
c©2014 IEEE

Robust and Efficient Volumetric Occupancy Mapping with an
Application to Stereo Vision

Konstantin Schauwecker1 and Andreas Zell1

Abstract— A map of occupied and free space in a robot’s
environment is a common prerequisite for navigational tasks.
Although the first methods for occupancy mapping relied
on a 2D grid representation, 3D volumetric approaches are
becoming increasingly popular. In this paper we present a new
volumetric mapping approach that is based on the OctoMap
method. We designed this method to be more robust against
measurement errors, in particular against high temporally or
spatially correlated errors usually received from a stereo vision
system. For this purpose, we define a probability measure that
a voxel is currently visible. An update of a voxel’s occupancy
probability then happens with respect to this visibility proba-
bility, allowing us to neglect measurements for voxels that are
actually unobservable. Finally, we model the depth error of a
stereo vision sensor, and take care of this error when performing
a map update. By evaluation we show that our method produces
maps with far less erroneous artifacts compared to OctoMap.
Our maps also require less memory, and due to an optimized
update reduction, our method is also faster than OctoMap when
processing dense range measurement data.

I. INTRODUCTION

Autonomous robots that operate in unknown or dynamic
environments require a map of occupied and free space
in order to facilitate navigational tasks. Traditionally, such
maps were based on 2D grids, which integrate data from 2D
range sensors such as laser scanners or sonars. However,
2D maps are insufficient if the robot is able to move in
three dimensions, which is the case for unmanned aerial or
underwater vehicles. But also for ordinary wheeled robots, a
2D map might not be sufficient. A tall robot must be aware
of overhanging structures. Robots that are built on a movable
base wider than the robot itself might have to drive partially
below an obstacle, such as a table, in order to approach an
object. Further, robots performing 3D manipulation require
some understanding of the 3D environment.

When extending the 2D grid representation to 3D, we
arrive at a volumetric occupancy map. If implemented
naı̈vely, such a map can consume excessive amounts of
memory. However, an efficient method has been proposed
in [1], which uses compressed octrees. The authors have
made their implementation, which they named OctoMap,
publicly available and it has since been used in numerous
research projects. In the initial publication of OctoMap, data
from an accurate 3D laser scanner was used for evaluating
the mapping performance. Unfortunately, laser scanners are
not suitable for all robots, such as Micro Aerial Vehicles
(MAVs), which have firm payload and power consumption

1K. Schauwecker and A. Zell are with the Chair of Cognitive Systems,
Wilhelm-Schickard-Institute for Computer Science, University of Tübingen,
Sand 1, 72076 Tübingen, Germany

constraints. Furthermore, 3D laser scanners are generally
very costly, which makes them unavailable for low-cost
robots. This is why we focus our research on stereo vi-
sion, which provides a low-priced alternative. Stereo vision
systems can also be constructed light-weight and power-
efficient, which even allows their use on MAVs [2], [3].

Data received from stereo vision is, however, much noisier
than measurements from laser scanners. The stereo vision
noise increases quadratically with the measured distance,
and it is often spatially and temporally correlated. Stereo
matching algorithms usually employ an explicit or implicit
smoothness constraint that penalizes solutions with abruptly
varying depth. This means that, if a stereo matching result
is wrong for one image location, all neighboring locations
are likely to exhibit a similar error. Furthermore, because
stereo matches are determined by image similarity, similarly
textured regions are likely to be repeatedly mismatched in
subsequent frames. One can thus not assume that on average,
measurement errors will cancel out each other.

Consequently, methods designed for processing laser range
data do not necessarily perform well when applied to stereo
vision. In terms of OctoMap, the correlated noise inherent in
stereo measurements leads to many falsely mapped artifacts;
see Sec. IV. In this paper we propose a more robust method,
which is a modification of the original OctoMap approach.
We show that our method is more accurate when used in con-
junction with stereo vision, while also exhibiting a smaller
memory footprint. At the same time, our method achieves
faster processing times than OctoMap when processing dense
range data. Even though we designed this method specifically
for use with stereo vision, it can also be used with other range
sensors that exhibit significant sensor noise. The source code
of our implementation is available online1.

