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Sand 1, 72074 Tübingen, Germany
ulmerh,streiche,zell@informatik.uni-tuebingen.de,
http://www-ra.informatik.uni-tuebingen.de

Abstract. Evolutionary Algorithms (EA) are excellent optimization tools for com-
plex high-dimensional multimodal problems. However, they require a very large
number of problem function evaluations. In many engineering optimization prob-
lems, like high throughput material science or design optimization, a single fitness
evaluation is very expensive or time consuming. Therefore, standard evolutionary
computation methods are not practical for such applications. Applying models as
a surrogate of the real fitness function is a quite popular approach to handle this
restriction. We propose a Model Assisted Evolution Strategy (MAES), which uses a
Gaussian Process (GP) approximation model. The purpose of the Gaussian Process
model is to preselect the most promising solutions, which are then actually evalu-
ated by the real problem function. To refine the preselection process the likelihood
of each individual to improve the overall best found solution is determined. Nu-
merical results from extensive simulations on high dimensional test functions and
one material optimization problem are presented. MAES has a much better con-
vergence rate and achieves better results than standard evolutionary optimization
approaches with less fitness evaluations.

1 Introduction

Evolution Strategies (ES) are one class of Evolutionary Algorithms (EAs)
which are often used as optimization tools for complex high dimensional mul-
timodal problems [8] [9]. In contrast to other EAs like Genetic Algorithms
or Genetic Programming ES work directly on real valued objective variables,
which represent a possible solution. Therefore ES are very suitably for many
engineering optimization problems.
However, like other population based EAs ES require a very high number of
fitness function evaluations to determine an acceptable solution. In most real
world engineering optimization applications the process of fitness evaluation
is very expensive and time consuming. Therefore standard ES methods are
not practical for such applications.
A promising approach to handle this problem is the application of modeling
techniques, where a model evaluation is orders of magnitude cheaper than
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a real fitness function evaluation. A model is trained on already evaluated
fitness cases and is used to guide the search for promising solutions. This
approach decreases the number of expensive fitness evaluations and has a
better convergence rate. The application of modeling techniques in evolu-
tionary computation receives increasing attention [7] [2] [3] [10]. A survey on
this research field can be found in [6].
The remainder of this paper is organized as follows: Section 2 introduces the
synthesis of the Gaussian Process (GP) fitness approximation model with
a standard ES. The GP model is utilized to assist the ES by selecting the
most promising solutions of an offspring population to be evaluated by the
real fitness function. Numerical results from extensive simulations on high
dimensional artificial test functions and one material optimization task are
presented and discussed in section 3. The paper closes with a brief conclusion
and outlook on future work.

2 GP Model Assisted Evolution Strategy

For the approximation of the fitness function we chose Gaussian Processes
(GP), which are general and proper real valued function approximators, espe-
cially for noisy training data. A detailed description is given in [4]. Compared
to other models like artificial neural networks GP are probabilistic models,
which have the advantage of providing a confidence value given by the stan-
dard deviation σ for the predicted fitness value t without additional com-
putational cost. Moreover GP are stable against overfitting and have only a
limited number of model parameters, which have to be chosen by the user.
[9]. We start our consideration with a standard (µ, λ) ES, which will be later
coupled with the GP model. An ES works on a population of potential so-
lutions x (individuals) by manipulating these individuals with evolutionary
operators [8]. By applying the evolutionary operators reproduction, recombi-
nation and mutation (see pseudocode in Figure 1) λ offspring individuals are
generated from µ parents. After evaluating the fitness of the λ offspring in-
dividuals, µ individuals with the best fitness are selected by a (µ, λ) strategy
to build the parent population for the next generation. The algorithm ter-
minates when a maximum number of fitness function evaluations have been
performed.
To incorporate the approximation model into the ES we use a pre-selection
concept similar to the one described by Emmerich et al. [3]. Compared to the
standard ES λPre > λ new offspring individuals are created from µ parents
(see pseudocode in Figure 2). These λPre individuals have to be pre-selected
to generate the offspring of λ individuals, which will be evaluated with the
real fitness function. The model is trained at the beginning with a randomly
created initial population and is updated after each generation step with λ
new fitness cases. The key point of our approach is the pre-selection proce-
dure. Using the mean of the model prediction to identify the most promising
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Procedure ES

Begin

eval=0;

Pop=CreateInitialPop();

Pop.EvaluateRealFitness();

while (eval<maxeval);

Offspring=Pop.Reproduce(λ);
Offspring.Mutate();

Offspring.EvaluateRealFitness();

Pop=Offspring.SelectBest(µ);
eval=eval+λ;

end while

End

Fig. 1. Standard (µ, λ) Evolution Strategy
(ES).

