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Abstract- With the invention of microarray technology,
researchers are capable of measuring the expression lev-
els of ten thousands of genes in parallel at various time
points of the biological process. During the investigation
of gene regulatory networks and general cellular mech-
anisms, biologists are attempting to group genes based
on the time-depending pattern of the obtained expres-
sion levels. In this paper, we propose a new Memetic
Algorithm - a Genetic Algorithm combined with local
search - based on a tree representation of the data - a
Minimum Spanning Tree - for clustering gene expres-
sion data. The combination of both concepts is shown
to find near-optimal solutions quickly. Due to the Min-
imum Spanning Tree representation of the data, our al-
gorithm is capable of finding clusters of different shapes.
We show, that our approach is superior in solution qual-
ity compared to classical clustering methods.

1 Introduction

In the past few years, DNA microarrays have become one
of the major tools in the field of gene expression analysis.
In contrast to traditional methods, this technology enables
the monitoring of expression levels of thousands of genes
in parallel [27]. Thus, microarrays are a powerful tool help-
ing to understand the underlying regulatory mechanisms of
a cell. A problem inherent in the use of DNA arrays is the
tremendous amount of data produced, whose analysis itself
constitutes a challenge. Several approaches have been ap-
plied to analyze microarray data including principal com-
ponent analysis [25] as well as supervised [11] and unsu-
pervised learning [10, 22, 23]. In unsupervised learning,
clustering techniques are utilized to extract the gene expres-
sion patterns inherent in the data and thus find potentially
co-regulated genes. Hierarchical clustering [10] appears to
be the most widely used method. It produces a representa-
tion of the data in the form of a binary tree, in which the
most similar genes are clustered in a hierarchy of nested
subsets. In [22] self-organizing-maps (SOM) were used to
analyze human hematopoietic differentiation. Tavazoie et
al. [23] applied the k-means algorithm to identify clusters
in yeast data. Although the results of all these approaches
are useful, some basic problems remain: (i) algorithms like

k-means and SOM are only capable of detecting clusters
of convex shape and generally fail if the clusters are of a
more complex, non-convex shape and (ii) most algorithms
are simple local search heuristics, which usually converge
to the first local optimum. In practice this problem is un-
satisfactorily solved by repeating the clustering and then
comparing the solutions either by visual inspection or an
external cluster index. In this paper, we present a new clus-
tering algorithm that faces these two problems. First, due to
a representation of the data as Minimum Spanning Tree, a
concept from graph theory, our algorithm is capable of find-
ing clusters of different and complex shapes. Second, since
our algorithm is based on a memetic framework, it is able
to overcome less promising local optima and find more op-
timal solutions. In addition we show that our framework is
much more effective than classical clustering algorithms in
finding near-optimum solutions quickly.

The paper is organized as follows: the MST data repre-
sentation is described in section 2. A short introduction to
Memetic Algorithms is given in section 3, and in section 4
the Memetic Algorithm (MA) proposed is described in de-
tail. In section 5, we present the results of our Memetic
Algorithm on gene expression datasets. Furthermore, the
MA is compared to other tree based clustering algorithms
such as Hierarchical Average Linkage clustering and an-
other MST based method. Section 6 concludes the paper
and outlines areas of future research.

2 Minimum Spanning Trees

As described earlier we use a Minimum Spanning Tree
(MST) to represent the dataset. LetX = {x1, . . . , xn} be a
set of gene expression data with eachxi = (xi1 , . . . , xim) ∈
<m denoting them-dimensional data vector of genei with
its expression levels at time1, 2, . . . , m. Let G(X) =
(V,E) be an undirected weighted acyclic and complete
graph, whereV = {xi|xi ∈ X} being a set of vertices
(in our case genes) andE = {xi, xj |xi, xj ∈ X ∨ i 6= j}
a set of edges connecting the genes. Each edge(u, v) ∈ E
has been assigned with a weightw(u, v) that represents the
dissimilarity betweenu andv. We use the Euclidean dis-
tance as dissimilarity measure, but theoretically any other
distance measure (e.g. correlational distance, Manhattan



distance) could also be applied. A tree is a connected
weighted graph with no circuits and a spanning treeT of
a connected weighted graphG(X) is a tree ofG(X) that
contains every vertex ofG(X). If we define the weight of
a tree to be the sum of its edge weights, an MST is a span-
ning tree with minimum total weight. An MST can be com-
puted using either Kruskal’s [15] or Prim’s algorithm [20]
in O(|E| log |E|) andO(|E| log |V |) time, respectively,| · |
denoting the number of elements in the set. We decided to
use Prim’s algorithm, since it is faster for fully connected
graphs. For details on the algorithm and its implementation
see [7].