II. RELATED WORK

The idea of using a regular 2D grid for mapping the
occupancy of a robot environment dates back to [4]. The
authors used a robot equipped with a wide-angle sonar sensor
to measure the distance to close-by obstacles. Different
methods have since been proposed for integrating individual
range measurements into an occupancy grid. For an overview
of existing methods with an in-depth evaluation of their
performance, see [5].

Stereo cameras are 3D sensors. For creating 2D occupancy
maps, the obtained results need to be reduced into a 2D
representation, usually by a column-by-column projection of

1See http://www.cogsys.cs.uni-tuebingen.de/software/occmapping/.

the disparity map. For a robot using 2D maps created with
such a method, see [6]. A similar method has been published
in [7] that creates the occupancy map in the disparity space.
To improve accuracy, the authors derive a measure for the
probability that an image column is actually visible. The
visibility is then respected in the probability integration.

Planar grid-based maps only provide a reduced view of the
3D world in which the robot operates. A more informative
way for environment representation are 2.5D elevation maps,
where the surface elevation is stored for each grid cell. Such
a method has, e.g., been used in [8]. While elevation maps
are often sufficient for outdoor navigation, they are incapable
of mapping overhanging structures, which makes them par-
ticularly unsuitable for mapping indoor environments. This
constraint can be weakened by allowing multiple surface
levels as in [9]. However, the complexity of environments
that can be represented with this method still remains to be
limited.

A more general approach for 3D world representation are
volumetric occupancy maps. An example for such a method
can be found in [10], [11], where the authors create lists
of occupied voxels that are stored ‘on top’ of each cell in
a 2D grid. The methods are evaluated using data recorded
with a laser scanner. In this work, we focus on volumetric
obstacle maps stored in octrees, which is an efficient tree-
based data structure. For a stereo vision based method that
uses a data structure similar to octrees, see [12]. The authors
use a complex approach that includes temporal and spatial
filtering as well as ‘aging’ of no longer observed voxels.

The implementation of OctoMap [1], which is an octree
based occupancy mapping method, has been released as
open source. This has lead to its widespread use in many
robotics projects, including projects relying on stereo-vision.
Examples are the MAV presented in [2] or the autonomous
exploration system in [13]. This mapping method casts a
ray from the sensor origin to each end point of a range
measurement. Observations are then generated for all voxels
on these rays, and integrated using a recursive Bayes filter.
A maximum and minimum probability threshold are applied,
which allows for a pruning of those nodes whose children
have reached saturation, resulting in a compression of the
created octree. The work presented in this paper is based on
the original OctoMap implementation.

III. METHOD

As mentioned previously, the correlated noise inherent
in range measurements from stereo vision can promote the
mapping of many erroneous artifacts. For regions that are
not visible due to occlusions, all received measurements are
in fact erroneous, which can lead to a random map in those
areas. In [12] this problem is resolved using the mentioned
spatial filtering. We however, aim at a method that solves
this problem inherently. For this purpose, we estimate the
probability that a given voxel is actually visible, before it
is updated. In this sense, our method is similar to the one
proposed in [7]. However, since [7] is a 2D method, the
visibility is measured for a column of the disparity map only.

Sensor Origin

Obstacle

Occupied VoxelsOccupied Voxels p

Fig. 1: Observing an obstacle at a flat angle.

The used measure is the fraction of pixels with a disparity
less than a voxel’s reference disparity. Hence, the visibility
measure depends only on the current measurement, and does
not incorporate knowledge from the created map.

Our visibility measure differs significantly from the afore-
mentioned. First, our measure is not limited to 2D space,
but can instead estimate the visibility of voxels in a 3D
map. Second, our measure is derived from the created oc-
cupancy map, and not from the current range measurement.
A map created from integrating multiple measurements is
more accurate than only an individual measurement. In the
following subsections, we describe this visibility measure,
the probability integration scheme and further enhancements
that we did to the original OctoMap implementation.

A. Visibility Estimation

Given a ray from the sensor origin that passes through a
voxel v, the naı̈ve model for the visibility of v would be the
probability that all voxels that are on the ray and closer to the
sensor origin are not occupied. This simple model, however,
performs poorly when the sensor observes an obstacle at a
flat angle, as shown for the solid ray in Fig. 1. Here, the
ray passes through several occupied voxels before reaching
the measurement end point p. The voxel containing p would
hence be falsely determined as not visible.

