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Abstract. In recent years several strategies for inferring gene regula-
tory networks from observed time series data of gene expression have
been suggested based on Evolutionary Algorithms. But often only few
problem instances are investigated and the proposed strategies are rarely
compared to alternative strategies. In this paper we compare Evolution
Strategies and Genetic Programming with respect to their performance
on multiple problem instances with varying parameters. We show that
single problem instances are not sufficient to prove the effectiveness of a
given strategy and that the Genetic Programming approach is less prone
to varying instances than the Evolution Strategy.

1 Introduction

In recent years modern technologies like microarrays allowed scientists to mea-
sure large numbers of gene expression data for thousands of genes at the same
time. With this technique at hand scientists are also able to measure gene ac-
tivities through time. Such time series nourish the idea that it could be possible
to reconstruct or infer the underlying gene regulatory networks. This problem
of inferring the real gene regulatory networks from time series data has recently
become one of the major topics in bioinformatics.

The strategies for inferring regulatory networks depend on the mathemati-
cal model used to represent the behavior of the real gene regulatory network.
Currently, both discrete and continuous models are used to model regulatory
networks, but to represent the activity of real regulatory networks continuous
models are believed to be the most suitable.

For discrete models like boolean or random boolean networks [17], several
efficient heuristics have been suggested [1]. More realistic models are given by
qualitative networks, which use several levels of activation rather than just ‘on’
or ‘off’ [12]. For qualitative networks, Akutsu et al. have suggested a special
heuristic for inferring such networks from time series data [2].

Quantitative networks on the other hand consider the continuous level of gene
expression and are therefore more realistic. A parametrized model with discrete
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time and a linear relationship between the genes is given by weight matrices
[16]. The parameters for such weight matrices have been reverse engineered by
means of Genetic Algorithms (GA) [15]. Other researchers use linear differential
equations to model regulatory networks and use special heuristics to find the
necessary parameters [3]. Another parameterized model based on differential
equations is given by S-systems (synergistic and saturable systems) [9]. To infer
the unknown parameters of this model Tominaga et al. applied a GA with special
operators biased towards few non-zero parameters leading to sparsely connected
regulatory networks [14].

An example for non-parameterized quantitative networks are arbitrary sys-
tems of differential equations, which are more powerful and flexible to describe
the relations between genes, since the real structure underlying the observed data
is unknown. The most prominent method that is able to optimize the structure
and the parameters of differential equations to fit a given time series is Ge-
netic Programming (GP) [5]. Sakamoto et al. applied a GP augmented with a
least mean square method for parameter optimization for inferring differential
equations for regulatory networks [8].

In this paper we compare two inferring strategies for quantitative networks
based on Evolutionary Algorithms (EA). On the one hand to fix the network
model a priori and reduce the inferring problem to a parameter optimization
problem, which can be solved by means of Evolution Strategies (ES). We decided
to use S-systems as a parameterized quantitative network, since they derive from
a Taylor approximation of a general ordinary differential equation and are rather
flexible. And on the other hand to leave the choice of the network structure to
the inferring algorithm. This non-parameterized network model requires GP for
inferring a suitable structure to met the target.

We compare both approaches on several examples generated from artificial
data to determine, which approach is more suitable for inferring gene regulatory
networks. We also try to identify, which are the most important properties of a
regulatory network that make it difficult to reconstruct from time series data.
Therefore, we vary multiple parameters of the artificial network and examine
how the changes impact the performance.

In sec. 2 we give details on the experimental settings and our implementation
of the optimization algorithms used. ES and GP are then compared in sec. 3 on
several examples generated from artificial regulatory networks. Conclusions and
an outlook of future research are given in sec. 4.

2 Experimental Settings

Since there are only few publicly available time series for gene expression and the
correct or best model is not known for those regulatory networks, a comparison
of inferring strategies cannot rely on real data. Therefore, it is necessary to create
time series from artificial regulatory networks as benchmark problems. In this
way one is in control of all properties of the target network and can arbitrarily
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vary the dimension of the problem and the connectivity of the network. One may
also validate the results obtained by comparing it to the artificial target.

Unfortunately, it is unknown, which kind of model is most suitable to repre-
sent the same dynamical properties as real regulatory networks. Also there are
currently artificial benchmark problems for inferring regulatory network that
researchers commonly agree on. Only recently Mendes et al. proposed a set of
benchmark networks [6], which were published after our experiments were con-
ducted, but will be included in our future studies.

