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Abstract— As a sub-task of the general gas source localisation
problem, gas source declaration is the process of determining
the certainty that a source is in the immediate vicinity. Due to
the turbulent character of gas transport in a natural indoor
environment, it is not sufficient to search for instantaneous
concentration maxima, in order to solve this task. Therefore,
this paper introduces a method to classify whether an object is a
gas source or not from a series of concentration measurements,
recorded while the robot performs a rotation manoeuvre in front
of a possible source. For three different gas source positions, a
total of 288 declaration experiments were carried out at different
robot-to-source distances. Based on these readings, two machine
learning techniques (ANN, SVM) were evaluated in terms of their
classification performance. With learning parameters that were
optimised by grid search, a maximal hit rate of approximately
87.5% could be obtained using a support vector machine.

I. INTRODUCTION

The ability to classify an object depending on whether it is
a source of gas or not can be useful for mobile robots for
several reasons. First, it is an essential part of gas source
localisation – a task, which is important for applications
such as automatic humanitarian demining, or surveillance
tasks including the localisation of toxic gas leaks, leaking
solvents or a fire at its initial stage (“electronic watchman”).
Second, the classification capability of gas source declaration
itself is of potential use for rescue and security missions
even if the full gas source localisation problem cannot be
accomplished using a sense of smell only (because of a too
low concentration at locations distant from the source, for
example). An object that is to be classified could be located
using other sensor modalities, and attributed based on gas
sensor measurements. For example, suspicious items could be
identified as containing explosive materials or a rescue robot
could determine whether a victim is alive by assessing whether
that person is a source of carbon dioxide. Note that CO2

emmision belongs also to the characteristics defined in the
RoboCup Rescue scenario [1] by which the simulated victims
display signs of life. While in rescue scenarios other sensor
modalities will also be used to check for vital signs [2], a
mobile robot that is equipped with gas sensors would be able
to monitor the possibly contaminated air at an emergency site.
Thus, the robot can prevent rescue workers from being harmed
or killed due to explosions, asphyxiation or toxication [3].
Furthermore, such a rescue robot could assemble a map of
the spatial gas distribution [4], providing an incident planning
staff with information to support rational decision making.

A. Gas Source Declaration Using Gas Sensors Only

Throughout the animal kingdom, many examples can be
found where olfactory information plays an important role
for performing different localisation tasks. These tasks include

finding a mate guided by pheromones, like the male silkworm
moth Bombyx mori for instance [5], or locating a host as is
painfully known from bloodsucking mosquitoes, which are at-
tracted by a specific mixture of human scents, often including
carbon dioxide [6] and lactic acid [7]. Host-oriented behaviour
of animals however, often relies on a combination of cues
determined from a variety of sensor modalities. Mosquitoes
and other flying haematophagous insects are also attracted
by particular colours [8], while the Bombyx males use the
local wind direction as an approximation of the direction of
a pheromone source [9]. The same is probably true for the
mechanisms applied to identify a host.

This paper is concerned with the classification performance
that can be achieved using gas sensors only. In contrast to
previous works on gas source localisation ([10], [11], [12],
[13]), the environment was not artificially ventilated for the
experiments presented in this work to produce a strong unidi-
rectional airflow (see Section II-C). Without a strong artificial
airflow, the detection limits of the available wind measuring
devices (anemometers) are not low enough to measure weak
convective airflows. With state-of-the-art anemometers based
on the cooling of a heated wire [14], the bending of an artificial
whisker [15] or the influence on the speed of a small rotating
paddle [12], reliable readings can be obtained only for wind
speeds in the order of at least 10 cm/s.

The approach that is suggested here does not depend on
sufficiently high wind speeds. It tries to classify the inspected
object by recognising a pattern within a series of gas sensor
readings that represent temporally as well as spatially sampled
concentration data. Such a pattern is determined in this work
by applying machine learning techniques to a set of experi-
ments carried out in an uncontrolled indoor environment. To
the authors’ knowledge there is no physically justified model
available yet to establish the required pattern in case of a
natural environment by analytical means.