We thus use a different method for modeling the visibility.
We consider a voxel v as locally occluded if it is occluded
by its direct neighbors for all possible rays that pass through
the sensor origin and v. For the example given in Fig. 1,
the voxel containing p is not occluded by its neighbors for
the dashed ray. Let’s consider a set Nv of three voxels,
which border the usually three faces of v that are visible
to the sensor (analogous to Fig. 2a). If all voxels in Nv are
occupied, v is locally occluded, which we indicate with the
event Cv . As estimate for the probability of a local occlusion
P(Cv), we choose the smallest occupancy probability for the
voxels in Nv . If P(Ov) denotes the probability that voxel v
is occupied, we can express P(Cv) as follows:

P(Cv) = min {P(Oa),P(Ob),P(Oc)} , {a, b, c} ∈ Nv (1)

Now, let’s consider a ray R with a set of voxels vi ∈ R.
For a voxel vi the visibility depends on the events Cvi that
this voxel is locally occluded and Vvi−1 that the previous
voxel on the ray, which is closer to the sensor origin, is
visible. Given the law of total probability, we can compute
the probability P(Vvi) that voxel vi is visible as follows:

P(Vvi) = P(Vvi |Cvi , Vvi−1) P(Cvi) P(Vvi−1)

+ P(Vvi |¬Cvi , Vvi−1) P(¬Cvi) P(Vvi−1)

+ P(Vvi |Cvi ,¬Vvi−1) P(Cvi) P(¬Vvi−1)

+ P(Vvi |¬Cvi ,¬Vvi−1) P(¬Cvi) P(¬Vvi−1)

(2)

(a)

Hit

Occupied Visible
Occupied

T F
P(Ov) P(¬Ov)

Visible
T F

P(Vv) P(¬Vv)

Hit
Visible Occupied T F

F F P(H|¬Vv) P(¬H|¬Vv)
F T P(H|¬Vv) P(¬H|¬Vv)
T F P(H|¬Ov , Vv) P(¬H|¬Ov , Vv)
T T P(H|Ov , Vv) P(¬H|Ov , Vv)

(b)

Fig. 2: (a) Visible faces of a voxel with neighboring voxels and (b) Bayesian network of new probability integration scheme.

We define the probability of voxel vi being visible if voxel
vi−1 is not visible to be 0. This means that the probability
P(Vvi) will never be greater than P(Vvi−1). In this case,
Eq. 2 can be simplified as follows:

P(Vvi) =P(Vvi−1)[P(Vvi |Cvi , Vvi−1) P(Cvi)

+ P(Vvi |¬Cvi , Vvi−1) P(¬Cvi)]
(3)

OctoMap performs a clamping of the occupancy prob-
abilities to [pmin, pmax], which means that we need to
consider clamped probabilities when applying Eq. 3. We
hence introduce a new threshold qmax ≤ pmax. Probabilities
P(Vv) ≥ qmax are clamped to 1, which also prevents the
visibility from dropping too quickly. At the same time,
we introduce a lower threshold qmin > 0, and stop the
processing of a ray once P(Vv) < qmin.

B. Occupancy Probability Integration

To respect the visibility, we need a new probability in-
tegration scheme that incorporates the probability P(Vv) of
voxel v being visible. The method we chose can be expressed
as a Bayesian network, as shown in Fig. 2b. This network
contains three random variables for the events that a voxel is
visible, that the received measurement was a hit (an occupied
measurement), and that the voxel is actually occupied.

For the case of voxel v not being visible, the probability
for receiving a hit P(H|¬Vv) or a miss P(¬H|¬Vv) does
not depend on the voxel’s occupancy, but only on the a
priori probability of measuring a hit or a miss for v. Hence,
no matter what measurement we receive, we will gain no
information about the occupancy of v. For the cases where
the voxel is visible, the hit probabilities depend on a prede-
fined sensor model. If a voxel is occupied and visible, the
probability of a hit is P(H|Ov, Vv). Similarly, the probability
of a hit is set to P(H|¬Ov, Vv) if the voxel is visible but
not occupied. Both, P(H|Ov, Vv) and P(H|¬Ov, Vv), are
assumed to be constant and configured according to the
sensor properties.

