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Abstract. In this paper we address the problem of finding gene regu-
latory networks from experimental DNA microarray data. Different ap-
proaches to infer the dependencies of gene regulatory networks by iden-
tifying parameters of mathematical models like complex S-systems or
simple Random Boolean Networks can be found in literature. Due to the
complexity of the inference problem some researchers suggested Evolu-
tionary Algorithms for this purpose. We introduce enhancements to the
Evolutionary Algorithm optimization process to infer the parameters of
the non-linear system given by the observed data more reliably and pre-
cisely. Due to the limited number of available data the inferring problem
is under-determined and ambiguous. Further on, the problem often is
multi-modal and therefore appropriate optimization strategies become
necessary. We propose a new method, which evolves the topology as well
as the parameters of the mathematical model to find the correct network.

1 INTRODUCTION

The inference of regulatory dependencies between genes from time series data
has become one of the most challenging tasks in the field of functional genomics.
With new experimental methods like DNA microarrays, which have become one
of the key techniques in the area of gene expression analysis in the past few years,
it is possible today to monitor thousands of genes in parallel. Therefore, these
techniques can be used as a powerful tool to explore the regulatory mechanisms
of gene expression in a cell. However, due to the huge number of components
within the regulatory system, a large amount of experimental data is needed to
infer genome-wide networks. This requirement is impracticable to meet today,
because of the high costs of these experiments and due to the combinatorial
nature of gene interaction.

The earliest models to simulate regulatory systems found in the literature
are Boolean or Random Boolean Networks (RBN) [6]. In Boolean Networks
gene expression levels can be in one of two states: either 1 (on) or 0 (off). The
quantitative level of expression is not considered. Two examples for inferring



Boolean Networks are given by Akutsu et al. [1] and the REVEAL algorithm
[10] by Liang et al. These models have the advantage that they can be solved
with only small computational effort. But they suffer from the disadvantage of
being tied to discrete system states. In contrast, qualitative network models al-
low for multiple levels of gene regulation. An example for this kind of approach
is given by Thieffry and Thomas in [16]. But these models use only qualitative
dependencies and therefore only a small part of the information hidden in the
time series data. Quantitative models based on linear models for gene regulatory
networks like the weighted matrix model by Weaver et al. [18] or the singular
value decomposition method by Yeung et al. [19] consider the continuous level
of gene expression. Other approaches to infer regulatory systems from time se-
ries data by using Artificial Neural Networks [7] or Bayesian Networks [4] have
been recently published, but face some drawbacks as well. Bayesian networks,
for example, do not allow for cyclic networks. More general examples for math-
ematical non-linear models like S-Systems to infer regulatory mechanisms have
been examined by Maki et al. [11] or Kiguchi et al. [8].

In our method we try to use the advantages of flexible mathematical models
like S-Systems. We introduce a method, which separates the inference problem
into two subproblems. The first task is to find the topology or structure of the
network with a Genetic Algorithm. In the second task the parameters of a math-
ematical model are optimized for the given topology with an Evolution Strategy.
The second problem can be seen as a local search phase of a Memetic Algorithm
(MA).

The remainder of this paper is structured as follows. Section 2 describes
the proposed algorithm and the mathematical model used in the optimization
process. Applications and results are listed in section 3 and the conclusions and
an outlook are given in section 4.

2 INFERENCE METHOD

The following section gives an overview over the proposed algorithm.

2.1 Memetic Algorithm

Evolutionary Algorithms have proven to be a powerful tool for solving com-
plex optimization problems. Three main types of Evolutionary Algorithms have
evolved during the last 30 years: Genetic Algorithms (GA), mainly developed
by J.H. Holland [3], Evolution Strategies (ES), developed by I. Rechenberg [12]
and H.-P. Schwefel [14] and Genetic Programming (GP) by J.R. Koza [9]. Each
of these uses different representations of the data and different main operators
working on them. They are, however, inspired by the same principles of natural
evolution. Evolutionary Algorithms are a member of a family of stochastic search
techniques that mimic the natural evolution of repeated mutation and selection
as proposed by Charles Darwin.



In the current implementation we used a combination of a Genetic Algorithm
for optimizing the topology together with an Evolution Strategy to locally find
the best parameters for the given topology. The general principle is outlined in
Fig. 1.

begin eval (GApop) {
initGApop() for each topology
initESpop()
eval (GApop) eval (ESpop)
while (termination criteria not met) while (termination criteria not met)
selectGAparentPop() selectESparentPop()
createESoffsprings()
createGAoffsprings() eval(ESpop)
eval (GApop) selectNewESpop ()
selectNewGApop () do
setFitness(GAind, bestESfitness)
do do
end }

Fig. 1. Pseudo-code describing the general principle of the Memetic Algorithm

2.2 Global Genetic Algorithm

In our implementation the Genetic Algorithm evolves populations of structures
of possible networks. These structures are encoded as bitsets where each bit
represents the existence or absence of an interaction between genes and therefore
of non-zero parameters in the mathematical model. The evaluation of the fitness
of each individual within the GA population uses a local search described below.