In this paper we examine S-systems as an example for parameterized quanti-
tative networks as tentative benchmark problem, since they were derived from a
simplified Taylor expansion of a general ordinary differential equation and should
be rather flexible. An S-system for n artificial genes is given by a parameterized
set of nonlinear differential equations:

dxl(t) o . iji _ A, . i,
il H () Bi H a; (1) (1)

where x; is the state variable of the measured expression level of gene i. With
a; > 0 and B; > 0 the first product describes all synthesizing influences and
the second product all degrading influences. Depending on the values of G; ; and
H;,; the influence may be inhibitory, if the value in the matrix is smaller than
zero, or excitatory, if greater than zero.

With this model for an artificial gene regulatory network we can generate ex-
ample problems by choosing random values for v, 3;, G;; and H;; while checking
whether they are stable or not. We can increase the dimensionality of the regu-
latory network by increasing n and we can change the level of interdependence
between the genes by adding or removing zero-valued parameters.

In our experiments we generate a problem instance by simulating the target
artificial regulatory network and store the calculated expression values at certain
time points. This corresponds to real experiments where the number of microar-
rays and therefore the number of actually measured time points is limited.

We compare the performance of an EA approach based on a parameterized
S-system using Evolution Strategies (ES) to identify suitable parameters to fit
the measured time series to a Genetic Programming (GP) approach to search
for the proper right hand side of a system of ordinary differential equations.
For both EA methods the fitness f of an individual a is given by the Relative
Standard Error (RSE) of the resulting estimation of gene expression Z to the
measured gene expression x:

N T ~ 2
_ xi(tk) — xi(tk)
may(Mta) ®

over all measured time points ¢; over all genes n.

This fitness function is very much straight forward and commonly used in
this area of research. But it suffers from a serious problem: a single measured
time series is not sufficient to identify a unique solution. It is only one path in a
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phase diagram and from such a single path no general conclusions of the overall
behavior of the dynamic system can be drawn. An extreme example is given in
the phase diagram of a simple two dimensional example in fig. 2. The two genes
x1 and x4 oscillate on a stable orbit (attractor). With a single time series given,
whose starting conditions are outside the orbit, no predictions can be made about
the dynamics inside the orbit. Therefore, there are multiple alternative solutions,
which can not be distinguished without additional problem specific knowledge.
The problem of ambiguity is already known in the

literature, but is rarely addressed. A common ap-

proach is to take the mean of multiple runs [15]. Measured ‘
Others prefer sparsely connected networks over * fime Seres ggggi?om
fully connected networks to identify the simplest \ X
solution [13]. A different approach was used by i
+«—— Affractor

Morishita et al. [7], they solved the problem of am- Cylce
biguity by searching for as many candidate solu-
tions as possible. Unfortunately, they do not ad-
dress the question of how to identify the correct one
from more than two hundred candidate solutions
they found for a five-dimensional artificial problem.

An alternative approach solves the ambiguity
by requesting additional experimental data [11].
Similar to the approach of Morishita et al. they start searching for multiple
candidate solutions through a multi-start EA. If the candidate solutions are sig-
nificantly different from each other they request an additional experiment. The
suggested experiment is selected through in silico simulations to reduce as much
ambiguity as possible. This process is iteratively repeated until all multi-start
EA runs converge on the same solution.

Currently we will not address the problem of ambiguity in this paper. We
will simply examine which EA approach is more efficient to identify a possible
candidate solution using equ. 2 as fitness function, but our future research will
apply the approach used in [11], since it is currently the only one that actually
removes the ambiguity.

X

Fig. 1. Phase diagram

2.1 Implementation Details for Evolution Strategies

Evolution Strategies were introduced by Rechenberg and Schwefel and are based
on a real valued encoding of the decision parameters and sophisticated methods
for adapting the strategy parameters for the mutation operator [10]. Preliminary
experiments showed that the inferring problem for the parameterized network
model is multi-modal, deceptive and correlated. Therefore, we decided to use a
bigger population size (1 = 20, A = 100). To increase the quality of convergence,
we decided to apply the Covariance Matrix Adaption (CMA) mutation operator,
which is able to adapt to correlated decision parameters better than standard
ES mutation operators [4]. Due to the sensitivity of the CMA to crossover, we
omitted the crossover operator from the ES. The ES was performed for 250
generations resulting in 25,000 fitness evaluations for each run on each example.
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2.2 Implementation Details for Genetic Programming