We can solve the Bayesian network from Fig. 2b for
the occupancy probability. Given the previous occupancy
probability P(Ov), we can calculate the new probability
P(Ov|M) after a measurement M , which is either a hit H
or a miss ¬H . This can be done using Bayes theorem:

P(Ov|M) =
P(M |Ov) P(Ov)

P(M)
(4)

The probabilities P(M |Ov) and P(M) can be calculated
using the law of total probability:

P(M |Ov) = P(M |¬Vv) P(¬Vv) + P(M |Ov, Vv) P(Vv) (5)
P(M) =P(M |¬Vv) P(¬Vv) + P(M |Ov, Vv) P(Ov) P(Vv)

+ P(M |¬Ov, Vv) P(¬Ov) P(Vv)
(6)

This new update equation is considerably more complex
than the one used in OctoMap. Further, while OctoMap’s
update equation can be expressed using log-odds, which al-
lows for a simplification to a simple sum, this is not possible
for Eq. 4. This makes our approach more computationally
expensive. However, as we will see later, the probability
integration is not particularly performance critical.

C. Sensor Depth Error Modeling

For a stereo camera, the range measurement error increases
quadratically with the measured depth, which is also the case
for other camera based depth sensors such as the Microsoft
Kinect. Hence, only integrating a hit for the voxel containing
the measurement end point is particularly incorrect for distant
points. Therefore, we estimate the average depth error, which
we assume to be normally distributed. Given the depth mea-
surement z, the standard deviation of the depth measurement
σz can be computed as follows:

σz = λ · z2, λ =
σd
b · f

(7)

Here, λ is a constant factor that depends on the sensor
properties. For a stereo camera, it can be computed from the
disparity standard deviation σd, baseline b and focal length f .
When using sensors with non-quadratically increasing depth
error, Eq. 7 should be replaced.

With σz we know the accuracy for the current range
measurement at depth z. Given a point q = (xq, yq, zq)
on the current ray R, the cumulative normal distribution
function Fz(zq) with standard deviation σz provides us with
the probability that q is already inside the obstacle at depth
z. We hence reduce each voxel v ∈ R to a point and compute
the probability P (Iv) that this point is inside the obstacle.

The original ray casting scheme is then modified such
that we continue to traverse voxels in ray direction after we
reached p. In case where a voxel is far from p, we can keep
the update equation from Eq. 4 with M = ¬H . For voxels
within the proximity of p, however, the correct occupancy
probability should be between P(Ov|¬H) and P(Ov|H). We

OctoMap

Our Method

(a)

(b) (c) (d) (e)

Fig. 3: (a) Full map created with our method and OctoMap for half resolution ELAS, and corridor mapped with (b-c) full,
(d) half and (e) quarter resolution ELAS with (b) OctoMap and (c-e) our method.

hence perform a linear interpolation between both, using the
probability P (Iv) as interpolation factor:

P(Ov|M) = P(Iv) P(Ov|H) + P(¬Iv) P(Ov|¬H) (8)

We stop the ray casting once P(Iv) is close to 1. To make
sure that at least one full hit is integrated, we continue the
ray casting for one further voxel with P(Ov|M) = P(Ov|H)

D. Performance Considerations and Optimizations

Although our method is more complex than OctoMap, the
performance impact remains limited. This is due to the fact
that OctoMap spends most of its time on ray casting and on
reducing the resulting updates to only one update per voxel.
The actual probability integration, for which we now use the
more complex formula from Eq. 4, only has a relatively small
performance impact. The visibility calculation from Sec. III-
A can be performed after the updates have been reduced,
which saves much computation time.

With the depth error modeling from Sec. III-C we also
extended the ray casting. However, most voxels are still pro-
cessed as before. Only for voxels close to the measurement
end point p, we determine the probability P(Iv) that they
are inside the detected obstacle. We pre-compute P(Iv) for
a discretized set of depth values and distances to p.

Finally, we use an optimized method for the update
reduction. OctoMap uses a hash table in which the updates
generated by ray casting are inserted. Even though a hash
table provides a constant lookup time, the time required for
a single lookup still has a high performance impact. We
hence first perform a lookup against the previously processed

ray, for which we store the update of each voxel. We then
compare the voxels with the same index in the previous
and current ray. If both voxels are equal, we can use the
stored voxel update rather than performing a slower hash
table lookup. In our experiments, the great majority of ray
voxels could be processed without relying on the hash table.

