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Abstract

This paper addresses the problem of tracking a moving per-
son with a single, omnidirectional camera. An appearance-
based tracking system is described which uses a self-
acquired appearance model and a Kalman filter to esti-
mate the position of the person. Features corresponding
to “depth cues” are first extracted from the panoramic im-
ages, then an artificial neural network is trained to estimate
the distance of the person from the camera. The estimates
are combined using a discrete Kalman filter to track the po-
sition of the person over time. The ground truth information
required for training the neural network and the experimen-
tal analysis was obtained from another vision system, which
uses multiple webcams and triangulation to calculate the
true position of the person. Experimental results show that
the tracking system is accurate and reliable, and that its
performance can be further improved by learning multiple,
person-specific appearance models.

1 Introduction

The ability to interact with people is an important require-
ment for robots which operate in populated environments.
In tasks such as cleaning, housekeeping, rehabilitation, en-
tertainment, inspection and surveillance, so-called service
robots need to communicate and cooperate with people. To
enable this interaction, the robot needs to know how many
people there are in the neighbourhood, their position, and
who they are (the three fundamental problems of people
recognition, tracking and identification). In this paper, we
focus on the problem of people tracking.

Sensory information about humans can be obtained by
the robot in different ways. The most common sensors used
today are range-finder sensors (e.g., sonar, laser), sound de-
tectors (e.g., speech recognition) and, with increasing pop-

ularity, vision sensors (e.g., single camera, stereo vision).
This paper investigates the use of omnidirectional vision for
people tracking by autonomous robots.

In contrast to previous methods that use multiple cam-
eras, our method is based on a single omni-camera mounted
on top of a mobile robot (see Fig. 1). The use of a single
camera means that we cannot use geometric triangulation
methods to estimate the position of the person. Instead, we
extract a number of simple statistical features from the im-
ages that correspond to “depth cues” indicating the apparent
position of the person relative the robot. These features are
presented in the input vector to an artificial neural network,
which learns an “appearance model” that estimates the dis-
tance of the person from the robot. In the experiments pre-
sented here, the robot was stationary throughout, though we
discuss the problems of implementing the method on a mov-
ing robot in future works.

To train the neural network, and also to obtain the
ground truth information needed for the experimental analy-
sis, some external measurement of the actual position of the
person is required. In the experiments presented here, this
information was obtained from another, independent vision
system that uses multiple webcams located around the room
and triangulation to calculate the true position of the person
(see Section 3). Our results show that it is possible to train
the neural networks in the tracking system using the posi-
tion information from the external measurement system.

We then describe how to construct an appearance model
that can be used to estimate the position of a moving person
in the nearby environment (Section 4). From the panoramic
images taken by the omni-camera we extract a set of fea-
tures that capture information about the distance and direc-
tion of the person from the robot. An artificial neural net-
work is then used to estimate the distance to the person.
The results obtained with the learned appearance model are
improved by using a discrete Kalman filter to track the po-
sition of the person over time (Section 5). In addition, we
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show that performance can be further improved by learn-
ing different appearance models for different people using
multiple neural networks (Section 6). In the experiments
presented, we show that the performance of the system us-
ing person-specific appearance models is significantly bet-
ter than that obtained with a general appearance model.

The are several reasons why using an artificial neural net-
work to learn the appearance model is advantageous for the
intended application of people tracking. First, the method
is self-calibrating, meaning also that we do not need to de-
sign a model of the omni-camera by hand: the appearance
model captures statistical properties of both the sensor and
the relative position (depth) of the person in the images.
Second, the method is appearance-based, and does not re-
quire any structural model of a human being. All necessary
parameters are acquired from data during the training phase.
Third, the method uses multiple features (depth cues) to re-
cover information about the relative position of the person.
This means that it is more robust in handling effects such
as shadows and lighting variations, and should be more tol-
erant to additional noise when the robot itself is moving.
Fourth, different appearance models can be learned for dif-
ferent people in order to further improve performance, since
people come in different shapes and sizes.

