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Abstract- In many engineering optimization problems,
the number of fitness function evaluations is limited by
time and cost. These problems pose a special challenge
to the field of evolutionary computation, since existing
evolutionary methods require a very large number of
problem function evaluations. One popular way to ad-
dress this challenge is the application of approximation
models as a surrogate of the real fitness function. We
propose a model assisted Evolution Strategy, which uses
a Gaussian Process approximation model to pre-select
the most promising solutions. To refine the pre-selection
process we determine the likelihood of each individual
to improve the overall best found solution. Due to this,
the new algorithm has a much better convergence be-
havior and achieves better results than standard evolu-
tionary optimization approaches with less fitness evalu-
ations. Numerical results from extensive simulations on
several high dimensional test functions including multi-
modal functions are presented.

1 Introduction

Evolution Strategies (ES) are excellent optimization tools
for complex high dimensional multimodal real valued prob-
lems [10] [11]. However, like other population based algo-
rithms they require a very high number of fitness function
evaluations. In most real world applications the process of
fitness evaluation is very expensive and time consuming.
Therefore standard ES are not practical for such applica-
tions.
A promising approach to handle this problem is the appli-
cation of modeling techniques, where a model evaluation
is orders of magnitude cheaper than a real fitness function
evaluation. A model is trained on already evaluated indi-
viduals and is used to guide the search for promising solu-
tions. This approach decreases the number of expensive fit-
ness evaluations, which results in a better convergence rate
of the algorithm.

The application of modeling techniques in evolutionary
computation receives increasing attention [7] [2] [3]. A
survey on this research field can be found in [8] and [6].
Two major points have to be considered:

� Model Selection: The selection of an appropriate
model to approximate the fitness function is a cen-
tral point. Neural networks [7] [9] are widely used
for function approximation and are therefore used
for modeling in evolutionary optimization. Gaussian
Processing [2] and Kriging [3] are statistical model-
ing techniques which are also used for fitness function
approximation.

� Model Management: The coupling of the model
used with the evolutionary algorithm controls how
the optimization process is affected by replacing the
expensive real fitness evaluation by the approxima-
tion of the model.
The adaptive evolution control concept [7] controls
the impact of the model on the evolutionary optimiza-
tion process. The Metamodel-Assisted Evolution
Strategy (MA-ES) [3] uses the estimation of the
model to pre-select the most promising individuals
before applying the expensive real fitness function.
Another approach is to use the confidence criterion
given by statistical models like Kriging [3] or
Gaussian Processing [2] to control the interaction of
the model with the evolutionary optimization process.

Concerning model management, in our opinion the key
issue of using approximation models for evolutionary com-
putation lies in the tradeoff between the exploitation of the
approximation model by sampling where it is optimized and
the need to improve the approximation model by sampling
where the model confidence is low. In this work we try to
address this tradeoff by introducing a model management
approach, which takes both necessaries into account.

The remainder of this paper is organized as follows: We
first describe the modeling technique of Gaussian Process
(GP) approximation, which is used to approximate the ex-
pensive real fitness function and provides also information
about the model confidence in section 2. Section 3 intro-
duces the synthesis of the approximation model with a stan-
dard ES. The GP model is utilized to assist the ES by select-
ing the most promising solutions of an offspring population
to be evaluated by the real fitness function.
We analyse the impact of the GP model on the evolutionary
optimization process and introduce two different search cri-



teria to identify the most promising solutions.
Numerical results from extensive simulations on several
high dimensional test functions are presented and discussed
in section 4. The paper closes with a brief conclusion and
outlook on future work.

2 Fitness Approximation with Gaussian Pro-
cesses

For the approximation of the fitness function we chose
Gaussian Processes (GP), which are known to be general
and proper real valued function approximators, also for
noisy training data. A detailed description is given in [4].
Compared to other models like artificial neural networks
or RBF-networks GP are probabilistic models, which have
the advantage of providing a confidence value given by
the standard deviation � for the predicted fitness value �
without additional computational cost. Moreover GP is
stable against overfitting and has only a limited number of
model parameters, which have to be chosen by the user.

