OF FALSE POSITIVES (FP),

AND RELATIVE FALSE NEGATIVE (FNR) AND FALSE POSITIVE RATE (FPR)

± STANDARD DEVIATION. SIGNIFICANT IMPROVEMENTS IN COMPARISON

TO THE USAGE OF ALL FEATURES ARE MARKED BY “*”, DETORIATIONS

BY “-”.

dataset FN FP fnr (%) fpr (%)

1 2.2 ± 1.3 63 ± 8.2− 9.13 ± 5.47 0.02 ± 0.01
2 0.8 ± 0.8 0.8 ± 1.3 2.12 ± 2.21 0 ± 0
3 3.2 ± 1.5∗ 2 ± 1.2∗ 9 ± 4.16 0.01 ± 0
4 3.6 ± 1.3 1.6 ± 1.1 6.97 ± 2.56 0.01 ± 0.01
5 4 ± 1.4− 2.2 ± 1.5∗ 7.95 ± 2.82 0.01 ± 0.01
6 0.2 ± 0.4∗ 0.4 ± 0.5∗ 0.54 ± 1.21 0 ± 0
7 2.6 ± 3.1 1.6 ± 1.1 10.25 ± 12.57 0 ± 0
8 25.6 ± 6.5 10 ± 1.6∗ 11.65 ± 2.97 0 ± 0
9 11 ± 2.2 52 ± 4.2∗ 14.29 ± 2.9 0.01 ± 0

TABLE V

RESULTS ON THE EVALUATION EXPERIMENT USING ALL FEATURES:

NUMBER OF FALSE NEGATIVES (FN), OF FALSE POSITIVES (FP), AND

RELATIVE FALSE NEGATIVE (FNR) AND FALSE POSITIVE (FPR) RATE ±
STANDARD DEVIATION.

dataset FN FP fnr (%) fpr (%)

1 2.6 ± 1.1 26 ± 8.3 10.8 ± 4.81 0.01 ± 0.01
2 0.6 ± 1.3 0.4 ± 0.5 1.57 ± 3.53 0 ± 0
3 6 ± 1.2 27.8 ± 15.3 16.8 ± 3.33 0.07 ± 0.04
4 3 ± 1.2 3.2 ± 2.1 5.81 ± 2.34 0.01 ± 0.01
5 1.8 ± 0.8 10.4 ± 2.9 3.58 ± 1.69 0.04 ± 0.01
6 4 ± 2.6 9.6 ± 3.85 10.89 ± 6.87 0.02 ± 0.01
7 2.2 ± 2.3 1 ± 1 8.65 ± 9.16 0 ± 0
8 13.8 ± 4 142.2 ± 71.5 6.28 ± 1.8 0.01 ± 0
9 8.6 ± 1.8 87.6 ± 7.5 11.17 ± 2.36 0.02 ± 0

three most relevant features on the decision hyperplane by
means of the mean weight vector obtained on each recording.
Figure 4 shows a histogram of the mean weight vector
components divided by the 1-norm of the vector and averaged
over all recordings. The influence of the mean potential over
the last 5ms is comparable to the potential at AP onset, while
the 1st derivative on average has a much higher impact. This
result is consistent with the ranking obtained in table II.

IV. CONCLUSION

We investigated the AP generation in in-vivo recordings
from cat visual cortex. We introduced an empirical method
to work out which features of the trajectory of the membrane
potential are most relevant for the occurence of an AP. Based
on statistical tools, namely Support Vector Machines, we
developed a technique to infer a model automatically from
empirical data. Without making any a-priori assumptions about
the relevance of certain features, we used a forward selection
algorithm to find features which discriminated well between
trajectories leading to an AP and others which do not. Based
on the results for each of our recordings we constructed a
reduced model, which only included the MP, the rate of change
of the MP and the MP averaged over 5ms. Using this reduced
model, APs could be predicted with a very high accuracy on all
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Fig. 4. Relative influence of the three most relevant features on the decision
hyperplane averaged over all datasets.

our recordings, which reveals the high statistical consistency
and generalization capability of our reduced model. Our results
suggest that qualitatively the occurence of an AP is mostly
determined by the mean potential over a longer range before
AP, the height of the membrane potential shortly before the
AP and the 1st temporal derivative of the membrane potential
shortly before the AP. Surprisingly, the 1st temporal derivative
of the MP had a much larger impact on the classification than
the mean MP over a long range. This suggests that cortical
neurons act as coincidence detectors, which are most sensitive
to fast changes of the MP. Models of cortical neurons which
assume a voltage threshold for AP initiation might not reflect
the dynamics of AP generation of cortical neurons.

Several previous theoretical studies assessed the computa-
tion performed in single neurons (e.g. [8], [1]). These studies
were almost exclusively based on the Hodgkin-Huxley model
[6], which describes the dynamical interplay of voltage-gated
sodium and potassium channels in the generation of an AP. It
is, however, not a-priori clear that this dynamics is equivalent
with the AP generation in cortical neurons. Experimentally,
the AP generation in cortical neurons in vivo was recently
addressed in [2] in vivo. In this study, a correlation between
the potential and the first derivative at AP onset was proposed
to explain the large variability of AP onset potentials found in
vivo. Our approach generalizes these results by using a set of
11 features without any a-priori weighting. It therefore allowed
for the systematic construction of a simple phenomenological
models, which reproduces the AP generation with very high
accuracy and serves as a starting point for the development for
simplified phenomenological neuron models, which reproduce
the dynamical AP initiation of cortical neurons in vivo.
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