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Abstract— In this paper we address the problem of finding
gene regulatory networks from experimental DNA microarray
data. As underlying mathematical model we used S-Systems, a
quantitative model, which recently has found increased attention
in the literature. Due to the complexity of the inference problem
some researchers suggested Evolutionary Algorithms for this
purpose. We introduce enhancements to this optimization process
to infer the parameters of sparsely connected non-linear systems
given by the observed data more reliably and precisely. Due to the
limited number of available data the inferring problem is under-
determined and ambiguous. Further on, the problem often is
multi-modal and therefore appropriate optimization strategies
become necessary. In this paper we propose a new method,
which evolves the topology as well as the parameters of the
mathematical model to find the correct network. This method
is compared to standard algorithms found in the literature.

I. INTRODUCTION

A number of technologies have been developed over the
last few years enabling gene experiments in high-throughput
set ups. These technologies include DNA microarrays, which
are designed to measure gene expression levels in living
cells. DNA chips allow the measurement of thousands of
interactions between mRNA-derived molecules and genome-
derived probes simultaneously. Since the number of probes
on a chip is in the order of ten thousands per experiment,
biologists encounter an enormous amount of raw data, which
is almost impractical to handle by eyes only. With this,
Systems Biology has become an important field in biology,
which aims at deep insights into biological systems. The
main focus of current research is mainly on identification
of genes that show significant changes between different
experiments, or genes that can be clustered by their course
of expression over time. The next step is to understand the
principles of biological systems grounded on the molecular
level. To provide a deep understanding of life, we have to
understand not only the components of the systems but also
their dependencies, interactions, and structures. A system-
level approach is necessary if we want to incorporate large
amounts of data into a comprehensive model of the structure
and functions of the complex mechanisms within an organism.

Gene expression is regulated at many molecular levels
starting from the DNA level to mRNA to proteins. The proteins
react and interact with others and with the DNA in many ways
to build transcriptional molecules, which regulate the rate of
transcription of a gene. Further regulation occurs at the level
of RNA processing, transport and translation into proteins,
which is not fully understood today. Advanced computational
methods together with high-throughput experimental technolo-
gies like DNA arrays show promising results on the way to
understand the regulatory mechanisms and regulatory network
structures of gene expression.

II. COMPUTATIONAL BIOLOGY

On the computational side, several mathematical models
have been applied to the problem of inferring gene regulatory
networks.

The earliest models to simulate regulatory systems found
in the literature are Boolean or Random Boolean Networks
(RBN) [8]. In Boolean Networks gene expression levels can
be in one of two states: either 1 (on) or 0 (off). The quantitative
level of expression is not considered. Two examples for
inferring Boolean Networks are given by Akutsu [1] and
the REVEAL algorithm by Lianget al. [12]. These models
have the advantage that they can be solved with only small
computational effort. But they suffer from the disadvantage of
being tied to discrete system states.

In contrast to discrete methods like RBNs, qualitative net-
work models allow for multiple levels of gene regulation.
An example for this kind of approach is given by Thieffry
and Thomas in [20]. Akutsuet al. suggested a heuristic for
inferring such models in [2]. But these models use only
qualitative dependencies and therefore only a small part of
the information hidden in the time series data.

Quantitative models based on linear models for gene regu-
latory networks like the weighted matrix model by Weaveret
al. [22] or the singular value decomposition method by Yeung
et al. [24] consider the continuous level of gene expression.
But they are restricted to linear dependencies, which makes it
difficult to model realistic networks.



Other approaches to infer regulatory systems from time
series data using Artificial Neural Networks [9] or Bayesian
Networks [7] have been recently published, but face some
drawbacks as well. Bayesian networks, for example, do not
allow for cyclic networks. Arbitrary differential equations can
be used to model regulatory structures as well as Andoet al.
showed with Genetic Programming (GP) in [3].