Consider a �-dimensional real valued problem with
scalar fitness function �����, which is to be minimized.
As stated in the introduction, an approximation model is
needed to predict the fitness of an individual ��.
Given a training data set � consisting of � fitness cases
����� ������� for � � �� 		� � , we want to predict the target
���� at new data points ����� 
� �.
This is done in the GP framework by evaluating the condi-
tional distribution of the prediction ����. A Gaussian Pro-
cess is a collection of samples ��� � ���� ��� 			� �� �, which
has a joint distribution,
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which evaluates the components of the covariance matrix
�.

The covariance function describes the correlation be-
tween the � already evaluated fitness cases. The parameter
�� scales the correlation between two data points and ��

sets the noise level. The radii �� for � � �� 		� � provide a
distinct distance measure for each input dimension. For ir-
relevant inputs of dimension �, the corresponding � � will be
large and the GP will ignore this input dimension.
Let us assume vector ��� of targets to be a Gaussian Process
with covariance matrix �� and mean  � 	 (for properly
normalized data), then the conditional Gaussian distribution

over ����� � ���� � ����� can be expressed as:
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With autocorrelation � � �������� �����
 �� of the
new data point ����� and correlation vector ����� �
������� �����
 ��� 			� ����� � �����
 ���. ����� is the mean
of the prediction at ����� and ���� is the standard devi-
ation of ���� and describes the model confidence at this
point �����.
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Figure 1: GP model trained on 8 data points given by a
1-dim. sinus target function (real fitness function). Unex-
plored areas of object space with less training data inputs
have a bigger standard deviation than explored ones.

The �� � hyperparameter set ��� 		� �������� are eval-
uated by maximisation of the posterior probability of the
hyperparameter using Bayes’s theorem. In general this is
carried out using a gradient-based optimizer [4].
Figure 1 shows a 1-dimensional example of a trained GP
model.



3 GP Model Assisted Evolution Strategy

We start our consideration with a standard �� �� ES, which
will be later coupled with the GP model.

3.1 Standard �� �� Evolution Strategy ES

An ES works on a population of potential solutions �� (indi-
viduals) by manipulating these individuals with evolution-
ary operators [10] [11].
� offspring individuals are generated from  parents by

Procedure ES
Begin
eval=0;
Pop=CreateInitialPop();
Pop.EvalRealFitness();
while (eval<maxeval);
Offspring=Pop.Reproduce(�);
Offspring.Mutate();
Offspring.EvalRealFitness();
Pop=Offspring.SelectBest();
eval=eval+�;

end while
End

Figure 2: Standard �� �� Evolution Strategy (ES).

applying the evolutionary operators reproduction, recombi-
nation and mutation (see pseudocode in Figure 2).

After evaluating the fitness of the � offspring individ-
uals,  individuals with the best fitness are selected by a
�� �� strategy to build the parent population for the next
generation.
On the other hand, a � � �� strategy selects the best 
individuals from the aggregation of parents and offspring
individuals.
The algorithm terminates when a maximum number of
fitness function evaluations have been performed.

3.2 Model Assisted Evolution Strategy MAES

To incorporate the approximation model into the ES we use
a pre-selection concept similar to the one described by Em-
merich et al. [3]. Compared to the standard ES ���� � �
new offspring individuals are created from  parents (see
pseudocode in Figure 3). These ���� individuals have to
be pre-selected to generate the offspring of � individuals,
which will be evaluated with the real fitness function. The
model is trained at the beginning with a randomly created
initial population and is updated after each generation step
with � new fitness cases.