Genetic Programming is a variant of Genetic Algorithms, which is able to rep-
resent functions and programs by operating on LISP based genotypes [5]. It is
used here to generate ordinary differential equations to represent the dynamics
of the target network. A GP individual uses n GP-trees to encode the right
hand sides of ordinary differential equations, which are built from mathematical
operators, constants, and the values of X.s as input. In our implementation
the function set was restricted to {+, —, -} similar to the implementation in [8]
and the ephemeral constants where initialized between 0 and 1. The maximal
tree depth was set to five and the ramped-half and half method was applied
for initialization. The population size was set to 500 and tournament selection
was used, with a tournament group size of 50. The GP was performed for 50
generations with elitism, which also resulted in 25,000 evaluations, to give a fair
comparison.

3 Experimental Results on Artificial Data

We compared the S-system based ES to the GP on inferring artificial regulatory
networks created from multiple S-system based target networks with varying
parameters and varying number of genes (n = 2 and n = 5, this leads to i = 12
and i = 50 parameters to optimize in case of the S-system based ES).

Although the dimensionality of the test problems used here is very low com-
pared to real world requirements, it proved to be sufficient for this comparison.
Since both methods do not scale up satisfactorily we can only point out that
the commonly known separation technique can be used to simplify the inferring
problem. Instead of inferring all interactions of n genes, each gene can be inferred
independently one at a time.

The fact that the S-system based ES has the same structure as the target
network could give the ES an advantage over the GP. But in the course of our
experiments, we will show that this is not of importance for the results presented
here. Further, although the function set of GP was chosen to be insufficient, the
GP proved to be competitive to the S-system based ES.

Two examples which were also used by other authors as reference for stable
S-systems are given by Tominaga et al. [13], the first example consists of two
genes, and the second, which is additionally biologically motivated, consists of
five genes. These examples were used as starting points for our first experiments
to generate new examples with varying connectivity of the target network.

For each example we created the artificial time series by integrating the
S-system from ty = 0 to {4, using a Runge-Kutta algorithm and taking 20
equidistant sample points. Each EA strategy was repeated 25 times for each
examined problem instance. The results are given as mean best RSE, 95% con-
fidence intervall, deviation of best RSE and min/max values of RSE for each
problem instance.
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Fig. 2. Parameters and dynamics of the 2D example given in [13]

3.1 Two-Dimensional Examples: Increase of Connectivity

The parameters and the dynamics of the original two-dimensional S-system are
given in fig. 2. To examine the impact of different levels of interdependence
between the genes (connectivity) we varied the number of non-zero parameters
from 0 to 8. We expected that the inference problem would become more difficult
with increasing connectivity.

Fig. 3 shows that both methods perform well on all problems in each example,
the RSE drops below 0.02 or even 0.01 in case of the S-system based ES. The ES
performs slightly better, but when taking into account the overall low level of
RSE the difference becomes marginal. And it has to be noted that the function
set of the GP is insufficient while the ES has the same structure as the target.

Unfortunately, the performance of the inferring strategies seems to be inde-
pendent of the connectivity level of the target network. This can be explained by
taking into account that the inferred solutions are not necessarily similar to the
target systems. Even if the target system has a low connectivity (sparse matrices
G;; and H;;) the solution is usually not sparse. Therefore, the problem is not
really easier for targets with low connectivity.
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Fig. 3. Comparing ES and GP on two-dimensional examples, tmaz = 2.0
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Fig. 4. Parameters and dynamics of the 5D example given in [13]

3.2 Five-Dimensional Examples: Increase of Connectivity

In the second experiment we increased the problem dimension to five and again
varied the connectivity of the artificial network. The parameters and the dynam-
ics of the original five-dimensional S-system are given in fig. 4.

First, it has to be noted that the overall performance dropped considerably
with the increased problem dimension, see fig. 5. But the performance did not
suffer from increasing the connectivity of the target network. Instead the ES
showed the worst results on the examples with 23-38 non-zero parameters, but
performed well again on the examples with 43 and 48 non-zero parameters.

