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Abstract. We propose a new niching method for Evolutionary Algo-
rithms which is able to identify and track global and local optima in
a multimodal search space. To prevent the loss of diversity we replace
the global selection pressure within a single population by local selection
of a multi-population strategy. The sub-populations representing species
specialized on niches are dynamically identified using standard cluster-
ing algorithms on a primordial population. With this multi-population
strategy we are able to preserve diversity within the population and to
identify global/local optima directly without further post-processing.

1 Introduction

In this paper we describe the Clustering Based Niching method (CBN) for Evo-
lutionary Algorithms (EA) to identify multiple global and local optima in a
multimodal search space. The basic idea was to transfer the biological concept
of non-interbreeding species living in separated ecological niches into EA to pre-
serve diversity in the EA population. One of our goals was to make the CBN
as independent of the underlying EA method as possible in such a way that it
can be applied to multiple EA methods and that the impact of the CBN on the
EA mechanism and the fitness function is as small as possible. Also, we aimed
for the CBN to have as few critical parameters as possible to allow black box
optimization.
In biology species have in common that they don’t interbreed anymore. Taking
into account that species in different ecological niches don’t compete for the same
resources, but evolve independently of each other. Using this property should be
the most natural way to create and maintain diversity in an EA population.
Our method to artificially create species in a primordial EA population is to
search for groups or clusters of EA individuals in the search space, which will
naturally occur due to the general convergence behavior of EA by the means of
clustering algorithms. These clusters can then be separated into isolated sub-
populations. Such a sub-population would represent a single species. Therefore,



individuals of different sub-populations do not compete with each other and
are not be allowed to interbreed. The individuals of a single sub-population
on the other hand do compete and breed like in any traditional EA and each
sub-population behaves like an EA converging to a global/local optimum. With
additional mechanisms to split sub-populations if necessary, dynamic special-
ization can occur. Merging species that become too similar will allow only one
sub-population per niche.
In Sec. 2 we give an overview over some niching EAs and multi-start algorithms
for multimodal search spaces. The algorithm for the Cluster Based Niching
method is given in Sec. 3, and in Sec. 4 results are presented comparing the CBN
with an Evolution Strategy (ES) to Multi-Start Hill-Climbing and an Evolution
Strategy with Fitness Sharing on several two-dimensional benchmark functions
and one n-dimensional benchmark function.

2 Related work

2.1 Niching Evolutionary Algorithms

Niching Evolutionary Algorithms (NEAs) try to identify as many optima as
possible, by preserving diversity within the EA population and by using this di-
versity as resource for exploratory crossover. Most NEAs are based on the idea
to preserve the diversity within the population by altering the EA operators to
prevent premature convergence to one optimum, like Fitness Sharing [7], Crowd-
ing [4] and Deterministic Crowding (DC) [10] and Tagging [1, Sec. 6.2.3]. Other
NEAs use a multi-population approach like the Multinational (MN) GA [19, 20]
and the Forking GA [18], which divide a primordial global EA population into
sub-populations with reduced interaction to preserve diversity above the level of
sub-populations.
The most common and best studied niching method, based on prevention of pre-
mature convergence, is Fitness Sharing by Goldberg and Richardson [7]. Sharing
adds a penalty to the fitness Φ(xi) of all individuals xi in the population P of
size µ that are too similar to another individual in respect of a given metric
‖xi, xj‖ between two individuals and the sharing distance σshare:

Φ′(xi) =
Φ(xi)∑µ

j=0
sh(xi, xj)

(1)

sh(xi, xj) =

{
1−

(
‖xi,xj‖
σshare

)
: if ‖xi, xj‖ ≤ σshare

0 : else
(2)

This penalty is intended to lead to an even distribution of the EA population
around promising areas in the search space and to prevent the overall conver-
gence of the whole population on one optimum. Unfortunately, there are several
drawbacks:

– There is a fixed σshare for all individuals. For multimodal optimization all
optima in the search space must be nearly equidistant.



– To set σshare a priori knowledge about the distribution of the optima and
their fitness is required, see for example [11].

– The population size is also dependent on a priori knowledge of the number
of optima, an example is given in [12].

– Using no or a bad scaling function on the fitness Φ can prevent the individuals
from finding the actual peak of the niche [3]. Alternatively, an additional
hill-climbing post-processing algorithm is needed to improve the results of
sharing, see [13].