Procedure MAES
Begin
eval=0;
Pop=CreateInitialPop();
Pop.EvalRealFitness();
GPModel.update(Pop);
while (eval<maxeval);
Offspring=Pop.Reproduce(����);
Offspring.Mutate();
Offspring.SetPreSelectionCriterion();
Offspring=Offspring.SelectBest(�);
Offspring.EvalRealFitness();
GPModel.update(Offspring);
Pop=Offspring.SelectBest();
eval=eval+�;

end while
End

Figure 3: GP Model Assisted Evolution Strategy (GP
MAES). The MAES can be easy developed by expanding
the standard ES with the bold marked lines.

The pre-selection concept is comparable with the task of
Active Learning, which has been widely studied in the field
of neural network computing. The basic idea is to select an
individual or sample in such a way that an objective function
is optimized. Several objective functions as selection crite-
rion are known. But all approaches are based on the same
ideas, that this criterion should represent the quality of the
individual and only the most promising individuals should
be selected to be later evaluated with the fitness function.
We investigate here two different selection criteria:

3.2.1 Mean of Model Prediction (MMP)

The motivation of this criterion is straightforward, very sim-
ple and often used in other work. The ���� possible can-
didates are pre-evaluated using the mean of the prediction
given by the GP model. The individuals �� �, � � �� 		� ����
with the best mean predicted fitness ������ are pre-selected
to generate the new offspring. The approximation model
is used directly as a surrogate of the real fitness function,
which should lead to a decrease in the number of fitness
evaluations [3].

3.2.2 Probability of Improvement (POI)

Using only the mean of model prediction �� to identify the
most promising individuals comes along with one major
drawback.
On multimodal problems with many misleading local min-
ima MMP leads to premature and suboptimal convergence,
because individuals with a better model prediction are



Figure 4: Illustration of the POI concept based on the same
data as in Figure 1. The gray filled area represents the prob-
ability that a model output value � is sampled at point �	,
which is smaller than �
��.

preferred to others and therefore have a lower probability
to escape from these minima.
One approach to address this problem is to use the standard
deviation � of the model output to prefer unexplored areas
by defining the objective function �� � ������ � ������,
which has to be minimized [12]. � scales the impact of
the standard deviation. The major drawback of this idea
is to find an appropriate �, because the performance of
this approach is highly dependent on � especially for high
dimensional problems.
For this reason we introduce a new pre-selection criterion,
which utilizes also the model confidence given by the GP
model and has no parameter selection problem. The idea is
not new in the field of global optimization [1], but new in
the context of evolutionary optimization.

The concept is illustrated in Figure 4. At any given point
��, we model the uncertainty about the model value predic-
tion by considering this value to be like the realization of a
random variable � ���� with mean ������ and standard devia-
tion �����.
Let �
�� � ������� 			� �� � be the current best until now
sampled fitness value, then the target value for the im-
provement will be some number � � �
��. The proba-
bility of improvement (POI) is simply the probability that
� ���� � � . Assuming the random variable is normal dis-
tributed, this probability is given by

������� � �

�
� � ������
�����

�
(7)

where ���� is the normal cumulative distribution function.

Figure 5 shows the characteristics of the POI selection
criterion. Areas with a high POI have a high probability
to sample a data point with a target value smaller than
�
�� and are therefore more promising. Areas with
model prediction ������ �� �
�� have a low probability
of improvement ��� � 	. As the function is sampled
more and more around the current best point, the standard

deviation in this area decreases. The term �������
���� becomes

extremely negative and POI will be so small that the
algorithm is driven to search elsewhere in unexplored
areas where the standard deviation is higher. Therefore
POI prefers unexplored areas of object space and has a
multimodal characteristic. Note, that the maximal POI
value has another location in object space than the minimal
model output value. The individuals �� �, � � �� 		� ����
with the highest ������� are pre-selected to build the new
offspring.
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Figure 5: Characteristics of the POI criterion based on the
same data as in the former figures. Areas with a higher POI
have a higher probability to sample a data point with a target
value smaller than �
��.

The size of the pre-selected population ���� controls the
impact of the model on the evolutionary optimization pro-
cess. For ���� � � the algorithm performs like a stan-
dard �� �� ES. Increasing ���� results in a bigger selection
pressure in the pre-selection and in a stronger impact of the
model on the convergence behavior of the optimization pro-
cess.