2 Related Work

Omnidirectional cameras have become popular in com-
puter vision, especially in applications like surveillance sys-
tems [1] and automated meeting recording [7]. In robotics,
omni-cameras are used mostly for navigation and localiza-
tion of mobile robots (see e.g., [11],[4]). A people tracking
system using multiple, stationary omni-cameras was pre-
sented by Sogo et al. [9]. However, for a mobile robot
this system would not be so useful, since it requires several
omni-cameras at different positions.

Some very advanced methods for vision-based people
tracking using regular or stereo cameras have been devel-
oped. For example, in Pfinder [12] a 3D description of the
person is recovered. Also theW 4 system tracking body
parts proposed by Haritaoglu [3]. To locate and track people
these systems use information such as colour cues, shape
analysis and robust tracking techniques. Use of these meth-
ods with an omni-camera sensor is limited (e.g., we don’t
have information about the whole person), although some
of the vision processing and tracking techniques could be
used in our future work.

A good example of mobile robots designed to operate
in populated environments is the museum tourguide system
RHINO [2] tested in Deutsches Museum Bonn and its suc-
cessor MINERVA [10] which operates at the Smithsonian’s
National Museum of American History. RHINO and MIN-
ERVA use information from laser range finder and sonar to

Figure 1:Omnidirectional camera mounted on the top
of the Nomad 200 mobile robot.

detect people. Recently a laser-based tracking system for
mobile robots was proposed [8] which can track multiple
persons using Joint Probabilistic Data Association Filters
(JPDAF). A benefit of this approach is that the JPDAF can
represent multi-modal distributions, compared to a Kalman
filter which assumes a Gaussian distribution.

3 External Measurement System

In order to carry out learning of the appearance model and
to evaluate results, it was necessary to acquire information
about the true position of the person (ground truth). There-
fore, an external positioning system was developed to mea-
sure the real position of the person. To achieve this aim
while keeping down costs, web-cameras were used to track
a distinctly coloured object (the green “hat” worn by the
person shown in Fig. 2). The system was developed so that
it can operate with an arbitrary number of cameras (N ≥
2). Here, four Philips PCVC 740K web-cameras (resolu-
tion 320×240), connected by a 4×USB port to a Pentium
III PC, were mounted in the corners of the 10×5 m area of
the robotics lab at our institute (see Fig. 3). The orientation
and position of the cameras was adjusted to cover the area
of interest with as many cameras as possible.

Each camera first computes an estimate of the angleϕi

to the centre of the coloured object. For each combination
of two cameras that can actually sense the whole coloured
object, an estimate of the position~pij is then calculated by
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Figure 2:Pictures from measurement system with the
person tracked.

triangulation. WithN cameras up toN(N − 1)/2 valid
position estimates~pij are produced at each time interval,
which are then combined to determine a final position esti-
mate~p in room coordinates.

The parameters of the cameras (headingαi, coordinates
Xi, Yi and angular range∆αi) were determined by an ini-
tial calibration process that minimizes the average distance
d̄ between measured and known positions of several loca-
tions at which the coloured obect is placed. The calibra-
tion process is crucial because the positioning performance
heavily depends on the accuracy of the camera parameters.

In the experiments presented here, the person taking part
wears a coloured hat, which can be tracked by the measur-
ing system but cannot be seen by the omni-camera. Dur-
ing a calibration procedure, the person stands at a number
of fixed positions. Despite the comparatively poor resolu-
tion a good accuracy in the order of just a few centimeters
(d̄ ≈ 1 cm) could be achieved in this way.

The robot with the omni-camera was placed in the mid-
dle of one side of the experimental area, so that the per-
formance of the system could be assessed over the largest
possible range of distances (see Fig. 3).

4 Learned Appearance Model

In order to obtain useful information from the omni-camera,
an appearance model is required. This could be derived by
analytical methods, but in the case of non-linearities and
noise this process can be difficult. Learning techniques
can help either to find unknown parameters, or to learn the
whole model of the sensor. In our work, we used an arti-
ficial neural network to estimate the distance of the person
to the robot from a set of features extracted from the omni-

Figure 3:Absolute positioning system with 4 cameras.
The figure shows a floor plan of the laboratory room
and the placement of the webcams and the robot
with the omnicam. Also plotted are the fields of view
for each camera, shaded according to the number of
cameras which can sense a particular region.

camera images. The angle to the person can be calculated
directly from the horizontal position in the panoramic im-
age (see below), so we only need to consider learning of the
distance.