IV. EVALUATION
For evaluating the proposed method, we chose the dataset

Bicocca 2009-02-25b from the rawseeds project [14]. This
dataset provides a 29 min indoor recording from a mobile
robot, driving for about 774 m. The robot is equipped with
various sensors, including laser scanners and a trinocular
stereo system with VGA resolution. Several solutions for
the robot’s trajectory in this dataset have been published. We
use the solution provided for the graph-based laser SLAM
method in [15]. We performed a cubic spline interpolation
of the pose estimates in this solution in order to overcome
the low update rate of this method.

The chosen stereo matching method for this evaluation
is ELAS [16], for which an efficient open source imple-
mentation is available. We selected this method for its fast
processing rate and accurate matching results. An example
disparity map created for a scene from our evaluation dataset
is shown in Fig. 4. Here, red and blue hues represent large
and small disparities, and black represents regions with no
disparity estimate. For time critical applications, ELAS can
produce half-resolution disparity maps, while preserving the
full disparity resolution. We extended ELAS such that it can
also produce a quarter resolution disparity map at an even

Fig. 4: Disparity map created by ELAS.

Our Method OctoMap
P(H|Vv ,¬Ov) = 0.43 P(Ov |¬H) = 0.45
P(H|Vv , Ov) = 0.55 P(Ov |H) = 0.55
P(H|¬Vv) = 0.05
P(Vvi |Cvi , Vvi−1) = 0.20
P(Vvi |¬Cvi , Vvi−1) = 1.00
{qmin, qmax} = {0.1, 0.7}

TABLE I: Parameters selected for our method and OctoMap.

faster processing rate. We have included all three resolution
options in our evaluation.

A. Map Quality Analysis

We processed the left and right camera images of the
approx. 26.000 trinocular stereo frames in the evaluation
dataset. With the stereo matching results, we created a
volumetric map with OctoMap 1.6.0 and our method. Since
both methods use a different probability integration scheme,
each method requires its own set of parameters, which are
shown in Tab. I. This unfortunately means that the presented
results are only valid for the specific parameterizations.
However, we attempted to find a good set of parameters for
each method, which should provide representative results.

Fig. 3a contains the resulting maps when using the half-
resolution version of ELAS, with red hues indicating high
occupancy probabilities and blue indicating probabilities
close to 0.5. We used a voxel size of 0.2 m and cut-off all
voxels below and above a minimum and maximum height,
effectively removing the floor and ceiling. One can clearly
see that OctoMap produces many erroneous artifacts, which
are not visible in our approach. A close-up view on a corridor
in this dataset is shown in Fig. 3b and 3c for OctoMap
and our method with full resolution ELAS. Even though
the erroneous artifacts are mostly removed in our results,
the wall is still densely mapped. Particularly when mapping
neighboring rooms or intersections, the produced artifacts
can lead to a disruption of previously correct map areas.
For comparison, Fig. 3d and 3e contain the maps for the
same corridor with half and quarter resolution ELAS and our
mapping method. In both cases, the corridor is still densely
mapped despite the smaller image resolutions.

The mapping behavior of our method differs significantly
from OctoMap. When facing in a direction that has pre-
viously not been observed, OctoMap immediately expands
its map to the maximum visible distance. Our method,
however, gradually increases the mapped distance after each

sensor update. We have analyzed this behavior in Fig. 5a
for the parameters from Tab. I and different voxel sizes. We
repeatedly processed one image from our evaluation dataset
that shows a long corridor, and measured the distance to the
farthest voxel with an occupancy probability P(Ov) > 0.5.
With a voxel size of 0.2 m, 65 updates are required to reach
a distance of approx. 10 m, which represents a time span
of 4.3 s in our test dataset. This time span strongly depends
on the voxel size, qmax and P (Vvi |Vvi−1 , C). Hence, by
adjusting these parameters, one can chose a compromise
between the speed of the map expansion and map quality.