More general examples for mathematical non-linear
models like S-Systems to infer regulatory mechanisms
have been examined by Makiet al. [13], Kiguchi et al.
[10] or Tominaga et al. [21]. The non-linear methods
face a severe disadvantage of having many more model
parameters to be inferred. Tominaga et al., for example,
bypass this problem by inferring only a subset of genes of
the original system (2 genes out of5). So far, methods using
S-Systems or arbitrary differential equations regard only a
small number of components within the regulatory network
to be reverse engineered, i.e. a total number of genesN ≤ 10.

Nevertheless, we try to use the advantages of flexible
mathematical models like S-Systems in our approach because
they are able to represent complex structures of gene
regulations. We introduce a Memetic Algorithm, which
separates the inference problem into two subproblems. The
first problem is to find a proper topology or structure of
the network with a Genetic Algorithm (GA). In the second
problem the parameters for the topology given by a GA
individual are optimized with an Evolution Strategy (ES).
The second problem can be seen as a local search phase of a
Memetic Algorithm (MA).

The remainder of this paper is structured as follows. Sec-
tions III and IV describe the proposed algorithm and the math-
ematical model used in the optimization process. Applications
and the results of the comparison are listed in section V, and
the conclusions and an outlook are given in sections VI and
VII.

III. INFERENCE METHOD

First, we describe the Memetic Algorithm, which optimizes
the topology and the parameters followed by a description of
the mathematical model used for representing the regulatory
system.

A. Evolutionary Algorithms

Evolutionary Algorithms (EAs) have proven to be a
powerful tool for solving complex optimization problems.
Three main types of Evolutionary Algorithms have evolved
during the last 30 years: Genetic Algorithms (GA), mainly
developed by J.H. Holland [6], Evolution Strategies (ES),
developed by I. Rechenberg [15] and H.-P. Schwefel [17]
and Genetic Programming (GP) by J.R. Koza [11]. Each of
these uses different representations of the data and different
main operators working on them. They are, however, inspired
by the same principles of natural evolution. Evolutionary
Algorithms are a member of a family of stochastic search

techniques that mimic the natural evolution of repeated
mutation and selection as proposed by Charles Darwin.

A combination of an EA with a local search heuristic
is referred to as Memetic Algorithm [14]. The proposed
Memetic Algorithm uses a combination of two of the main
types of EA, i.e. Genetic Algorithms and Evolution Strategies.
These two are briefly outlined in the next sections.

1) Genetic Algorithm:Genetic Algorithms imitate the evo-
lutionary processes with emphasis on the genetical mecha-
nisms. The GA works on a population of artificial chromo-
somes, referred to as individuals. Each individual is repre-
sented by a string ofL bits. Each segment of this string
corresponds to a variable of the optimization problem in a
binary encoded form.

The population is evolved in the optimization process
mainly by crossover operations. This operation recombines
the bit strings of individuals in the population with a certain
probabilitypc. Mutation is secondarily in most applications of
a GA. It is responsible to ensure that some bits are changed,
thus allowing the GA to explore the complete search space
even if alleles are temporarily lost due to convergence.

2) Evolution Strategies:The second type of an Evolution-
ary Algorithm is the Evolution Strategy. ES differ mainly
from GAs in respect to the representation of solutions and
the selection operators.

The selection of the individuals forming a population is de-
terministic as in contrast to GAs where a stochastical method
is used. In case of the (µ, λ)-ES selection strategy, theµ best
individuals from a population ofλ offsprings are selected
to create the next population. An alternative implementation
is the (µ + λ)-strategy, which selects theµ best individuals
from the population of theλ offsprings joined with the old
population ofµ parents.

The use of sophisticated mutation operators is emphasized
in ES while recombination is only of lower importance.

B. Memetic Algorithm

In the current implementation we use a combination of a
Genetic Algorithm for optimizing the topology together with
an Evolution Strategy to locally find the best parameters for
the given topology. The general principle is outlined in fig. 1.

The procedure ”eval(population)” used for evaluating the
fitness for a given population of possible topologies is given
schematically in fig. 2.