2.3 Local Evolution Strategy

For evaluation of each structure suggested by the global optimizer an Evolution
Strategy is used, which is suited for optimizing problems based on real values.
The ES optimizes the parameters of the mathematical model used for represen-
tation of the regulatory network.

Fitness. For assessing the quality of the locally obtained results we used the
following equation for calculation of the fitness values for the ES optimization

process:
B (@) — a(te)
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where N is the total number of genes in the regulatory system, T is the
number of sampling points taken from the time series and & and z distinguish
between estimated data and experimental data. The overall problem is to mini-
mize the fitness value f.



Mathematical Model On an abstract level, the behavior of a cell is repre-
sented by a gene regulatory network of N genes. Each gene g; produces a certain
amount of mRNA z;, when expressed, and therefore changes the concentration
of this mRNA over time: z;(t + 1) = h(x(t)) withx(t) = (21, -, 2, ), where h
describes the changing of each RNA level depending on all or only on some RNA
concentrations at the previous time step.

To model and to simulate regulatory networks we decided to use S-Systems
since we think they are flexible enough to model important gene regulatory
dependencies like feed back loops, etc. But there are alternatives as listed in
section 1, which will be the subject of research in future applications.

S-Systems. S-Systems are a type of power-law formalism, which has been sug-
gested by Irvine and Savageau [5,13] and can be described by a set of nonlinear
differential equations:

N N
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where G; ; and 'H; ; are kinetic exponents, o; and [3; are positive rate constants
and N is the number of equations in the system. The equations in (2) can be
seen as divided into two components: an excitatory and an inhibitory component.

The kinetic exponents G; ; and H; ; determine the structure of the regulatory
network. In the case G; ; > 0 gene g; induces the synthesis of gene g;. If G; ; < 0
gene g; inhibits the synthesis of gene g;. Analogously, a positive (negative) value
of H; ; indicates that gene g; induces (suppresses) the degradation of the mRNA
level of gene g;.

The S-System formalism has a major disadvantage in that it includes a large
number of parameters that have to be estimated. The total number of parameters
in S-Systems is 2N (NN + 1), with N the number of state variables x; (genes).
This causes problems with increasing number of participating genes due to the
quadratically increasing number of parameters to infer. The parameters of the
S-System «, B, G, and H are optimized with Evolutionary Algorithms described
in the previous paragraphs.

3 RESULTS

To verify the concepts of our idea we first compare two network inference exam-
ples where the first inference process is initialized without any prior knowledge
of the network structure. In the second case we incorporate the correct topology
of the dependencies of each gene together with the experimental data to vali-
date the theoretical ability of our approach to find the correct model. After this
verification step, we use the proposed method to infer gene regulatory systems
from artificial microarray expression data.



3.1 Preliminary Experiments

For validation purposes we examined a small example of gene regulatory net-
works described in the literature, which has been studied by a variety of re-
searchers in the past. It was first introduced by Savageau [13] and was subject of
several attempts to re-engineer networks: Tominaga et al. [17] tried to infer only
selected genes in their work and Kiguchi et al. [8] and Maki et al. [11] proposed
new methods to reverse engineer the complete system but changed the parame-
ters of the original system for unknown reasons.

Fig. 2 shows the dependencies of the regulatory network as used in all of the
publications listed above.
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Fig. 2. 5-dimensional gene regulatory network [Savageau [13]]

The total number of parameters to be optimized with the Evolution Strategy
in this example was N = 60 if modelled with an S-System. Fig. 3 shows the time
courses for each mRNA level of the regulatory system. The optimization process
was repeated m = 20 times to gain averaged fitness courses.
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Fig. 3. Time dynamics of the 5-dim regulatory system



Without topological information In the case of the inference without any
additional knowledge a (u,\)-ES with p = 5 parents and A = 35 offspring is used
together with a Covariance Matrix Adaptation (CMA) mutation operator and
no recombination to evolve individuals in the optimization process. The CMA
operator is one of the most powerful self adaption mechanisms today available
for ES. For further details see [2].

Fig. 4 shows the averaged fitness course of the gene regulatory network
(GRN) model optimized with a standard ES with no topological information
provided. As can be seen in this graph, the ES converges prematurely after
approximately 2,000 generations into a local optimum and the fitness remains
static until the end of the optimization process.
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Fig. 4. Fitness of an ES optimization with and without topological information

With partial topological information The second trial incorporated partial
information about the topology. In this test case, 50% of the correct interactions
of the regulatory network graph was used during optimizing the mathematical
model. To use the correct topological information 50% of the values of G and H
representing no dependencies in the network graph, i.e. G;; = 0.0 or H;; = 0.0,
were excluded from the optimization process and therefore fixed to 0.0. This was
implemented by a reduced vector of decision variables for the ES. The fitness of
this test case is given Fig. 4.