B. Performance Evaluation

In addition to the map quality assessment, we analyzed
the runtime performance on a PC with an Intel i5 dual core
CPU with 3.3 GHz. We processed a one-minute section of
the evaluation dataset with various voxel sizes and the three
different resolutions of ELAS. Figure 5b shows the average
processing times excluding stereo matching in logarithmic
scale. Except for small voxel sizes and the quarter resolution
version of ELAS, our method provides significantly lower
processing times than OctoMap. The largest performance
difference was observed for full-resolution ELAS with 0.2 m
voxel size, where our method required only 66% of the
computation time used by OctoMap. This result might seem
surprising, given that our method is more complex, but it
can be explained with the optimized update reduction from
Sec. III-D. This method works well if neighboring rays
traverse mostly the same voxels, which is not the case for
small sensor resolutions or voxel sizes.

Our method with half-resolution ELAS and 0.2 m voxel
size, for which we received an average processing time of
48 ms, should be fast enough to process our dataset in real
time, i.e. 15 frames per second. However, we also need to
account for the processing time required for stereo matching.
For the full, half and quarter resolution versions of ELAS, we
require an average of 122 ms, 48 ms and 24 ms. Hence, for
half-resolution ELAS, real-time processing of our dataset is
possible if stereo matching and occupancy mapping are run
in parallel on both CPU cores.

Since OctoMap tends to map many erroneous artifacts
with our stereo matching results, it also requires more
memory. The memory consumptions, which we measured for
the previously examined one minute test run, are shown in a
logarithmic scale in Fig. 5c. On average over all test runs, our
method required only 37% of the memory used by OctoMap.
We observed the largest difference for quarter-resolution
ELAS with 0.1 m voxel size, where our method required
only 32% of the memory used by OctoMap. For the map
of the full data set created with half-resolution ELAS, our
method requires 24 MB, which is 37% of the memory used
by OctoMap. Figure 5c also reveals that the resolution of
ELAS only has a small impact on the memory consumption.
The reason for the poor performance of OctoMap in this case
is that the erroneous artifacts are highly unstructured, which
impedes the octree compression.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

M
a
p
p
e
d
 D

is
ta

n
c
e
 /
 m

Number of Updates

0.1 m Voxel Size
0.2 m Voxel Size
0.3 m Voxel Size

(a)

 10

 20

 40

 80

 160

 320

 640

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

c
e
s
s
in

g
 T

im
e
 /
 m

s

Voxel Size / m

640x480
320x240
160x120
OctoMap

Our Method

(b)

 0.2

 0.4

 0.8

 1.6

 3.2

 6.4

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
e
m

o
ry

 U
s
a
g
e
 /
 M

B

Voxel Size / m

640x480
320x240
160x120
OctoMap

Our Method

(c)

Fig. 5: (a) Growth of mapped distance, and (b) processing times and (c) memory consumption for our method and OctoMap.

V. CONCLUSIONS

In this work we presented a new method for volumetric
occupancy mapping. Our method is based on the well
known OctoMap, which we extended with a new probability
integration scheme that incorporates the probability that a
voxel is actually visible. If we receive a measurement for
a not visible voxel, this measurement must be erroneous
and the occupancy probability for this voxel should not
be updated. For estimating the visibility probability of a
voxel, we traverse the measurement ray that passes through
this voxel. For each voxel on the ray, we determine the
probability that this voxel is locally occluded, by examining
the occupancy probabilities of its neighbors. A visibility
estimate is then computed by considering the probability
that the voxel is locally occluded, and the probability that
the previous voxel on the ray is visible. Further, we model
the sensor depth error and consider it when updating the
occupancy probability.

We designed this method specifically for use with stereo
vision. Compared to laser scanners, the data received from
a stereo vision system contains a much higher measurement
noise, which tends to be correlated. In our evaluation we
have shown that this situation can lead to a high number of
erroneous map artifacts, when using the original OctoMap
method. With our mapping approach, we are able to effec-
tively remove those artifacts, which provides us a clear map
of the observed area. Because our method does not exhibit
such artifacts, the generated maps are also considerably
smaller. In our evaluation, our method required as little as
32% of the memory consumed by OctoMap.