The Memetic Algorithm uses a Genetic Algorithm to evolve
populations of structures of possible networks. These struc-
tures are encoded as bitsets, where each bit represents the
existence or absence of an interaction between genes and
therefore of non-zero parameters in the mathematical model.
The evaluation of the fitness of each individual within the GA
population applies a local search to find suitable parameters,
which is described in the next section.



Algorithm MA

begin

t:=0;

PGA(t):=initGAPop();

eval( PGA(t));

while (termination criteria not met)

P ′GA(t):=selectGAParentPop( PGA(t));

P ′′GA(t):=createGAOffsprings( P ′GA(t));

eval( P ′′GA(t));

PGA(t + 1):=selectNewGAPop( P ′′GA(t));

t:=t+1;

endwhile

end

Fig. 1. Pseudo-code describing the general principle of the Memetic
Algorithm

eval( PGA)

begin

s:=0;

for each individual in PGA do

PES(s):=initESPop();

eval( PES(s));

while (termination criteria not met)

P ′ES(s):=selectESParentPop( PES(s));

P ′′ES(s):=createESOffsprings( P ′ES(s));

eval( P ′′ES(s));

PES(s+1):=selectNewESPop( P ′′ES(s));

s:=s+1;

endwhile

setFitness(GAInd, bestESFitness);

endfor

end

Fig. 2. Pseudo-code describing the general principle of the local search

Fig. 3 shows schematically the work flow of the optimizing
process. A bitset (left) is suggested by the GA. It represents a
specific network topology (middle) and this topology is then
encoded into decision variables to be optimized by the ES.

For evaluation of each structure suggested by the global
optimizer an Evolution Strategy is used, which is suited for
the parameter optimizing problem, since it is based on real
values. The ES optimizes the parameters of the mathematical
model used for representation of the regulatory network.

C. Fitness

For assessing the quality of the locally obtained results we
use the following equation for calculation of the fitness values
for the ES optimization process:
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Fig. 3. Work flow of the MA optimizing process
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x̂i(tk)− xi(tk)

xi(tk)

)2

(1)

where N is the total number of genes in the regulatory
system,T is the number of sampling points taken from the
time series and̂x and x distinguish between estimated data
and experimental data. The overall problem is to minimize
the fitness valuef . This function has been used in several
publications [10], [13], [21].

D. S-Systems

On an abstract level, the behavior of a cell is represented
by a gene regulatory network ofN genes. Each genegi

produces a certain amount of mRNAxi when expressed
and therefore changes the concentration of this mRNA over
time: xi(t + 1) = hi(~x(t)) with ~x(t) = (x1, · · · , xn), where
hi describes the change of each RNA level depending on all
or only on some RNA concentrations in the previous time step.

To model and to simulate regulatory networks we decided
to use S-Systems since we think they are flexible enough
to model important gene regulatory dependencies like feed
back loops, etc. But there are alternatives as listed in section
II, which will be the subject of research in future applications.

S-Systems are a type of power-law formalism, which has
been suggested by Savageau [16] and can be described by a
set of nonlinear differential equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (2)

whereGi,j andHi,j are kinetic exponents,αi and βi are
positive rate constants andN is the number of equations in
the system. The equations in (eq. 2) can be seen as divided
into two components: synthesizing and degrading component.

The kinetic exponentsGi,j andHi,j determine the structure
of the regulatory network. In the caseGi,j > 0 gene gj

induces the synthesis of genegi. If Gi,j < 0 genegj inhibits
the synthesis of genegi. Analogously, a positive (negative)
value ofHi,j indicates that genegj induces (suppresses) the
degradation of the mRNA level of genegi.

The parameters of the S-System~α, ~β, G, and H are
optimized by the local ES method to fit the given time-series
data according to the fitness function (eq. 1).



IV. ALGORITHM SETTINGS

To evaluate the proposed method we created two artificial
gene regulatory networks, which were simulated to gain
microarray expression data sets. These data sets were then to
be re-engineered by our algorithm. To compare the results
with established inference methods we also used a standard
ES and an enhancement to a GA developed by Tominagaet
al. [21] to infer the parameters of the network as described in
the following. To obtain reliable results, each example setting
was repeatedm = 20 times.