Yin and Germay [21] introduced an Adaptive Clustering Algorithm (ACA) to
avoid the a priori estimation of σshare. Instead of the original sharing function
of equations (1) and (2) they used equations (3) and (4).

Φ′(xi) =
Φ(xi)

S(xi)
(3)

S(xi) = ncj
− ncj

·

(
‖xi, cj‖

2 · dmax

)α

, with xi ∈ Cj (4)

where α is a constant, ‖xi, cj‖ is the distance between the individual xi and
the centroid cj of the cluster Cj which xi belongs to, and ncj

is the number of
individuals associated with cluster Cj . The ACA is able to get rid of σshare by
applying the sharing function only within identified clusters, but introduces two
additional variables dmin and dmax, which define the minimum and the maxi-
mum radii of a cluster, which need to be set to reasonable values. Although Gan
and Warwick [6] extended the ACA by retaining the niches found by the ACA,
they did not implement a multi-population approach.
One multi-population approach is the Forking GA [18], which monitors a global
GA population for the occurrence of dominating schemes in the population. If
such a scheme occurs, a sub-population is created which includes all individuals
that meet the scheme and this sub-population continues the search in a subspace
of the original space reduced by the fixed elements of the scheme. The global
population continues the search in the original space but the already identified
schemes are forbidden.
The Multinational GA groups the individuals together into sub-populations
called nations [19, 20]. Each nation consists of individuals which are not sep-
arated by valleys of lower fitness in the search space. This is tested with the
’hill-valley’ function by evaluating several interpolating individuals between each
individual of the GA population. A valley would obviously separate different local
optima and therefore different nations. The Multinational GA is distinguished
from other NEAs by the fact that it is the only NEA known to us which actually
identifies the optima on the basis of the nations residing on them, without any
further post-processing.

2.2 Multi-Start Algorithms

Although the Multi-Start Hill-Climber (MS-HC) represents a rather primitive
technique it can become useful in simple and low dimensional multimodal search



spaces. The MS-HC performs several local HC searches in parallel, each one ini-
tialized randomly. A single HC will most likely converge to different global/local
optima depending on the initialization.
There is a high probability that several HC will converge toward the same local
optimum. To prevent this, Törn introduced the LC (multiple local searches with
clustering) algorithm [17]. After a number of parallel local search HC steps, he
applies a clustering algorithm and continues the local search with only one sam-
ple from each cluster. Hanagandi and Nikolaou applied the principles of the LC
algorithm on GA [8]. Here also the best individuals of each cluster survive, but
the rest is created by recombination and mutation of the surviving elite. The
Clearing Procedure by Petrowski uses the same approach [15].
Beasley et. al. proposed a Multi-Start GA, the Sequential Niching algorithm, for
the multimodal optimization problem [2]. The optimization result of each GA
run is stored as identified optimum and a penalty function is added permanently
to the fitness function to prevent the next run of the GA from finding the very
same optimum again. The shape and the radii of the penalty function are cru-
cial for this algorithm since it can add several artificial deceiving local optima
to the search space. However, the Sequential Niching yields the advantage that
the basic EA mechanisms remain unaltered.

3 Clustering Based Niching EA

To introduce the biological concept of species into NEA we combined two meth-
ods: First a multi-population strategy with localized selection and limited inter-
breeding between sub-populations (=̂species) and second the use of clustering
algorithms to identify species in an undifferentiated population. Both methods
have been successfully applied independently, but to our knowledge they have
not been merged into a single NEA approach so far.
The multi-population strategy has the advantage that it can preserve diversity
through localized competition, for example the selection from localized clusters
as performed by Hanagandi and Nikolaou, and localized interbreeding, compare
mating restriction [1, Sec. 6.2.4]. However, each sub-population still behaves like
a standard EA optimizer. This allows us to apply the full range of possible
EA extensions or specialized EA operators on the level of sub-populations, like
CMA [9] or MVA [14] mutation or even other NEA techniques like Fitness Shar-
ing within each sub-population.
The goal of clustering algorithms is to group data units into cluster in such a
way that units within a cluster are most similar while the clusters are relatively
distinct from each other. In our application the EA individuals xi are the data
units and the resulting clusters will represent the species/niches. Using cluster-
ing algorithms to identify species allows us to move all relevant parameters for
the niching behavior down to the clustering algorithm. There are numerous clus-
tering algorithms available for multiple data types and applications with varying
parameters requirements. We just need to choose the algorithm that yields the
best ratio between clustering behavior and number of necessary parameters.