4 Experimental results and discussion

To analyze the performance of the algorithms extensive sim-
ulations were performed for several well known real valued
unimodal and multimodal test functions. For each test func-
tion the following algorithms were compared:

� Standard �� ��-ES

� �� ��-MAES with MMP pre-selection

� �� ��-MAES with POI pre-selection

For the model assisted algorithms the size of the pre-
selected population ���� was set to �. Throughout our
study we used Covariance Matrix Adaption (CMA) devel-
oped by Hansen et al. [5], which is still the most powerful
method for adaption of the mutation step size. For all simu-
lations no recombination was used and the initial population
size was set to 10.

The model was built in all cases by the GP as in section
2 described. The training data for the GP model consisted
of the �� most recently performed fitness evaluations.
For this reason the model is a local model of the individ-
ual’s neighborhood in object space. Using more training
data improves the performance only slightly but results
in with much higher computational costs for model training.

The values are always evaluated as the mean of 100
repeated runs with different seed values for random number
generation.

4.1 Unimodal Test Functions

The Sphere function (A.1) is a nonlinear, continuous,
convex, smooth function, which is an easy test for the
self-adaptation mechanism of ES.

The standard ��� �	) ES has the worst performance
(see Figure 6). Both model assisted approaches improve
the convergence speed of the standard ES. MMP has the
highest convergence speed and performs better than POI.
This can be explained due to the higher tendency of POI to
sample in unexplored areas (see Figure 5), which bothers
the convergence for unimodal problems with constant
search direction. However POI outperforms the standard
ES clearly.

The same observations are obtained with several other
unimodal functions. We present the results in Figure 7 for
one more unimodal function, which is given by Schwefel’s
function 1.2 (A.2)

Figure 6: 20-dim. Sphere function: fitness of best individual
(	 � �, 
 � ��).

Figure 7: 20-dim. Schwefel’s function 1.2: fitness of best
individual (	 � �, 
 � ��).

Figure 8: 20-dim. Step function: fitness of best individual
(	 � �, 
 � ��).



4.2 Multimodal Test Functions

Multimodal functions evoke hills and valleys, which are
misleading local optima. A simple optimization algorithm

Figure 9: 20-dim. Step function: fitness of best individual
(	 � �, 
 � �).

like hill-climbing would get stuck in a local minimum.
For such problems evolutionary algorithms are much more
appropriate. In general an ES needs a bigger population size
to manage multimodal problems compared with unimodal
problems. Therefore we present results for ��� �	� and
��� �� strategies.
The Step function (A.3) consists of flat plateaus with
slope=0 in an underlying continuous function. It is hard
to find the global optimum because minor changes of the
object variables do not affect the fitness. Therefore no
conclusions about the search direction are possible.

Figure 10: 5-dim Griewank function: fitness of best indi-
vidual (	 � �, 
 � ��).

Here the application of modeling results in an accel-
eration of the convergence velocity at the beginning of
the optimization process (Figure 8 and 9). For the ��� �	�
algorithms no strategy reliably reaches the global optimum
(note, that the figures show the mean from 100 runs of the
best individual). But POI achieves clearly the best results.

Due to the bigger population size the ��� �� algorithms
are more stable against premature convergence (Figure
9). It is remarkable that POI and standard ES are always
reaching the global optimum, but not the MMP algorithm.
Here the usage of MMP as pre-selection criterion increases
the probability of premature convergence. This observation
justifies the motivation of POI to sample also in unexplored
areas of the objective space.
Figure 10 and 11 shows the results for the Griewank func-
tion (A.4). Note, that compared to the other functions the
Griewank function has a stronger multimodal characteristic
for low dimensions than for high dimensions. POI also
reaches the best fitness values, but is not stable against
premature convergence.