With complete topological information As a third test case we incorpo-
rated the correct information about the topology to verify the idea of our method,
i.e. solving the overall problem by first finding the correct topology and then
identifying the corresponding parameters. Fig. 4 shows the fitness of the second
case, optimized by an ES with the optimization settings as given in the previous
section. The results of the third test case with the additional information about
the structure of the network yields far better fitness values compared to the first
test case and better results than the second case as can be seen in Fig. 4.
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3.2 Artificial Regulatory Network

To test the method on larger systems we created two artificial microarray data
sets, which were to be reverse engineered by our algorithm. The first data set
represented the time dynamics of an artificial 10-dimensional regulatory sys-
tem, i.e. the relationships between 10 genes, which were randomly assigned and
simulated. The second example was an artificially created 20-dimensional GRN,
which consists of 20 components. All settings for the Evolutionary Algorithms
were determined in preliminary experiments.

10-dimensional network Due to the fact that GRNs in nature are sparse
systems, we created regulatory networks randomly with a maximum cardinality
of £ < 3, i.e. each of the N = 10 genes depends on three or less other genes
within the network. The dynamics of the example can be seen in Fig. 5.

Fig. 5. Time dynamics of the 10-dim regulatory system

The optimization process was performed using a (u,\)-ES with 4 = 10
parents and A = 50 offsprings together with a Covariance Matrix Adaptation
(CMA) mutation operator without recombination. This optimization was re-
peated m = 20 times with different starting populations. After evolving the
models for 200,000 generations (total number of 1,000,000 fitness evaluations),
the m best fitness values found were averaged, as shown in Fig. 6.

As illustrated by the fitness plot the standard ES was not able to find a
solution for the optimization problem, because it got stuck in local optima.
The proposed method on the other hand found solutions with very good fitness
values.

Unfortunately, our MA found only twice the correct target system with re-
spect to the topology and parameter values. In the remaining 18 optimization
runs, systems were found, which fitted the experimental data, but showed dif-
ferent relationships between the component genes. We address this problem in
the discussion in sect. 4.
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Fig. 6. Fitness graph of the 10-dim regulatory system (standard ES vs. MA)

20-dimensional network The second GRN inferred with the proposed method
is an artificial 20-dimensional system. As in the example before, we created the
dependencies of the network randomly with a cardinality & < 3. The simulated
time courses are not given here because the number of components of the system
make the graph unclear.

The optimization was performed with the same parameter settings as de-
scribed in sect. 3.2. Due to the larger number of system components, we increased
the total number of fitness evaluations to 1,500,000, thus increasing computing
time as well.

Fig. 7 shows the fitness course averaged over the 20 repeated optimization
runs. Again, the standard ES did not find a solution whereas the MA converged
to optima with good fitness values.
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Fig. 7. Fitness graph of the 20-dim regulatory system (standard ES vs. MA)

As before in the 10-dimensional example the problem of finding the correct
target system emerged again. The resulting time courses fitted the experiment



data (yielding good fitness values) but showed different dependencies and inter-
actions between the participating genes of the regulatory network.

4 DISCUSSION

In comparison to a standard ES with CMA the proposed method yielded far
better fitness values. In both test cases the ES was not even able to find models
that fit the given data at all.

Additionally, our algorithm proved to work even for middle-sized examples.
Most examples found in literature are artificial and very small, i.e. with a total
number of ten genes or lower, while in biological networks even small systems
have at least 50-100 components. We showed that our method is able to handle
sparse systems (k < 3) with 20 genes, restricted currently only by computational
performance. Because we use a bitset representation of the topology the algo-
rithm reduces the total number of parameters and makes it therefore possible
to infer larger systems. Future experiments on high performance computers will
address large-scale systems with a minimum number of 100 genes.

Further on, the solutions found by the MA are sparse due to the preceding
structure optimization. Because in nature GRNs are sparse systems the solutions
of the MA represent better resemblance to biological systems than the standard
ES, which resulted always in complete and thus dense matrices. Therefore, the
proposed method shows promising results to be suitable to infer gene regulatory
systems.

Due to the large number of model parameters and the small number of data
sets available, the system of equations is highly under-determined. Therefore,
multiple solutions exist, which fit the given data, but show only little resemblance
with the original target system. This problem is known in literature but there
are currently only few publications reflecting on this issue. Recently, Spieth et
al. published a new method to incorporate data sets obtained by additional
experiments [15]. In future enhancements of our algorithm we plan to incorporate
additional methods to identify the correct network.

In future work we also plan to include a-priori information into the inference
process like partially known pathways or information about co-regulated genes,
which can be found in literature. For better coverage of the solution space of the
optimizer we plan to use a cluster-based niching algorithm, which was developed
in our group. Additional models for gene regulatory networks will be examined
for simulation of the non-linear interaction system as listed in sect. 1 to overcome
the problems with a quadratic number of model parameters of the S-System.

Further on, we will continue to test our method with real microarray data in
close collaboration with biological researchers at our university.
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