By utilizing this MST representation we transform
the multi-dimensional clustering problem (that is usually
defined as finding the best partitionP (X) according to an
objective function) into a tree partitioning problem: finding
a set of tree edges and deleting them, so that the resulting
unconnected components determine the clustering. Repre-
senting a multi-dimensional dataset as a relatively simple
tree structure of course leads to a loss of information. But
our results indicate that no indispensable information is
lost that is needed to solve the clustering problem. Instead,
the MST representation of the dataset allows us to deal
with clusters of complex shapes, with which classical
algorithms, which are based on the idea of grouping the
data around a center, have problems. The advantage of the
MST representation is that it preserves proximity which is
the most basic principle of so called Gestalt clusters [26]
(see Fig. 1 for an example of differently shaped Gestalt
clusters and Fig. 2 for an example of an MST).
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Figure 1: Gestalt clusters with different shapes.

Figure 2: An example of a minimum spanning tree repre-
sentation of the dataset.

3 Memetic Algorithms

Memetic Algorithms, and Genetic Algorithms in general,
are population-based heuristic search approaches and have
been applied in a number of different areas and problem do-
mains, mostly combinatorial optimization problems. It is
known that it is hard for a ’pure’ Genetic Algorithm to ’fine
tune’ the search in complex spaces [9]. It has been shown
that a combination of global and local search is almost al-
ways beneficial [16]. The combination of an Evolutionary
Algorithm with a local search heuristic is called Memetic
Algorithm [18, 19]. MAs are known to exploit the correla-
tion structure of the fitness landscape of combinatorial opti-
mization problems [16, 17]. They differ from other hybrid
evolutionary approaches, that all individuals in the popula-
tion are local optima, since after each variation step, a local
search is applied.

MAs are inspired by Dawkin’s [9] notion of ameme. A
memeis a ”cultural gene” and in contrast to genes,memes
are usually adapted by the people who transmit them before
they are passed to the next generation. From the optimiza-
tion point of view, it is argued that the success of an MA
is due to the tradeoff between the exploration abilities of
the underlying EA and the exploitation abilities of the lo-
cal searchers used. This means that during variation, the
balance between disruption and information preservation is
very important: on the one hand the escape of local optima
must be guaranteed, but on the other hand disrupting too
much may cause the loss of important information gained
in the previous generation. The pseudocode of a Memetic
Algorithm is given in Fig. 3.



Begin
Initialize population
Local search
Evaluate fitness
While (stopping criteria not met)do

Select individuals for variation
Crossover
Mutation
Local search
Evaluate fitness
Select new population

od
end

Figure 3: Pseudocode of a standard Memetic Algorithm.

4 The clustering algorithm: MST-MA

The memetic clustering algorithm described in this paper is
based on a conceptual framework also used in [17].

4.1 Representation of an Individual and Initialization

The representation used in the MA resembles the one in Ge-
netic Algorithms, since we reduced the multi-dimensional
clustering problem to a binary tree partitioning problem:
First, the MST is computed using Prim’s [20] algorithm.
Then, for each edge in the MST a mutual neighborhood
value [12] (mnv) is calculated that will be used in the lo-
cal search. The concept of themnvwill be explained later.
For a given dataset, both the MST and themnvs are only
computed once and then copied to each individual. The in-
dividual itself is represented as a bit vector of lengthn− 1,
with n denoting the number of genes. Each bit corresponds
to an edge of the MST indicating whether the edge is deleted
(0) or not (1). The resulting cluster memberships can then
be calculated from the MST partition.
To initialize the population,k − 1 edges are randomly cho-
sen according to a uniform distribution and deleted from the
MST, with k denoting the number of clusters.