Ackley’s test function (A.5) is symmetric and very
bumpy. Its number of local minima increases exponentally
with the problem dimension. Ackley’s function has a
global optimum with very strong local features. All ��� �	�
algorithms stagnate in local minima (Figure 12) like for
the Step function. POI achieves again here the best result
and MMP performs worse than the standard ES. When
applying a bigger population size ��� �� on Ackley’s
function (Figure 13) the standard ES and POI get stable
against premature convergence but the low performance of
MMP remains. POI has the best convergence speed.

Figure 11: 5-dim Griewank function: fitness of best indi-
vidual (	 � �, 
 � �).



The obtained results show, that the application of model
assistance by GP using only the simple pre-selection crite-
rion MMP on multimodal problems only worsens the per-
formance of the optimization algorithm. However the usage
of the more sophisticated POI pre-selection criterion leads
to a statistically significant performance enhancement.

Figure 12: 20-dim Ackley’s function: fitness of best indi-
vidual (	 � �, 
 � ��).

Figure 13: 20-dim Ackley’s function: fitness of best indi-
vidual (	 � �, 
 � �).

5 Conclusions

We applied a Gaussian Process as an approximation model
to assist a standard ES by using the GP to pre-select
the most promising individuals to be evaluated by the
real fitness function. We identified the tradeoff between
exploitation and exploration, which was investigated using
mean of model prediction (MMP) and the probability of

improvement (POI) as pre-selection criterion.

Extensive simulations showed that both approaches
enhance the performance of a standard ES on unimodal
problems and MMP performs slightly better than POI, due
to the higher tendency of POI to sample in unexplored areas.

On the other hand, for multimodal problems the usage of
the simple MMP pre-selection fails and leads to a decrease
in performance. In such cases the more sophisticated POI
pre-selection criterion succeeds, shows higher convergence
speed and is much more stable against premature conver-
gence. This is reasonable, because the POI addresses the
tradeoff between exploitation and exploration by utilizing
the probabilistic interpretation of the GP model. These
encouraging results of POI justify its application in the field
of model assisted ES.

For further work it is planned to develop a mechanism
which controls the impact of the approximation model on
the optimization process by controlling ����. This can be
carried out by using the confidence of the approximation
model.
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A Test Functions
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A.3 Step function
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A.4 Griewank function
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A.5 Ackley’s function
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and K. Giannakoglou. Metamodel-assisted evolution
strategies. In Parallel Problem Solving from Nature
VII, pages 362–370, 2002.

[4] M. Gibbs and D. MacKay. Efficient implementation of
gaussian processes. Technical report, Cavendish Lab-
oratory, Cambridge, UK, 1997.

[5] N. Hansen and A. Ostermeier. Convergence properties
of evolution strategies with the derandomized covari-
ance matrix adaptation: The �
�� ��-cma-es. In 5th
European Congress on Intelligent Techniques and Soft
Computing, pages 650–654, 1997.

[6] Y. Jin. A comprehensive survey of fitness approxi-
mation in evolutionary computation. Soft Computing
Journal, 2003. In press.

[7] Y. Jin, M. Olhofer, and B. Sendhoff. A framework
for evolutionary optimization with approximate fitness
functions. IEEE Transactions on Evolutionary Com-
putation. March 2002 (in press). (ISSN: 1089-778X),
2002.

[8] Y. Jin and B. Sendhoff. Fitness approximation in evo-
lutionary computing - a survey. In GECCO 2002 Pro-
ceedings of Genetic and Evolutionary Computation
Conference, pages 1105–1111, 2002.

[9] A. Ratle. Accelearating the convergence of evolution-
ary algorithms by fitness landscape approximation. In
A. Eiben et al, editor, Parallel Problem Solving from
Nature V, pages 87–96, 1998.

[10] I. Rechenberg. Evolutionsstrategie ’94. frommann-
holzboog, Stuttgart, 1994.

[11] H.-P. Schwefel. Numerische Optimierung von
Computer-Modellen mittels der Evolutionsstrategie.
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