Although our method is more complex than OctoMap, we
received a lower processing time for most test runs. This can
mainly be credited to an optimization of the update reduction
performed by OctoMap. In principle, this optimization could
also be ported to OctoMap. However, a performance benefit
will only be observed for dense measurements, as provided
by a dense stereo algorithm. Even though we designed
our method specifically for use with stereo vision, it can
also be applied to other range sensors. When the range
measurements exhibit a high measurement noise, we expect
our method to deliver more robust results.

REFERENCES

[1] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A Probabilistic, Flexible, and Compact 3D Map
Representation for Robotic Systems,” in ICRA 2010 Workshop on Best
Practice in 3D Percept. and Model. for Mobile Manipulation, 2010.

[2] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-Based Autonomous Mapping and
Exploration Using a Quadrotor MAV,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Syst. (IROS), 2012, pp. 4557–4564.

[3] K. Schauwecker and A. Zell, “On-Board Dual-Stereo-Vision for Au-
tonomous Quadrotor Navigation,” in Int. Conf. on Unmanned Aircraft
Syst. (ICUAS). IEEE, 2013, pp. 332–341.

[4] H. Moravec and A. Elfes, “High Resolution Maps from Wide Angle
Sonar,” in IEEE Int. Conf. on Robot. and Autom. (ICRA), vol. 2, 1985,
pp. 116–121.

[5] T. Collins, J. Collins, and C. Ryan, “ccupancy Grid Mapping: An
Empirical Evaluation,” in IEEE Mediterranean Conf. on Control &
Autom. (MED), 2007, pp. 1–6.

[6] D. Murray and J. J. Little, “Using Real-Time Stereo Vision for Mobile
Robot Navigation,” Autonom. Robots, vol. 8, no. 2, pp. 161–171, 2000.

[7] M. Perrollaz, J.-D. Yoder, A. Nègre, A. Spalanzani, and C. Laugier,
“A Visibility-Based Approach for Occupancy Grid Computation in
Disparity Space,” IEEE Trans. on Intell. Trans. Syst., vol. 13, no. 3,
pp. 1383–1393, 2012.

[8] R. Hadsell, J. A. Bagnell, D. Huber, and M. Hebert, “Accurate Rough
Terrain Estimation with Space-Carving Kernels,” in Robot.: Sci. and
Syst. (RSS), 2009.

[9] R. Triebel, P. Pfaff, and W. Burgard, “Multi-Level Surface Maps for
Outdoor Terrain Mapping and Loop Closing,” in IEEE/RSJ Int. Conf.
on Intell. Robots and Syst. (IROS), 2006, pp. 2276–2282.

[10] J. Ryde and H. Hu, “3D Mapping with Multi-Resolution Occupied
Voxel Lists,” Autonom. Robots, vol. 28, no. 2, pp. 169–185, 2010.

[11] I. Dryanovski, W. Morris, and J. Xiao, “Multi-Volume Occupancy
Grids: An Efficient Probabilistic 3D Mapping Model for Micro Aerial
Vehicles,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst. (IROS),
2010, pp. 1553–1559.

[12] M. Bajracharya, J. Ma, A. Howard, and L. Matthies, “Real-Time 3D
Stereo Mapping in Complex Dynamic Environments,” in Int. Conf. on
Robot. and Autom.-Semantic Mapping, Percept., and Explor. (SPME)
Workshop, 2012.

[13] R. Shade and P. Newman, “Choosing Where to Go: Complete 3D
Exploration with Stereo,” in IEEE Int. Conf. on Robot. and Autom.
(ICRA), 2011, pp. 2806–2811.

[14] A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, G. Sorrenti,
and J. D. Tardos, “RAWSEEDS: Robotics Advancement through
Web-publishing of Sensorial and Elaborated Extensive Data Sets,” in
ROS200 Workshop on Benchmarks in Robot. Research, 2006.

[15] G. Grisetti, D. L. Rizzini, C. Stachniss, E. Olson, and W. Burgard,
“Online Constraint Network Optimization for Efficient Maximum
Likelihood Map Learning,” in IEEE Int. Conf. on Robot. and Autom.
(ICRA), 2008, pp. 1880–1885.

[16] A. Geiger, M. Roser, and R. Urtasun, “Efficient Large-Scale Stereo
Matching,” in Asian Conf. on Comput. Vis. (ACCV). Springer, 2011,
pp. 25–38.