4.1 Camera Set-up

The vision sensor was built from a CCD camera (Hitachi
KP-D50) with a conical mirror attached above. The sensor
is mounted on top of a Nomad 200 mobile robot, though in
this work we have assumed that the robot was not moving.
The total height of the robot with the omni-cam was about
1.7 m (see Fig. 1). This meant that the sensor could not see
the whole person, but just a lower part of the body and legs
(see Fig. 4). However, this was enough for our experiments.

4.2 Pre-processing

The omni-camera produces a circular image of its surround-
ings, so to use it in a convenient way, all coordinates were
first changed from cartesian to polar. After unwrapping the
picture to polar coordinates, the person can be detected and
localized by using the following steps:

• Background subtraction:for every frame, the differ-
ence with the background is calculated. The back-
ground was recorded earlier with no moving person in
the picture (taking the average of five pictures). This
method can only be used under the assumption that the
robot is not moving.

• Segmentation of the person:a histogram of difference
data in both vertical and horizontal directions is cre-
ated (see figure 4.b). Data which has a value higher
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Figure 4:Feature extraction: a) original image (resolu-
tion 480 × 120 pixels) b) background subtraction and
histograms along vertical and horizontal directions c)
resulting image

then a certain threshold (learned during background
acquisition) is used for localization of the person in
the image (4.c).

The angular position of the person can be obtained di-
rectly from the horizontal histogram (using the position of
the mean value of this data). The average angle error value
was about2.01±1.60 degrees, so there was no need to learn
to estimate the angle.

4.3 Feature Extraction

We decided to use three features that can be extracted from
the processed image:

• Feature 1 - person width:this is obtained from the dis-
tance between the limits of the horizontal histogram.
If the person is closer to the omni-camera, their width
tends to be bigger, however this can vary depending on
the size and orientation of the person.

• Feature 2 - apparent distance:this is obtained from
the distance between the lower limit of the vertical his-
togram and the bottom edge of the picture. This is the
most useful feature, increasing with the true distance
of the person from the camera, although shadows can
be a problem.

• Feature 3 - total number of pixels:this is obtained
from the number of pixels with intensity above a

Feature r
1. Person width −0.778
2. Apparent distance 0.973
3. Total no. pixels −0.803
ANN output 0.987

Figure 5: Correlation between ground truth distance
and every feature (top-left, bottom-left, top-right) and
appearance model output (bottom-right). In the table,
r is the linear correlation coefficient [6].

certain threshold (learned during background acquisi-
tion). Again, this can vary with the size and orientation
of the person.

The quality of these features depends on several factors.
The most important are the resolution of the omnicamera
and quality of the converted polar images. Disturbances in
the environment such as light conditions, shadows or unex-
pected movements can also be a problem. In order to assess
the quality of our feature data, we measured the linear cor-
relation coefficient [6] for each feature compared to the true
distance of the person. The results are shown in Fig. 5.

4.4 Artificial Neural Network

An artificial neural network (ANN) was used to map the ex-
tracted features onto distance values. We used a multi-layer
feedforward neural network (MLFF) with three inputs, one
hidden layer and one output. During training, the distance
information from the external measuring system was used
to provide the target outputs for the ANN.

In our experiments, we used 684 images collected at a
frequency of 3 Hz. Two different people took part in the
experiment, one in each half of the data. After feature ex-
traction, 30% of the data was used for training and 70% for
testing the MLFF network. The best results were obtained
with 4 units in the hidden layer and a learning rate of 0.3.
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The results in Fig. 5 show that the ANN improves on the
correlation of the input features with the ground truth dis-
tance.

5 Kalman Filter

The appearance model provides information about the dis-
tance and angle to the person. To improve these results, a
Kalman filter can be used [5]. The Kalman filter uses all
of the available knowledge about the process to produce the
best estimate of the person’s position (the errors are mini-
mized statistically). The filtering procedure consists of two
basic steps: prediction and correction. The estimated ve-
locity of the person is used to predict their next position.
This prediction is then combined with the next observation
obtained from the appearance model.