B. Gas Distribution in Natural Indoor Environments

Due to the low diffusion velocity of gases at room tempera-
ture [16], the dispersal of an analyte gas is dominated by turbu-
lence and the prevailing air flow rather than diffusion [17] in an
uncontrolled indoor environment. The gas distribution there-
fore reveals many discontinous patches of local eddies [18]
and the absolute maximum of the instantaneous distribution is
usually not located near the gas source if this source has been
active for some time [19]. It is therefore not sufficient to search
for maxima of the instantaneous concentration distribution in
order to solve the gas source declaration task.



C. Related Work

To the authors’ knowledge, there exist only a few sugges-
tions to solve the gas source declaration problem up to now.
Hayes et al. [20] propose an algorithm that tries to identify a
source of gas by searching for a transition between high and
low intensities in upwind direction. Their gas source localisa-
tion algorithm consists of an upwind movement (surge), which
is performed for a set distance whenever an “odour packet”
is encountered, followed by a spiral searching behaviour for
other gas patches. At the head of a plume, the Spiral Surge
Algorithm tends to surge into an area of low concentration, and
then spiral back to the origin of the surge before receiving
another “odour hit”. The vicinity to a gas source is thus
expected to appear as a series of small distances between
the locations where the robot senses consecutive “odour hits”.
However, this might occur also at locations distant from the
source. Furthermore, the approach relies on a sufficiently
strong and constant airflow that enables to use an anemometer
and that gives a low probability for patches of gas to occur
on the upwind side of the source.

As a further solution to the problem of gas source decla-
ration in an uncontrolled environment, Lilienthal and Duckett
suggest an indirect localisation strategy based on exploration
and concentration peak avoidance [19]. Here, a gas source
was located by exploiting the fact that local concentration
maxima occur more frequently near the gas source com-
pared to distant regions. Finally, the concentration mapping
technique introduced by Lilienthal and Duckett [4] provides
another possibility for gas source declaration. By combining
gas sensor readings with location estimates, the suggested
algorithm is able to create a representation of the average
relative concentration of a detected gas in a gridmap structure.
As demonstrated in [4] the position of the maximum in
the representation of the average relative concentration of a
detected gas can often be used to estimate the approximate
location of the source. However, the latter two approaches
suffer from similar drawbacks. Aside from an increased time
consumption (though this can be reduced by using multiple
robots) it is not guaranteed that a good estimate of the source
location can be obtained with these techniques and there is yet
no method available to determine the certainty of this estimate.

This paper introduces a direct declaration strategy that
tries to determine whether a gas source is located in the
immediate vicinity of the robot from a series of concentration
measurements, recorded while the robot performed a rotation
manoeuvre in front of a possible gas source (see Section III
for details). A similar approach was used by Duckett et al. [21]
to learn the direction to a gas source from a series of sensor
readings. The gas source tracing problem is not considered
here. It is rather assumed that the source appears as an obstacle
to the robot, which is to be analysed after it has been detected
using other sensor modalities.

The rest of this paper is structured as follows: next, the
experimental setup is described in Section II and the applied
declaration strategy is introduced in Section III. Then, the pre-

Fig. 1. The gas-sensitive mobile robot Arthur in front of the gas source. This
distance was considered as being directly in front of the source. The three
marked gas sensors were used for the declaration experiments presented in
this work.

processsing of data is detailed (Section IV) and corresponding
results are discussed (Section V), followed by conclusions and
suggestions for future work (Section VI).

II. EXPERIMENTAL SETUP

A. Robot

The gas source declaration strategy that is introduced in
Section III was implemented on the gas-sensitive mobile robot
“Arthur” (length = 80 cm, width = 65 cm, height without laser
range scanner = 55 cm) that is based on the model ATRV-Jr.
from iRobot (see Fig. 1). The robot is equipped with several
external sensors. However, for the experiments presented in
this work only odometry data were used in addition to the gas
sensitive system. The data from the SICK laser range scanner
were used to determine the position of the robot for evaluation
purposes.