3.1 The Multi-Population Strategy

We implemented a multi-population D0 = createInitialPop();

repeat {

// species evolution phase

for all i do simulateEAGeneration(Di);

// species differentiation phase

if (numOfClusters(D0) ≥ 1) split(D0);

for all (i>0) do {

if (numOfClusters(Di) > 1) split(Di);

D0.add(Di.getLoners());

}

// species convergence phase

TLP = createEmptyPop();

for all (i>0) do TLP.addCentroidOf(Di);

if (numOfCluster(TLP) ≥ 1) mergeDemes();

} until (maxGenerationReached());

Fig. 1. Pseudocode of CBN

strategy that starts with a randomized
single primordial undifferentiated popu-
lation D0 and allows differentiated sub-
populations(species) Di≥1 to be generated
dynamically. D0 plays the special role of
containing all individuals that do not be-
long to any identified species. While the
undifferentiated population D0 explores
the general search space, species Di≥1 ex-
ploit already identified niches.
After initialization of D0 the CBN-EA gen-
erational cycle is entered until an EA ter-
mination criterion is met, like maximum
number of generations reached or num-
bers of fitness evaluations, see Fig. 1.
First the species evolution phase is performed by simulating evaluation, se-
lection and reproduction independently for each population Di.
Then the species differentiation phase is entered: D0 is tested whether dif-
ferentiation occurs (numOfClusters(D0) ≥ 1). If clusters can be identified by
the clustering algorithm new sub-populations are created from the members of
the clusters. Then the clustering algorithm is called on all sub-populations Di≥1

to test if a species continues to differentiate further into new species which are
to be separated. On the other hand, if the clustering algorithm finds individuals
in Di≥1 that do not belong to any species (Di.getLoners()), those individuals
are moved to D0 as straying loners.
Finally, the species convergence phase is performed: All species Di≥1 add
a representative (e.g. a centroid) to a temporary population of representatives
(TLP). Clusters found in TLP indicate species that converge to the same niche
which are to be merged to join their effort.
Depending on the convergence speed of the EA method, multiple EA genera-
tional steps can be performed before applying the species differentiation and
convergence mechanisms. We found that early differentiation enables CBN to
identify more optima, as the standard EA convergence behavior would progres-
sively remove individuals located on unincisive local optima.
Merging of species that converge on the same niche will have the effect that
niches with a bigger basin of attraction will be populated by species with more
members. But this mechanism also guarantees, that if the CBN is converged
there exists at most one species per niche. This enables the CBN to identify
global/local optima directly, by returning just the best individual of each species.
It is necessary to note, that currently there is no crossover between species and
that there is no competition between species. We want to introduce these mech-
anisms to the CBN in the near future.



Fig. 2. Density-Based Cluster-Analysis Fig. 3. Clustered population on M2

3.2 The Clustering Algorithm

We decided to use the ‘density-based’ clustering algorithm by Sanders, Ester,
Kriegel and Xiaowei to identify species [5, 16]. This clustering algorithm identifies
clusters by connecting individuals if the distance ‖xi, xj‖ between them is lower
than a given threshold value σdist. All interconnected groups of individuals,
whose group size exceeds a minimum value MinPts are identified as cluster. Fig.
2 gives an example what kind of clusters can be identified by the ‘density-based’
clustering algorithm using MinPts = 4.
The ‘density-based’ clustering algorithm offers several advantages:

– it allows clusters of varying size and shape,
– it can identify clusters of a priori unknown number,
– the algorithm allows for loners which do not belong to any species, indicated

as small dots in Fig. 2,
– it requires only two parameters that are easy to interpret.