Procedure MAES

Begin

eval=0;

Pop=CreateInitialPop();

Pop.EvaluateRealFitness();

Model.update(Pop);

while (eval<maxeval);

PrePop=Pop.Reproduce(λPre);

PrePop.Mutate();

PrePop.EvaluateWithModel();

Offspring=PrePop.SelectBest(λ);
Offspring.EvaluateRealFitness();

Model.update(Offspring);

Pop=Offspring.SelectBest(µ);
eval=eval+λ;

end while

End

Fig. 2. Model Assisted Evolution Strategy
(MAES).

individuals leads to premature and suboptimal convergence rate on multi-
modal problems with many misleading local minima, because individuals
with a better model prediction are preferred to others and therefore have a
lower probability to escape from these minima.

Fig. 3. The gray filled area represents
the probability that a model output
value t is sampled at point x�, which
is smaller than fmin (POI).
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Fig. 4. Areas with a higher POI crite-
rion have a higher probability to sam-
ple a data point with a target value
smaller than fmin.

To address this problem we use a new pre-selection criterion, which utilizes
the model confidence given by the GP model as the standard deviation σ(x).
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The idea is not new in the field of global optimization [1], but new in the
context of evolutionary optimization. The concept is illustrated in Figure
3. At any given point x, we model the uncertainty about the model value
prediction by considering this value to be like the realization of a random
variable Y (x) with mean t̂(x) and standard deviation σ(x).
Let fmin = min(t1, ..., tN) be the current best fitness value sampled until now,
then the target value for the improvement will be some number T ≤ fmin. The
Probability Of Improvement (POI) is simply the probability that Y (x) ≤ T .
Assuming the random variable is normal distributed, this probability is given
by

POI(x) = Φ

(
T − t̂(x)

σ(x)

)
(1)

where Φ(·) is the normal cumulative distribution function. Figure 4 shows the
characteristics of the POI selection criterion. Areas with a high POI have a
high probability to sample a data point with a target value smaller than fmin

and are therefore more promising. Areas with model prediction t̂(x) >> fmin

have a low probability of improvement POI ≈ 0. As the function is sampled
more and more around the current best point, the standard deviation in this
area decreases. The term T−t̂(x)

σ(x) becomes extremely negative and POI will
be so small that the algorithm is driven to search elsewhere in unexplored
areas where the standard deviation is higher. Therefore POI prefers unex-
plored areas of object space and has a multimodal characteristic. Note, that
the maximal POI value may have another location in object space than the
minimal model output value. The individuals xi, i = 1, .., λPre with the high-
est POI(x) are pre-selected to build the new offspring.

The size of the pre-selected population λPre controls the impact of the
model on the evolutionary optimization process. For λPre = λ, the algorithm
performs like a standard (µ, λ) ES. Increasing λPre results in a larger selection
pressure in the pre-selection and in a stronger impact of the model on the
convergence behavior of the optimization process.

3 Experimental results and discussion

To analyze the algorithms extensive numerical simulations were performed
for 5 artificial test functions and one material optimization problem. For each
case the standard (µ, λ)-ES algorithm is compared with the new (µ, λ)-MAES
algorithm for population size (µ = 5, λ = 35).
The size of the pre-selected population λPre was set to 3λ. We used Co-
variance Matrix Adaption (CMA) developed by Hansen et al.[5], which is a
powerful method for adaption of the mutation step size. For all simulations
no recombination was used and the initial population size was set to 10.
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The training data for the GP model consisted of the 2λ most recently per-
formed fitness evaluations. For this reason the model is a local model of the
individual’s neighborhood in object space. Using more training data improves
the performance only slightly but results in with much higher computational
costs for model training.
The values are always evaluated as the mean of 100 repeated runs with dif-
ferent seed values for random number generation.
The Sphere function fSphere(x) =