B. Gas Sensors

The gas sensing system is based on the commercially
available device VOCmeter-Vario (AppliedSensor), which is
described in detail in [22]. For the experiments presented in
this paper three metal oxide sensors (Figaro, TGS 2620) were
utilised. These sensors were symmetrically mounted at a height
of 9 cm above the floor on the front bumper of the robot. The
distance of these sensors to the middle of the bumper was 0 cm
and ±32 cm. The distance between the outer sensors and the
front wheels is very small. In order to avoid a corruption of
the results due to an additional airflow created by the wheels,
a shield made of cardboard was placed inbetween the wheels
and the sensors (see Fig. 1).

Metal oxide sensors comprise a heating element coated with
a sintered semiconducting material. The measured quantity
is the resistance RS of the surface layer at an operating



Fig. 2. Floor plan of the laboratory room in which the experiments were performed. Also indicated are the windows at the upper and the doors at the lower
side as well as the obstacles in the room (cupboards and desks). In addition, the tested locations of the gas source are indicated by circles. Beneath the source
on the left side, the robot is sketched in a position that was considered as being directly in front of the source. Further on, all the tested robot positions are
shown for the rightmost source location using triangles that indicate the centre of the robot and its initial heading. Light triangles with a dotted border indicate
positions that were considered as being not in the immediate vicinity of the source.

temperature of between 300◦C and 500◦C [23]. Exposed to
a reducing gas, the potential barrier at the grain boundary is
lowered, and thus the resistance of the surface layer decreases.
In consequence of the measurement principle, metal oxide
sensors exhibit some drawbacks. Namely the low selectivity,
the comparatively high power consumption (caused by the
heating device) and a weak durability. Furthermore, metal
oxide sensors are subject to a long response time and an even
longer decay time [24]. However, this type of gas sensor is
most often used for mobile noses because it is inexpensive,
highly sensitive and relatively unaffected by changing envi-
ronmental conditions like room temperature or humidity.

C. Environment and Gas Source

All experiments were carried out in a 15.4 m × 5.1 m
room at the University of Tübingen. A floor plan is shown
in Fig. 2, including doors, windows, cupboards and desks.
In addition, the tested gas source positions are indicated by
circles. A total of 288 declaration trials were performed using
three different source locations and four different orientations
with respect to the source as indicated in Fig. 2. For each
source position, 48 experiments were carried out directly in
front of the gas source (d = d0) alternating with 48 trials
at a randomly chosen larger distance of d = d0 + ∆d with
∆d = 60 cm, 80 cm and 100 cm, respectively. After each trial,
the robot was stopped for 60 s in order to avoid disturbance
from the preceding measurements due to the long decay time
of the sensors. All the robot positions tested are shown for the
right source position, using triangles that indicate the centre of
the robot and its initial heading. Light triangles with a dotted
border indicate positions that were considered as being not in
the immediate vicinity of the source.

With regard to real world applications, the environment was
not modified for this investigation. The unventilated room was
also used as an office during the experiments, with up to two

persons working, moving and sometimes leaving or entering
the room. Although the windows were kept closed and the
persons were told to be careful, this indoor environment can
be considered uncontrolled to some extent.

The gas source was chosen to be a bowl with a diameter
of 140 mm and a height of 20 mm filled with Single Malt
Whiskey (40% alcohol), which was used because it is non-
toxic, less volatile than pure ethanol and easily detectable by
metal oxide sensors. In order to be recognisable by the laser
range scanner, a frame made of wire with a cardboard marking
mounted on top was placed above the container (see Fig. 1).

III. GAS SOURCE DECLARATION STRATEGY

Due to the properties of gas distribution in real world
environments discussed in Section I-B, single concentration
measurements do not contain enough information to allow
determination of the proximity to a gas source. It was instead
considered most promising to apply a strategy that provides
temporally as well as spatially sampled concentration data.