Since MinPts gives the minimum size of a cluster it also gives the minimum size
of a sub-population. And the minimum size of a sub-population can be chosen a

priori not depending on the problem but on the EA method used. Small values
for MinPts will be sufficient for mutation oriented EA methods like ES but larger
values will be necessary for crossover based EA methods like GAs.
The parameter σdist is not as easy to select. It gives a lower bound, below which
two optima can not be distinguished, because the clustering algorithm is not
able to separate the clusters.
Fig. 3 gives an example for a clustered ES population with MinPts = 2 using
an euclidean distance metric. Note that although an individual is located on the
local optimum in the lower right corner, no species can be established. To increase
the stability of identified species the mutation step size must be of the same order
of magnitude as σdist. Otherwise individuals leave and enter species randomly
simply because of mutation. Therefore, we currently limit the ES mutation step
size to σdist, if an individual belongs to a species. This constraint can be removed,
if the individual returns to D0 as a loner.



4 Results

We compared the CBN on five multimodal benchmark functions, given in the
Appendix, to Fitness Sharing (FS) and a Multi-Start Hill-Climber (MS-HS).
Since we used real-valued benchmark functions we decided to apply Evolution
Strategies (ES). We used a (60 + 120)-ES with best selection scheme simulated
for T = 100 generations. For the CBN we used MinPts = 2 as minimum clus-
ter size. To increase the performance of the FS-ES and to avoid the problem of
finding a suitable scaling function, we used a hill-climbing post-processing step
start at T = 70 but only for the FS-ES. The MS-HC was simulated by 120
independent (1+1)+ES trials with a fixed mutation rate σmut.
The performance of the algorithms is measured by the number of optima each
algorithm found, averaged over 25 runs. An optimum oj was considered ‘found’
if ∃ xi ∈ Pt=T | ‖xi, oj‖ ≤ ε = 0.005, where Pt=T is the complete population at
the end of each run and xi an individual in Pt=T .
We applied all three algorithms on a normalized search space and varied a ‘reso-
lution’ parameter to find the best parameter settings for each algorithm. In case
of the MS-HC ‘resolution’ represents the fixed mutation rate σmut, for the FS-ES
the parameter gives the critical value of σshare and for the CBN the ‘resolution’
gives the σdist of the ‘density-based’ clustering algorithm.

4.1 Two Dimensional Benchmark Functions

On all four benchmark problems the MS-HC achieved the best results due to
the limited search space and the high number of multi-starts and the available
number of fitness calls. Only in case of M2 and M3 the MS-HS failed to identify
all local optima if σmut becomes too big, since the high mutation rates enable a
single HC to escape local optima, see Fig. 6 and Fig. 7.
With the additional HC post-processing step the FS-ES became less prone to
bad values for σshare, but performed not as well as the MS-HC. But although
extremely high values for σshare rendered the FS ineffective, they caused an
evenly distributed start for the HC post-processing step, compare Fig. 7.

Fig. 4. M0, avg. number of optima found Fig. 5. M1, avg. number of optima found



Fig. 6. M2, avg. number of optima found Fig. 7. M3, avg. number of optima found

The CBN-ES performed better than FS-ES on M0 and M1. But the importance
of σdist becomes evident. As discussed before, σdist gives the minimal distance
between two separable clusters, see 3.2. In case of the M0 benchmark function
the optima are about 1/5 units apart, compare Fig. 10, and about 1/2 units
in case of M1, compare Fig. 11. These are exactly the σdist values where the
performance of the CBN-ES drops to the behavior of a standard ES without
niching, thus converging to a single optima. The same effect can be observed for
M2 and M3, compare Fig. 12 and Fig. 13. But here the optima are not as evenly
spaced and the CBN-ES fails step-by-step as σdist is increasing.
On M2 and M3 CBN performed not as well as the FS-ES with the additional
post-processing step. Regarding M2 CBN failed to identify the two most unin-
cisive local optima, compare Fig. 3. This is caused by the greedy best selection
strategy used. Most individuals of D0 converged to the more attractive optima
before species can be identified. On both problems the exploring character of D0

seemed to fail.

4.2 The n-Dimensional Benchmark Function

To examine how the algorithms react to increasing dimensionality we compared
them on the n-dimensional M5 benchmark function with 5n optima, see Fig. 8
and 9.
Although the MS-HC has the advantage that it could track one optima per de-
ployed individual, it finds considerably less optima. Also the performance of the
HS-HC suffers if the problem dimension is increased.
The FS-ES on the other hand fails completely with the increasing problem di-
mension, although the evenly spaced optima with equal fitness should provide
perfect conditions for Fitness Sharing.
Regarding the CBN the number of optima identified with µ = 60 never exceeds
fifteen even for n < 4. This suggests that CBN is limited by the population size
rather than the problem dimension. Although MinPts = 2 allows a minimum
species size of two, merging of species causes much bigger sub-populations.