4.2 Fitness Function

The objective function to optimize has to satisfy several cri-
teria: (i) Since we are not only looking for spherical cluster
shapes, it should not be based on calculating the distance
to a centroid, because that would inevitably lead to convex
clusters regardless of the fact, that with the MST represen-
tation it is possible to find more complex shaped groups.
However, (ii) it should prefer compact clusters to less com-
pact clusters, since in clusters shaped too strangely the indi-
vidual gene expression profiles might differ too much to be
similar in the biological and mathematical sense (see clus-

ter C in Fig. 1 for an example of a cluster that is highly
diverse and therefore not interesting for biologists). Two
well-known objective functions used for clustering purpose,
the sum-of-squared-error criterion [17],

min
k∑

i=1

∑

xj∈Ci

d2(xj , x̂i), with x̂i =
1
|Ci|

∑

xj∈Ci

xj (1)

and the Davies-Bouldin-Index [8], which minimizes intra-
cluster and maximizes inter-cluster distances, are both
based on calculating distances to a cluster center. Hence,
we decided to use another function that satisfies the two cri-
teria mentioned above:

min
k∑

i=1





 ∑

xi,xj∈Ci,i6=j

d2(xi, xj)
|Ci|


 + p


 (2)

where in both equationsd(·, ·) is the Euclidean distance,
|Ci| the number of cluster members in clusterCi, k the
number of clusters andp a term to penalize results including
clusters with less than a defined numberCi of members. Eq.
(2) (with∀Ci, p = 0) is also known as total squared distance
measure [13].

4.3 Local Search

The local search applies the concept of the mutual neighbor-
hood value (mnv) [12]: Let xi andxj be two points (genes)
of the given dataset. Ifxi is themth nearest neighbor of
xj andxj is thenth nearest neighbor ofxi, then the mu-
tual neighborhood value ism + n. The main motivation
for this definition is that two pointsxi andxj have a higher
tendency to group together if not onlyxi is close toxj , but
alsoxj is close toxi. Referring to the MST, the idea is, that
edges with a highermnvmight be those that separate two
clusters. For example consider the two pointsa and b in
Fig. 1. A human eye would clearly recognize thata belongs
to clusterA andb to clusterB. The nearest neighbor ofb
is a, but the first two nearest neighbors ofa are two points
out of A, so that themnvof the edge(a, b) would be high,
although the weight of the edge might be low. Themnvis a
semi-metric and does not satisfy the triangle inequality.

The local search works as follows: for each individual
a list of deleted and non-deleted edges is created. During
each step, a pair of a deleted and a non-deleted edge is cho-
sen randomly. For the non-deleted edges, edges are favored
with a highermnv and for the deleted edges those with a
lowermnvare favored. Then both states of the edges are re-
versed, the deleted becomes undeleted and vice versa, if the
resulting clustering has a smaller objective value according
to Eq. (2). This procedure is repeated until no enhancement
could be made or the two lists are empty. Since for each
flipped deleted edge a non-deleted edge is flipped as well,
the number of clusters is preserved during local search.



4.4 Selection, Recombination and Mutation

Selection is applied twice during the main loop of the al-
gorithm: selection for variation and selection for survival.
For variation (recombination and mutation) individuals are
randomly selected without favoring better individuals. To
determine the parents of the next generation, selection for
survival is performed on a pool consisting of all parents of
the current generation and the offspring. The new popula-
tion is derived from the best individuals of that pool. Hence,
the selection strategy is similar to the selection in a(µ+λ)-
ES [4]. To guarantee that the population contains each so-
lution only once, duplicates are eliminated.
The recombination operator is a modified uniform
crossover, similar to the uniform crossover for binary strings
[21]. To preserve the number of clusters, for both parents,
lists of their deleted edges are created. Each bit of the
child’s bit vector is set to 1. Then, a pair of deleted edges
(one from each parent) is randomly chosen and deleted from
the lists. With a probability of 0.5 either the deleted edge of
parenta or the one of parentb is copied to the child. This
is repeated until both lists are empty. Thus, it is guaranteed
that the number of clusters is preserved.

As mutation operator a simple modified point mutation
is applied. Since each individual contains much more non-
deleted than deleted edges a normal point mutation (just
flipping a randomly chosen bit) would lead to more and
more clusters. To preserve the number of clusters, again the
two lists with deleted and non-deleted edges are created. A
pair of a deleted and a non-deleted edge is randomly chosen
and both are flipped.