Standard ES. The inference by a standard ES was
performed using a (µ,λ)-ES with µ = 10 parents andλ = 50
offsprings together with a Covariance Matrix Adaptation
(CMA) mutation operator (see Hansen and Ostermeier [5])
without recombination.

Skeletalizing. The second algorithm is an extension
to a standard real-coded GA using tournament selection
with a tournament group size oftgroup = 8, 3-Point-
crossover recombination withpc = 1.0 and a mutation
probability pm = 0.1, referred to as ”skeletalizing” in several
publications. This enhancement introduces a threshold value
tskel = 0.05, which represents a lower boundary for the
parametersGi,j and Hi,j in the mathematical model. If
a decoded decision variable of the GA drops below this
threshold during optimization the corresponding phenotype
value is forced to0.0.

Additionally to the original algorithm suggested by
Tominaga et al. we implemented two versions of the
skeletalizing method. SKELA forced the phenotype values
below the threshold to0.0, thus relying only on the Baldwin
effect whereas SKELB encoded these changes back into the
genotype of the evaluated individual (Lamarckism). Detailed
descriptions of the Baldwin effect and Lamarckism can be
found in Withleyet al. [23].

Memetic Algorithm. The main focus of this publication
is the performance of the proposed Memetic Algorithm as
presented in sect. III. The GA evolved a population of possible
structures with a tournament selection with a tournament group
size of tgroup = 8, 3-Point-crossover recombination with
pc = 1.0 and a mutation probabilitypm = 0.1. The local
optimization was started using a (µ,λ)-ES withµ = 10 parents
and λ = 50 offsprings together with a Covariance Matrix
Adaptation (CMA) mutation operator without recombination
as in the case of the standard ES.

V. RESULTS

A. Artificial Gene Regulatory Networks

The first data set represents the time dynamics of
an artificial 5-dimensional regulatory system, i.e. the
relationships between5 genes, which were randomly assigned
and simulated. The second example is an artificially created

10-dimensional GRN, which consists of10 components.

1) 5-dimensional network:Due to the fact that GRNs in
nature are sparse systems, we created regulatory networks
randomly with a maximum cardinality ofk ≤ 3, i.e. each
of the N = 5 genes depends on three or less other genes
within the network. The dynamics of the first example can be
seen in fig. 4.
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Fig. 4. Time dynamics of the 5-dim regulatory system

The four algorithms were used to infer the underlying
regulatory dependencies with the parameter settings given in
the previous section. The resulting averaged fitness courses are
plotted in the following graph (fig. 5). To compare the results
of the four methods a total number of fitness evaluations
Nmax = 2, 000, 000 was specified. In case of the Memetic
Algorithm the optimizer performedNmax = 2, 000, 000 local
ES evaluations withNlocal = 500, i.e. 500 evaluations for
each bitset. The fixed number of fitness evaluations resulted
in 40 generations with100 individuals each for the GA.
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Fig. 5. Fitness course of the 5-dim regulatory system



Fig. 5 shows the fitness courses for the different methods.
As can be seen, the standard ES is not able to find a solution
to the optimizing problem. Obviously, it got stuck in a local
optimum without being able to escape. Both skeletalizing GAs
were able to converge to relative good fitness values, with a
slight advantage of the implementation using Lamarckism. It
seems that both did not converge with the specified number
of evaluations. Further on, the GAs started with better fitness
values than the ES due to the larger size of the initial
population, which increases the probability of finding a good
individual in the first steps of the optimization process. In
contrast to the other methods the proposed MA converged
quickly and reliably to very good fitness values, suggesting
that it can achieve even better results with increased number
of fitness evaluations. The MA also benefits from the
advantage of the bigger population size of the GA that is used
to evolve the bitsets representing different network topologies.