Comparing the ES to the GP, the GP performed better and more reliable
than the ES on all five-dimensional examples regarding the mean RSE and the
standard deviation. Only the best results of the S-system based ES are better
than the best results of the GP in nearly all examples. The high variation of the
ES could be accounted for by the multi-modal search space of the ES, but on
the other hand the search space of the GP is even rougher and also multi-modal.
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Fig. 5. Comparing ES and GP on five-dimensional examples, tmaz = 1.0
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Fig. 6. Comparing ES and GP on five-dimensional examples of same connectivity,
tmaz = 1.0

Interestingly enough the performance of the S-system based ES depends
heavily on the instance of the problem regardless of the dimension of the prob-
lem, see also example 4 in fig. 3. Therefore, we decided to conduct another
experiment with multiple problem instances with the same dimension and the
same level of interdependence between the genes.

3.3 Five-Dimensional Examples: Constant Connectivity

We created seven artificial regulatory networks of the same dimension and with
same number of non-zero values in G;; and H;;. Again the performance of the
ES depends on the problem instance, see fig. 6. For example the ES fails for
problem instance F, while it performs quite well on all other problem instances
and even excellent on A, C and G, at least regarding the mean value and the
best solution found. The GP on the other hand performs well on all examined
problem instances, but does not equal the best runs of the S-system based ES.
Again the variance of the GP results is much lower than of the ES results.
This experiment supports the assumption that there are other properties than
just the level of interdependence between the genes that impacts the performance
of the S-system based ES. The GP on the other hand seems not to be susceptible
to such properties, at least for those problems which have been examined here.

4 Discussion

Several conclusions can be drawn from our experiments: first, although the S-
system based ES performs very well on most examples, the GP is more reliable
and more versatile. Secondly, good RSE values do not necessarily indicate sim-
ilarity to the target system, neither for the S-system based ES nor for the GP
strategy. Third, and most important, the performance on a single example is not
sufficient to evaluate a strategy as it is currently the case in most publications.
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Regarding the primary objective of this paper we were able to show that
the GP proved to be competitive to the S-system based ES regarding the RSE
values reached, although the function set of the GP was insufficient, while the ES
utilized the very same model that was used to generate the artificial data. While
the ES had the best average results on at least half the examples examined, there
were several problem instances where the ES performed much worse than the
GP. Also, on all examples the worst results of single runs were produced by the
ES. The GP on the other hand performed not as well as the ES regarding the
quality of the best solutions found, but the results were more reliable. Further,
the GP showed a smaller standard deviation of the results on each example. The
GP also proved to be more robust on the different problem instances than the
ES. Taking into account that it is unknown whether or not S-systems or similar
mathematical models are suitable to represent true gene regulatory networks,
GP seems to be the method of choice, since it requires no a priori assumptions
about the structure of the gene regulatory network. Regarding the secondary
objective we could, show that both approaches suffer from increased problem
dimension, while the level of connectivity seems not to be of major relevance.
The GP performed slightly better with increased problem dimension than the
ES. This could be accounted to the quadratic increase of parameters in case of
the S-system based ES compared to the linear increase of complexity for GP.

Secondly, although good RSE values in the experiments might suggest that
the target system had been correctly identified, this was not the case in most
examples. Especially the S-system based ES produced parameter sets that where
often neither sparse like the target system nor were the parameters of the same
magnitude as in the target system. The same holds true for GP, although most
GP solutions could be considered ‘sparse’, due to the limited tree depth.

Finally, the experiments showed that the performance of the S-system based
ES was heavily depending on the problem instance. This suggests that multiple
problem instances are necessary to reliably specify the performance of a given
inference strategy, instead of testing the strategy on just one or two examples.
Therefore, it is necessary to find a whole set of artificial benchmark regulatory
networks based on multiple mathematical models to evaluate inferring strategies.

To actually infer gene regulatory networks from real microarray time series
data two issues need to be addressed in future work. First, the problem of am-
biguity needs to be resolved. Either by utilizing additional experimental data
to remove ambiguity or by introducing biologically motivated constraints to the
fitness function like for example partially known gene interactions, preferring
sparse networks over fully connected networks or favoring ‘robust’ networks re-
garding disturbance over networks with instable dynamics. Second, to tackle
problems with higher dimension than the typical five to ten dimensions used in
most papers, we need to explore separation strategies or develop new problem
specific strategies to escape the curse of dimensionality. Otherwise we need to
limit ourself to simpler models like RBN or weight matrices, where more efficient
heuristics than EA can be applied.
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