Therefore, the gas sensor readings were acquired while the
robot performs a rotation manoeuvre containing three succes-
sive rotations: 90◦ to the left, then 180◦ to the right (without
stopping, in order to minimise self-induced disturbance of the
gas distribution) and finally 90◦ to the left again (see Figure 3).
Initially, the robot was oriented towards the suspected object
as indicated in Fig. 3. This manoeuvre is easy to implement,
requires little space and does not involve periods of backward
motion where the ATRV-Jr robot offers only a limited obstacle
avoidance capability. The rotation was performed with an
angular speed of approximately 4◦/s corresponding to a total
time of approximately 90 s to complete the manoeuvre. Si-
multaneously, sensor readings were acquired at the maximum
rate of almost 4 Hz, resulting in a total of Q readings per
experiment with Q ∈ [349,362].



Fig. 3. Rotation manoeuvre performed to collect sensor data for gas source
declaration. Indicated are the initial robot position, the gas source, the three
successive rotations (given by arrows starting with the innermost one) and the
sectors for which the mean and standard deviation is calculated as a feature.

IV. DATA PRE-PROCESSING

To evaluate the performance of the two machine learning
methods tested (artificial neural network and support vec-
tor machine), the recorded data were first pre-processed by
means of feature extraction (Section IV-A) and normalisation
(Section IV-B). Next, an output value was added to each
data set, indicating whether the corresponding experiment was
performed directly in front of a gas source (+1) or not (–1).
The robot was considered as being in the “immediate vicinity
of a source” only in the case of minimal distance between
the robot and the gas source, corresponding to a laser scanner
reading of d = d0 = 50 cm (see Fig. 3). Here, the trajectory of
the sensors just avoids hitting the object under inspection at the
point of closest approximation. By contrast, all the positions
with a larger distance d ≥ d0 +∆dns

min were considered as being
“not in the immediate vicinity of a source”. The minimal
distance ∆dns

min for the negative examples was 60 cm and the
average distance ∆dns was 80 cm.

A. Feature Extraction

The features used for classification were derived by calcu-
lating the first two statistical moments (mean and standard
deviation of the sensor measurements) for each of the 8
consecutive 45◦ sectors covered by the rotation manoeuvre.
These sectors are denominated by S1 – S8 in Figures 3
and 4. Depending on the number M of gas sensors utilised,
a maximum of M×16 features was extracted. Either the full
M×16-dimensional input vector was utilised for training and
testing, or only the M×8 mean or standard deviation values.
Examples of feature vectors obtained in the experiments are
depicted in Fig. 4. Here, the vertically normalised mean values
of the leftmost, middle and rightmost sensor are plotted in

Fig. 4. Examples of mean values obtained at the indicated distance from the
gas source. For each distance, four vertically normalised feature vectors are
shown for the leftmost, middle and rightmost sensor (indicated by the iconic
front view below each column).

order to indicate the relative strength of the sensor responses.
Four examples are depicted recorded at a distance of d0 (in
the immediate vicinity of the gas source) and at a distance of
d0 + 80 cm that was considered as being not in the immediate
vicinity of the gas source.

B. Normalisation

The set of feature vectors �Fi (corresponding to the desired
classification ti of the i-th experiment) creates a matrix Fi j ( j ∈
[1,M×8] or j ∈ [1,M×16] and i ∈ [1,N] with the number of
experiments N and the number of sensors M). Before training
and testing, this matrix is normalised vertically, meaning that
each column is mapped linearly to the range of [0,1] as

f v
i j =

Fi j −mini{Fi j}
maxi{Fi j}−mini{Fi j} . (1)

Note that this kind of normalisation cannot be applied in
the same way for classification of a single trial because it is
necessary to know all N experiments in order to establish the
normalisation range. It might be also problematic to apply the
normalisation factors obtained from the training data in a test
experiment in the case of varying environmental conditions
that cause a shift of the sensor values, such as a different
temperature or humidity. Finally, the vertical normalisation
factors contain knowledge about the intensity of the gas source
used in the training phase, and could thus be misleading in the
case of a different source. For online evaluation of a single
experiment rather horizontal normalisation could be used:

f h
i j =

Fi j −min j{Fi j}
max j{Fi j}−min j{Fi j} . (2)