Let x ∈ R2 be a position of the person. At a given time
k it can be expressed by the difference equation

xk = xk−1 + uk + wk−1, (1)

whereu ∈ R2 is the nominal velocity of the person and
w ∈ R2 velocity disturbances.
The information obtained from the sensor is a measurement

zk = xk + vk, (2)

wherev ∈ R2 represents measurement noise. Random vari-
ablesw andv are assumed to be independent and are mod-
elled as a white noise with normal probability distribution
with covariance matricesQ andR.

If x̂−k ∈ R2 is a prediction of the position then the esti-
mate error can be defined as

e−k = xk − x̂−k , (3)

and its covariance matrix as

P−
k = E[e−k e−k

T
]. (4)

In every prediction step, estimates of the position and error
covariance matrix are updated

x̂−k = x̂k−1 + uk, (5)

P−
k = P k−1 + Q. (6)

Then the correction procedure is applied

x̂k = x̂−k + Kk(zk − x̂−k ), (7)

P k = (I −Kk)P−
k , (8)

where
Kk = P−

k (P−
k + R)−1. (9)

Filtering was applied to data expressed in room coordinates.
All the initial conditions for the Kalman filter were obtained
during the training phase. In our experiments:

Q =
[

0.024 −0.001
−0.001 0.043

]
,R =

[
0.011 −0.004
−0.004 0.020

]
.

(10)

6 Experimental Results

6.1 Appearance Model

The artificial neural network was tested with 70% of all col-
lected data. We repeated the training and testing procedure
10 times, where the data for training were randomly chosen
from whole sample set. The results in the following table
show the average distance error with standard deviation.

Results Avg. error in distance / m
Average 0.126± 0.167

Best 0.110± 0.099
Worst 0.163± 0.325

We also tested with different appearance models for each
person. Training data was chosen individually from the set
belonging to the given person. The results in the following
table show the average distance error with standard devia-
tion.

Test Appearance model trained for
Subject Person 1 Person 2
Person 1 0.096± 0.074 0.133± 0.126
Person 2 0.231± 0.276 0.117± 0.111

The results show that the performance of the person-
specific appearance models is significantly better than that
of the general appearance model (at the 99% confidence
level, using Student’st-test for unpaired samples [6]), pro-
vided that the person has been identified correctly.

6.2 Kalman Filter

The results obtained by tracking with the Kalman filter are
shown in Fig. 6 and the following table.

Tracking method Avg. position error / m
Appearance model 0.154± 0.094
With Kalman filter 0.145± 0.092

The results show that the performance of tracking with
the Kalman filter is significantly better than that of the ap-
pearance model alone (at the 99% confidence level, un-
pairedt-test).
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Figure 6:Fragment of tracked path presented in room
coordinates.

7 Conclusions and Future Work

In this paper, we have presented an appearance-based algo-
rithm for tracking a human using an artificial neural network
to learn the appearance model together with a Kalman filter.
Possible extensions to the system are discussed as follows:

• Motion model: to obtain a better velocity estimate in
tracking, a more sophisticated motion model could be
developed, or such a model could be learned from data.

• Multi-person tracking:the system should be extended
to track more than one person at the same time. To
achieve this, we would need to be able to represent
multi-modal distributions, and also deal with possible
occlusions.

• Tracking on a moving robot:in order to use the sys-
tem on a moving robot, a more sophisticated algorithm
for background-object extraction is required. Possible
methods would include correlation methods to min-
imise the difference between successive images from
the omni-camera. This ability is required so that the
robot can learn tasks such as following, finding or
guiding people.

• Integration with a people identification system:Our
experiments show that more accurate tracking is pos-
sible if the person being tracked can be identified. It
would be possible with our system to use the general
appearance model first and then switch to the person-
specific appearance model when the person has been
identified with high certainty. In ongoing experiments,
we are investigating integration of methods for people
recognition, tracking and identification.
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