Unfortunately, the resulting networks face a weighty
problem. Looking closer at the results it becomes clear
that good fitness values do not necessarily correspond to
the correct network topology. The skeletalizing GA did not
find the correct solutions in any of the repeated optimizing
runs. Our MA found only twice the correct target system
with respect to the topology and parameter values. In the
remaining18 optimization runs, systems were found, which
fitted the experimental data but showed different relationships
between the component genes. We will address this problem
in the discussion (sect. VI).

2) 10-dimensional network:As a second test case we
created another regulatory network randomly again with a
maximum cardinality ofk ≤ 3. The dynamics of the example
are given in fig. 6.
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Fig. 6. Time dynamics of the 10-dim regulatory system

The optimization processes were performed as in the exam-
ple before. Each algorithm was again terminated after a total

number of fitness evaluationsNmax = 2, 000, 000.
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Fig. 7. Fitness course of the 10-dim regulatory system

As illustrated by the fitness plot the standard ES was again
not able to find a solution for the optimization problem.
Again, the ES is not able to escape a local optimum and
therefore no further improvement is achieved. The advantage
of the GA with Lamarckism was not as significant as in the
example before. But again both seem to have the potential
to reach good fitness values with a larger number of fitness
evaluations. And all GAs started with better fitness values as
in the example before. Our proposed MA outperformed again
all other methods by finding very good solutions with respect
to the fitness values with a very good speed of convergence.

As before in the 5-dimensional example the problem of
finding the correct target system emerged again. The resulting
time courses fitted the experiment data (yielding good fitness
values) but showed different dependencies and interactions
between the participating genes of the regulatory network.

VI. DISCUSSION

In this paper we introduced a new method to infer gene
regulatory networks from time-series microarray data. Our
method yielded far better fitness values compared to a standard
ES, which was not able to find models that fit the given data in
both test cases. This is due to the fact that the ES got stuck in
local optima in each of the test cases. The algorithms proposed
by Tominagaet al. were able to find comparably good sets of
model parameters with respect to the fitness value but faced
the major disadvantage of relying on large population sizes and
therefore on a large number of total fitness evaluations. Our
proposed algorithm performed best on the two test cases. This
suggests that the algorithm is able to find a network structure
that is either similar to the correct one or which represents a
network topology with similar properties.

Additionally, our MA proved to work even in middle-sized
examples. Most examples found in literature are artificial and



very small, i.e. with a total number of five genes or lower. The
low dimensionality of these examples is by far not relevant to
biological networks where even small systems have at least
50–100 components. We showed that our method is able to
handle10 genes, restricted currently only by computational
performance. Because we use a bitset representation of the
topology, the algorithm reduces the total number of parameters
and makes it therefore possible to infer larger systems. Future
experiments on high performance computers will address
large-scale systems with100 genes or more.

Further on, the solutions found by the MA are sparse due
to the preceding structure optimization. Because in nature
GRNs are sparse systems the solutions of the MA represent
better resemblance to biological systems than the standard ES,
which resulted always in complete and thus dense matrices.
Therefore, the proposed MA is better suited to infer gene
regulatory systems.

Due to the large number of model parameters and the small
number of data sets available, the system of equations is highly
under-determined. Therefore, multiple solutions exist, which
fit the given data, but show only little resemblance with the
original target system. This problem is known in literature
but there are currently only few publications reflecting on
this issue. Recently, the authors published a new method
to incorporate data sets obtained by additional experiments
[18]. In future enhancements of our algorithm we plan to
incorporate such additional methods to identify the correct
network.

VII. FUTURE WORK

In future work we also plan to include a-priori information
into the inference process of real microarray data like partially
known pathways or information about co-regulated genes,
which can be found in literature. For better maintaining of
the diversity we plan to use a cluster-based niching algorithm,
which was developed in our group [19].

Additional models for gene regulatory networks will be
examined for simulation of the non-linear interaction system
as listed in sect. II to overcome the problems with a quadratic
number of model parameters of the S-System.

Further on, we will continue to test our method with
real microarray data in close collaboration with biological
researchers at our university.
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