While in the case of vertical normalisation, the available
information about the strength of the sensor response (relative
to the range experienced in all the experiments) is included
in the feature vector, a horizontally normalised feature vector
represents the relative intensity of the sensor response with
respect to the values that occur during the rotation manoeuvre.
Therefore, examples have to be classified in the latter case
based on the relative course of the concentration measurements
only. For real world applications, however, the concentration
measurements collected before the rotation manoeuvre started
can also be used to acquire an approximation of the range
that is used for vertical normalisation. A similar classification



Fig. 5. Total hit rate of a multilayer feedforward network depending
on the number n of hidden neurons. The input layer contains 32 neurons
corresponding to the mean and standard deviation of the readings of the left-
and rightmost sensor.

performance as obtained after vertical normalisation can thus
be expected for real world applications where the robot
collects gas sensor readings on its way to inspected objects.

V. RESULTS

At each of the gas source positions indicated in Fig. 2, four
experiments were carried out at four different directions (north,
east, south, west) and three different distances ∆d, alternating
with four experiments in the direct vicinity of the gas source
(see Fig. 2). Thus, a total of N = 3 × 4 × 4 × 3 × 2 = 288
declaration trials were performed including 144 trials (50%)
in the immediate vicinity of the source (d = d0) and 144
experiments (50%) at a larger distance of d = d0 + ∆d with
∆d ≥ 60 cm. Using the obtained data set, the two pattern
recognition algorithms were evaluated by means of 5-fold
cross-validation. In order to increase the accuracy of the
evaluation, the hit rate (the percentage of correctly classified
examples) was calculated by averaging over fifteen 5-fold
cross-validation runs.

A. Artificial Neural Network

One way to solve non-linear classification problems is
provided by artificial neural networks. Here, a multilayer
feedforward (MLFF) network with a sigmoidal activation
function was used, containing an input layer with Nin = M × 8
or M × 16 neurons, an output layer of one unit and a hidden
layer with a variable number of n ∈ [1,Nin] neurons. The
achieved classification rate, however, was found to reach an
approximately stable level below n ≈ 8 hidden neurons. This
can be seen in Fig. 5, which shows the hit rate depending on
the number of hidden neurons using the mean and standard
deviation of the two outermost sensors as a 32-dimensional
feature vector. Training was performed using conjugate gradi-
ent descent [25] with 100 training cycles and a weighting of
α = 0.1 for the momentum term, which was found to yield
good results in initial tests. The weights were initialised with
a randomly chosen set of values at the beginning of each run.

B. Support Vector Machine

Support Vector Machines (SVM) [26] have become es-
tablished during the recent years as a major state-of-the-art
classification method. The main idea is to construct a so-
called optimal separating hyperplane between two classes A
and B, which maximises the margin between the convex hulls
of A and B. It is understood that a larger margin leads to a
better generalization performance of the SVM [27]. Learning
thus corresponds to a dual optimisation problem, for which
a unique and global optimal solution can be obtained by
quadratic programming. If A and B are not linearly separable,
the so called kernel trick is applied. All input patterns are
mapped via a nonlinear function Φ into a high dimensional
feature space where the problem is linearly separable again.
It is, however, usually not necessary to perform this transfor-
mation directly. Instead, the kernel function k can be used,
which can be thought of a similarity measure between two
patterns x and y, representing a dot product in feature space.
As a popular kernel function the radial basis function is used
here as

kγ(x,y) = exp(−‖x− y‖2

γ2 ). (3)

In order to find suitable learning parameters, a grid search was
carried out in the two-dimensional search space spanned by the
kernel parameter γ and the parameter C that determines the ex-
tent to which outliers are penalised. At this, 2205 points were
sampled for each set of feature vectors at γ = 2−3,2−2.75, ...,28

and C = 2−6,2−5.75, ...,26, which is the parameter range where
all the optimal combinations were found in initial tests.