5 Results

We compare our memetic clustering algorithm to two other
clustering methods. The first seems to be the most widely
used method to cluster gene expression data: the average
linkage algorithm (for details see [10]). The algorithm is
denoted as AvgLink. The second is also based on an MST-
representation of the dataset, has recently been published in
[24] and is denoted as Best2Partition. The latter algorithm
works as follows: first, delete randomlyk−1 edges from the
MST. Then for each pair of adjacent clusters that are con-
nected by an edge, go through all the edges within the two
merged clusters and cut that one, that globally optimizes the
2-partitioning of the merged cluster, measured by an objec-
tive function. Xu et al. applied the squared error function
defined in Eq. (1). All algorithms were implemented in Java
1.4. The performance of our MA is shown on four publicly
available datasets often used as sample datasets for gene ex-
pression clustering purpose.

5.1 Datasets

The first dataset denoted as Y-SP is available at [3] and has
been produced by Chu et al. [5]. They used DNA microar-
rays to analyze the transcriptional program of sporulation
in budding yeast. The chip contains 6118 genes and the
mRNA levels were measured at seven time points during the
sporulation process. Chu et al. found about 1143 genes with
significant changes in their expression. Significant meant
that the root mean square of thelog2(R) was greater than
1.13, whereR is the measured ratio of each gene’s mRNA
level to its mRNA level in vegetative cells just before trans-
fer to sporulation medium. For further details see [5]. We
applied a variation filter, which discarded all genes with an
absolute change less or equal to 3 of thelog2-transformed
expression values, and used the resulting 375 genes for clus-
tering. After filtering the vectors were normalized to have a
mean of 0 and a variance of 1 as described in [23]. We chose
15 clusters, which appeared to be a reasonable number for
375 genes.

The second dataset is denoted as H-HD and is also pub-
licly available at [2]. The authors [22] used Affymetrix
chips and examined the hematopoietic differentiation across
4 different cell lines (HL-60, U937, NB4 and Jurkat). After
removing the spiked control genes, the data consists of 7225
genes measured at 17 different time points and cell lines, re-
spectively. We applied an absolute variation filter that dis-
carded all genes with an absolute change in expression level
less or equal to 30 and an expression level of max/min< 3.
After filtering 773 genes remained and their expression vec-
tors were normalized to have a mean of 0 and a variance of
1 as described in [23]. We selected 30 clusters as described
in [22].

The third dataset is denoted as H-FB and is publicly
available at [1]. The authors [14] examined the response
of human fibroblasts to serum on cDNA microarrays in
order to study growth control and cell cycle progression.
They found 517 genes whose expression levels varied sig-
nificantly, for details see [14]. We used these 517 genes
for clustering, their expression vectors where normalized as
described above (mean of 0; variance of 1). We selected 10
clusters as described in [14].

The fourth dataset is denoted as H-MYC and is described
in [6]. The authors [6] used Affymetrix chips and exam-
ined the effects of c-myc activation in human fibroblasts.
After removing the spiked control genes, the dataset con-
tains expression levels of 7236 human genes and ESTs mea-
sured under 4 different conditions repeated in 3 identical
experiments leading to a 12 dimensional space. We used a
variation filter which discarded the genes with an absolute
change in expression level of less than 50 and an expression
level of max/min< 2. The resulting number of genes was
498. Again the vectors were normalized as described above.



Dataset Algorithm Best Obj. Avg. Obj. Best SSE Avg. SSE Avg. Time [s]
MST-MA 264.6 269.2 264.6 269.2 61.3

Y-SP Best2Partition 271.2 301.4 261.2 280.0 5.2
AvgLink 391.9 391.9 321.9 321.9 2.0
MST-MA 4392.0 4421.7 4382.0 4418.7 216.8

H-HD Best2Partition 4404.5 4503.7 4397.4 4490.2 45.6
AvgLink 4984.5 4984.5 4884.5 4884.5 5.8
MST-MA 3510.5 3538.0 3510.5 3538.0 96.1

H-FB Best2Partition 3512.2 3626.9 3521.2 3626.2 8.1
AvgLink 3928.9 3928.9 3888.9 3888.9 4.5
MST-MA 1347.5 1369.5 1347.5 1369.5 100.2

H-MYC Best2Partition 1349.5 1398.3 1349.5 1389.7 10.8
AvgLink 1808.9 1808.9 1748.9 1748.9 2.0

Table 1: Comparison of MST-MA and two other clustering algorithms on four datasets.

We selected 15 clusters which appeared to be a reasonable
number.