∑20
i=1 x2

i is a nonlinear and unimodal test
function which is a good test for the self-adaptation mechanism of ES.
The MAES (see Figure 5) shows a better convergence rate and outperforms
the standard ES clearly. It reaches 10 times better fitness values after 5000
evaluations. Comparable results are obtained with several other unimodal
functions. In Figure 6 results are presented for the Schwefel 1.2 test function:

fSchwefel(x) =
∑20

i=1

(∑i
j=1 xj

)2

.
The Rosenbrock function (2) is nonlinear, continuous and not symmetric.

Fig. 5. 20-dim. Sphere function: fitness
of best individual.

Fig. 6. 20-dim. Schwefels’s function
1.2: fitness of best individual.

fRosen(x) =
20∑

i=1

(100 · (xi+1 − xi)2 + (xi − 1)2) (2)

It is a very popular test function and has a very hard to find global optimum.
Figure 7 shows that MAES reaches better fitness values than the standard
ES. These results justifies the motivation of the model assisted approach to
support the algorithm by identifying the most promising individuals.
Multimodal functions evoke hills and valleys, which are misleading local op-
tima. A simple optimization algorithm like hill-climbing would get stuck in
a local minimum. For such problems evolutionary algorithms are much more
appropriate.
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Ackley’s test function (3) is symmetric and very bumpy.

fAck(x) = 20 + e− 20 exp

−0.2 ·
√√√√ 1

20
·

20∑
i=1

x2
i

− exp

(
1
20

20∑
i=1

cos (2πxi)

)
(3)

Its number of local minima increases exponentially with the problem dimen-
sion and has a global optimum with very strong local features. Here MAES
converges faster than the standard ES (see Figure 8). Comparable results are
obtained for Rastrigin’s test function (3) (see Figure 9).

fRast (x) = 10 · 20 +
20∑

i=1

(x2
i − cos (2πxi)) (4)

Fig. 7. 20-dim. Rosenbrock function:
fitness of best individual.

Fig. 8. 20-dim. Ackley’s function: fit-
ness of best individual.

The last presented result shows the application of the new MAES algo-
rithm on a real world engineering optimization. Here the task is to optimize
certain chemical catalytic properties of solid state samples created by a high
throughput process. The objective function of the problem is modeled by a
artificial neural network with data from already performed experiments and
depends on 6 input variables, which describe the synthesis of the samples.
The MAES algorithm outperforms the standard ES (see Figure 10). From the
beginning MAES has a higher convergence rate and yields better solutions.
It clearly yields better solutions with less fitness function evaluations. For
example MAES reaches 2 times better solutions after 400 evaluations than
the standard ES. Therefore MAES halves the costs of optimization for this
application.
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Fig. 9. 20-dim. Rastrigin’s function:
fitness of best individual.

Fig. 10. 6-dim. Material optimization:
fitness of best individual.

4 Conclusions

We applied a Gaussian Process as an approximation model to assist a stan-
dard ES by using the GP to pre-select the most promising individuals to be
evaluated by the real fitness function.
The pre-selection procedure is given by the Probability Of Improvement
(POI) pre-selection criterion. POI addresses the tradeoff between exploita-
tion and exploration by utilizing the probabilistic interpretation of the GP
model. This is done by evaluating the likelihood of each individual to improve
the overall best solution.
Extensive simulations on artificial test functions showed that this approach
enhances the performance of a standard ES on unimodal and multimodal
problems. MAES has a higher convergence speed and is much more stable
against premature convergence for multimodal problems. This is reasonable,
because the MAES with POI pre-selection criterion has a higher tendency to
sample in unexplored areas.
For a material optimization problem MAES yields the same solution qual-
ity with half the function evaluations and achieves overall better solutions.
Therefore the application of MAES halves the costs compared to the stan-
dard ES method. These encouraging results justify the application of MAES
in the field of engineering optimization applications where problem evalua-
tions are very costly.
For further work it is planned to develop a mechanism which controls the im-
pact of the approximation model on the optimization process by controlling
λPre. This can be carried out by using the confidence of the approximation
model.
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