Fig. 8. M5 n = 4, avg. number of optima Fig. 9. M5 n = 5, avg. number of optima

These results indicate, that CBN scales better with increasing search space di-
mension than MS-HC and FS-ES but that CBN needs more individuals to retain
a niche than MinPts would suggest.

5 Conclusions and Future Research

The CBN-EA we proposed, is a new niching EA method based on the formation
of species. CBN joins a multi-population strategy with clustering analysis for
species detection. This approach is virtually independent of the EA method it
is applied to, because it does not put any restriction on the EA method used.
Furthermore, CBN does not alter the search space and therefore does not disrupt
the normal convergence behavior of the EA. Additionally CBN is able to actually
identify optima using the concept of species without further post-processing.
Since we used benchmark functions that do not benefit from EA crossover as
an exploratory operator, except for the M4 function, it is no surprise that the
simple Multi-Start-(1+1)ES strategy performs best on all benchmark functions.
And although Fitness Sharing was allowed to make extensive use of the HC post-
processing step, it never squares the performance of the Multi-Start-(1+1)ES.
CBN on the other hand is actually able to equal the Multi-Start-(1+1)ES on
M0 and M1, if suitable values for σdist are used. The failure of CBN on M2 and
M3 indicates, that currently the exploratory elements of CBN are too weak.
Regarding the n-dimensional M4 benchmark function Fitness Sharing fails even
in spite of the available exploratory crossover. Most likely because of the in-
creasing problem dimension. CBN on the other hand scales rather well with the
increase of problem dimension, but it is limited by the fixed population size and
the fact that currently no exploratory interbreeding between species is imple-
mented.
Therefore our future work will concentrate on introducing exploratory inter-
breeding between species to the CBN-EA, to take the full advantage of the
positive properties of niching EAs. And we will focus on problems where ex-
ploratory crossover yields a greater benefit, otherwise Multi-Start Local-Search
strategies will most likely prevail over an niching EA.



To free resources for interspecies crossover within the CBN-EA, we will intro-
duce mechanisms that use redundant individuals from extremely large species
or already converged species for reinitialization. If the reinitialized individuals
are descendants from parents from different competing species, we are also able
to introduce a additional selection pressure on species.
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Appendix: Benchmark Functions
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Fig. 10. Benchmark function M0

M0: Five hills and four valleys (5 peaks),
as suggested in [19]:

M0(x, y) = sin(2.2πx + 0.5π) (5)

·
2 − abs(y)

2
·
3 − abs(x)

2

+sin(0.5πy
2 + 0.5π)

·
2 − abs(y)

2
·
3 − abs(x)

2

where −2 ≤ x, y ≤ 2
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Fig. 11. Benchmark function M1

M1: One center peak and four neighbors (5
peaks), as suggested in [19]:

M1(x, y) = 3sin((0.5xπ + 0.5π) (6)

·
2 −

√
x2 + y2

4
)

where −2 ≤ x, y ≤ 2
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Fig. 12. Benchmark function M2

M2: Six hump camel back (6 peaks), as
suggested in [19]:

M2(x, y) = −((4− 2.1x
2 +

x4

3
)x2 (7)

+xy + (−4 + 4y
2)y2)

where −1.9 ≤ x ≤ 1.9 and −1.1 ≤ y ≤ 1.1
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Fig. 13. Benchmark function M3

M3: Waves (10 peaks), as suggested in [19]:

M3(x, y) = −(y2
− 4.5y

2)xy (8)

−4.7cos(3x− y
2(2 + x))

·sin(2.5πx) + (0.3x)2

where −0.9 ≤ x ≤ 1.2 and −1.2 ≤ y ≤ 1.2
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Fig. 14. Benchmark function M4

M5: n-dimensional sine (5n peaks):

M5(x̄) = 1−
1

n

n∑

i=1

(1 (9)

−sin
6(5πxi))

where 0 ≤ xi ≤ 1, n = 2