5.2 Computational Results

In the experiments, the Memetic Algorithm was run with
a population size ofP = 40. The MA was terminated
upon convergence or before the 200th generation. The re-
combination and mutation rate was set to40% and a single
point-mutation per mutation step was applied, the penaltyp
was set to10 if |Ci| < 5, which turned out to be a reason-
able number. To compare the methods, their computational
time should be the same. For example, on dataset Y-SP,
MST-MA needed 61.3 s, which is about 12 times as long as
Best2Partition. Therefore, comparisons were made by per-
forming Best2Partition 12 times and selecting the best solu-
tion to be compared with the solution by MST-MA. Analo-
gously, Best2Partition was performed 5 times on H-HD, 12
times on H-FB and 10 times on H-MYC. The experiments
were repeated 20 times on each dataset.

The results of the tests are shown in Tab. 1. For each
algorithm the average (Avg. Obj.) and the best objective
function value (Best Obj.) according to Eq. (2) and the av-
erage computation time for a single run are given (measured
on a PC with an AMD Athlon (1.2GHz) and 512 MB RAM
compiled with the j2sdk 1.4 compiler from Sun Microsys-
tems). Additionally, for all tests the best and the average
sum-of-squared-error (SSE) defined in Eq. (1) are provided,
although MST-MA optimizes Eq. (2). This is done because
Best2Partition optimizes Eq. (1) and in addition the SSE is
a widely used objective function for clustering purpose.

It is evident that the MA outperforms the other two al-
gorithms according to both functions. Although on the first
dataset (Y-SP) Best2Partition is slightly better than the MA
regarding the best solution found according to Eq. (1), we

can show that the MA is superior concerning the other ob-
jective function (Eq. (2)) and in average solution quality on
both objective functions. We show that for larger datasets
(H-FB, H-HD and H-MYC) the MA is more efficient, es-
pecially in average solution quality. This is not surpris-
ing since MAs are combinatorial optimization methods and
with a growing number of genes, the clustering problem
becomes more complex. The MA outperforms both other
methods according to both objective functions in best and
average solution quality. Furthermore, the average linkage
algorithm shows minor performance on all datasets com-
pared to the MST based methods.

From the biologists point of view, the distribution of
genes to the clusters is also important. As an example, the
number of genes belonging to each cluster for the best so-
lution found on the first dataset (Y-SP), is displayed in Fig.
4-6. In the clustering presented by AvgLink, the distribu-
tion of genes per cluster is quite asymmetric: two clusters
contain only one gene, two clusters contain two, two clus-
ters three, one four and on the other hand there is one cluster
with 83 and one with 91 genes (Fig. 6). This distribution
explains the high objective function values, especially if the
larger clusters are not compact.

Both MST based methods produce compact clusters as
shown in Tab. 1, but the MA still better than Best2Partition.
For clustering gene expression data, it is important that the
clusters can be differently sized, meaning that the genes
should not be totally equally distributed, but on the other
hand the clusters should be reasonable, not only containing
one or two genes. Fig. 4-6 show that the MST based meth-
ods are able to find such clusters. Furthermore, MST-based
methods are in general capable of finding differently shaped
clusters.
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Figure 4: Best clustering solution found by the MA: the
number of genes per cluster is displayed.
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Figure 5: Best clustering solution found by
Best2Partition: the number of genes per cluster is
displayed.
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Figure 6: Best clustering solution found by AvgLink: the
number of genes per cluster is displayed.

6 Conclusions and future research

In this paper, a Memetic Algorithm in combination with a
data representation as a minimum spanning tree was pro-
posed. Thereby, we reduced the multi-dimensional cluster-
ing problem to a tree partitioning problem, which is solved
on the basis of a memetic framework using a sophisticated
local search approach. Our method is not restricted to find-
ing clusters of a spherical shape, which is important if one
wants to explore the clusters inherent in the data itself. On
the other hand, we could outline that although our method
is not mean based, compact clusters can be found, an im-
portant task, especially for clustering gene expression pro-
files. In particular, we demonstrated that our MA outper-

forms two other clustering methods such as the widely used
average linkage clustering and another MST-based method.
We show that the clusters found by the MA are more com-
pact and reasonably sized. Hence, our proposed MST based
MA is shown to be highly valuable for clustering gene ex-
pression profiles and therefore constitutes a good alternative
to classical clustering methods.

For future research it would be very interesting to ex-
plore the clusters found by the MA in more detail. Further-
more, the determination of the number of clusters, could
also be solved by the MA itself, having individuals repre-
senting clustering solutions with different numbers of clus-
ters. Alternatively, one could think of sub-populations, each



representing several individuals with a defined number of
clusters.
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