Corresponding results are itemised in Table I, which shows a
comparison of the classification performance achieved with the
artificial neural network and the support vector machine. The
first two columns specify the used feature vector, including the
considered sensors and statistical moments (mean “µ” and/or
standard deviation “σ”). Then, the best result in terms of
maximum hit rate (HR) obtained with a MLFF neural network
(third and fourth column) and the support vector machine (fifth
and sixth column) is given. In addition, the corresponding
average cross-validation rate of false positives (FP) and false
negatives (FN) is also itemised. Finally, the corresponding

∆dns
min = 60 cm MLFF neural network SVM

Sensors Features n∗ HR (FP, FN)[%] C∗,γ∗ HR (FP, FN)[%]

µ (8) 6 75.7 (22.5, 26.1) 21.25,23.25 77.1 (24.5, 21.3)

σ (8) 8 75.5 (20.3, 28.7) 2−0.25,24.75 77.1 (25.4, 20.3)

µ, σ (16) 9 75.6 (22.5, 26.3) 28.25,24.5 78.1 (13.6, 30.2)

µ (16) 16 76.8 (19.9, 26.4) 24.25,24 80.0 (15.1, 24.9)

σ (16) 13 76.3 (20.4, 27.0) 23.25,21 78.3 (26.4, 17.1)

µ, σ (32) 13 80.6 (19.5, 19.4) 23.75,2−0.25 83.0 (19.0, 15.0)

µ (24) 16 82.7 (16.3, 18.4) 25.5,22.5 87.5 (10.3, 14.8)

σ (24) 23 80.8 (15.6, 22.7) 25,20.5 83.4 (18.7, 14.5)

µ, σ (48) 24 84.1 (14.9, 16.9) 26.75,20.5 86.4 (10.1, 17.2)

TABLE I: Comparison of the classification performance obtained with a

MLFF network and the SVM for an average distance of 80 cm of negative

examples from the source.



parameters for which the best classification performance was
achieved (the number of hidden neurons n∗ in the case of the
MLFF network and the penalty and kernel parameter (C∗,γ∗)
in the case of support vector machines) are also given.

With optimised learning parameters the support vector ma-
chine always yielded slightly better results compared to the
MLFF neural net that was used in this investigation. The
highest total hit rate of 87.5% was achieved with the SVM
using the mean values of the three considered gas sensors as
a feature vector.

VI. CONCLUSIONS

This paper is concerned with the task of gas source declara-
tion. It introduces a classification method based on gas sensor
readings only. In order to decide whether a gas source is in the
direct vicinity, the robot collects gas sensor readings while it
performs a rotation manoeuvre in front of a suspected object.

For the chosen average distance of 80 cm between positive
and negative examples, a maximum hit rate of 87.5% could
be achieved using a support vector machine, whereas the
cross-validation rate of false positives was 10.3% and the
rate of false negatives was 14.8%. This performance could
be improved by combining single predictions obtained from
data recorded at different positions. One possibility would be
to repeat the rotation maneouvre three times at a different
orientation with respect to the source and to use the majority
vote as the new prediction. Thus, a majority vote is guaranteed
while single estimates can be assumed to be independent due
to the different direction of the convective airflow at different
orientations of the robot in relation to the gas source. Under
the assumption of independent estimates, such a combined
classifier would yield a total hit rate of 95.6% (FP = 3.0%,
FN = 5.9%). Moreover, it is expected, that the classification
performance could be improved by using multiple series of
measurements recorded at different positions (as one feature
vector), because in this way the difference between the sensor
response at the downstream and upstream side of the gas
source could also be used for classification. Our ongoing work
is concerned with this issue. Future work will also address the
performance of online classification methods (using horizontal
normalisation) and the dependance of the classification rate on
the chosen distance from the gas source between positive and
negative examples.
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