
On-Board Dual-Stereo-Vision for the Navigation of an
Autonomous MAV

Konstantin Schauwecker · Andreas Zell

Abstract We present a quadrotor Micro Aerial Vehicle

(MAV) equipped with four cameras, which are arranged

in two stereo configurations. The MAV is able to per-

form stereo matching for each camera pair on-board and

in real-time, using an efficient sparse stereo method. In

case of the camera pair that is facing forward, the stereo

matching results are used for a reduced stereo SLAM

system. The other camera pair, which is facing down-

wards, is used for ground plane detection and tracking.

Hence, we are able to obtain a full 6DoF pose estimate

from each camera pair, which we fuse with inertial mea-

surements in an extended Kalman filter. Special care is

taken to compensate various drift errors. In an evalua-

tion we show that using two instead of one camera pair

significantly increases the pose estimation accuracy and

robustness.

1 Introduction

In recent years, Micro Aerial Vehicles (MAVs) have

become increasingly popular in the robotics research

community. In particular, rotatory wing MAVs such

as quadrotors have received much attention. Unlike

their fixed wing counterparts, these MAVs are able to

take-off and land vertically, and move at low speeds.

These properties allow those MAVs to be operated in-

side buildings or other confined spaces.

One of the main challenges for constructing a

robotic MAV is to enable the MAV to localize itself
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with respect to its environment. Only if the MAV can

track its own position, it can perform autonomous flight

maneuvers. For outdoor flights, an MAV can rely on the

GPS system to obtain an estimate for its current loca-

tion. For indoor flights however, this is generally not

possible due to a lack of GPS coverage. We hence re-

quire different sensors to facilitate autonomous indoor

flight.

The choice of available sensors is limited by the max-

imum payload and power consumption constraints im-

posed by the MAV platform. For wheeled robots, laser

scanners are a popular sensor choice, as they offer an

accurate 3D perception of the robots environment, and

can be used for robust and accurate localization. How-

ever, such laser scanners have a considerable weight and

power consumption, which makes them critical to be

employed on an MAV. This is particularly true for laser

scanners using several beams to obtain measurements

from more than one plane.

In this research, we hence focus on vision-based

methods for the localization of a robotic MAV. Un-

like laser scanners, cameras are generally much lighter

and have a lower power consumption. A single camera

can be used for 3D localization, as has e.g. been shown

in [10]. However, in this case the camera position can

only be determined with respect to an unknown and

unobservable scaling factor. An alternative, which does

not suffer from this problem, is stereo vision. Thanks

to the additional depth measurements received from a

stereo camera, the camera position can be tracked with-

out any scale ambiguities. The processing of stereo im-

ages, however, requires significant computing resources.

Hence, only recently it has been possible to equip an

MAV with enough computing power to process stereo

images on-board.
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Usually the stereo camera is mounted in a forward-

facing configuration. This provides a large field of view

and facilitates the detection of obstacles that lie ahead

in flying direction. Unfortunately, however, a forward

facing camera does not perform well when encounter-

ing fast yaw rotations. In this case, the camera regis-

ters fast image movements or even motion blur, which

impedes current visual navigation methods. An alter-

native would be a downward facing camera, which in

the case of stereo vision can also be used for detecting

the ground distance and the relative orientation of the

MAV towards the ground plane. While a downward fac-

ing camera is better at observing fast yaw rotations, it

exhibits similar problems when the MAV is flying close

to the ground. Further, in case of a downward-facing

stereo camera, stereo matching is only possible once

the MAV has reached a minimum altitude.

Those dissimilar strengths of downward- and

forward-facing cameras have lead us to believe that they

would complement each other when used in a combined

setting. In this paper we hence propose an MAV de-

sign that is equipped with both, a forward-facing and a

downward-facing camera pair, which are each arranged

in a canonical stereo configuration. Equipping the MAV

with two instead of one camera pair also greatly in-

creases the computational demands. We show that nev-

ertheless it is possible to simultaneously process the

imagery of all four cameras on-board the MAV in real-

time. Further, we demonstrate that using two instead of

one camera pair significantly increases the localization

accuracy and robustness.

The presented work was initially published at the

2013 International Conference of Unmanned Aircraft

Systems (ICUAS) [16]. In this place, we provide an ex-

tended version of this work. In particular, we extended

the evaluation of our MAV design, in the hope to give

a better impression on the performance of our system.

2 Related Work

The key to autonomous flight is to enable the MAV to

estimate its current pose (i.e. position and orientation)

with respect to its environment. Despite of the high

weight and power consumption, much previous work

has been done on using laser scanners for this task. Ex-

amples are the quadrotor MAV presented in [18] that

also includes a monocular camera for loop closure detec-

tion, and which is able to navigate autonomously in an

indoor environment. In [19] this MAV was extended to

also perform an autonomous path planning, facilitating

the fully autonomous exploration of unknown indoor

environments. Another outstanding autonomous MAV

that relies on laser scanners, is the fixed wing air craft

presented in [4]. This MAV can perform aggressive flight

maneuvers, including the flight through a large obstacle

covered indoor environment.

A possible substitute for laser scanners are cameras.

Since cameras can be built very light and power effi-

cient, using visual motion estimation is a compelling

alternative. As we have already mentioned, however,

the MAV position can only be observed with respect to

an unknown scaling factor, if only one camera is used.

This is why most MAVs featuring monocular vision are

only operable in specific environments.

One example is the quadrotor MAV presented in [21]

that relies on visual markers. This MAV, however, does

not perform any on-board image processing, but wire-

lessly transmits the camera images to a ground com-

puter. The computer then remotely controls the MAV.

An example for an approach with on-board processing

can be found in [24], where the authors track the loca-

tion of a landing pad. Because the geometry of this pad

is known, it is possible to infer the MAV’s relative pose

from the observed perspective projection. In [23], the

authors extended this approach such that this landing

pad is only required during take-off. The MAV esti-

mates the scale during take-off, and then propagates it

for further observations.

Instead of avoiding the scaling factor problem by

flying in known environments, one can alternatively

try to estimate this factor by means of additional sen-

sors. An example is the remote controlled low-cost

quadrotor used in [6], which streams camera images

from an on-board monocular camera to a ground com-

puter, running a Simultaneous Localization And Map-

ping (SLAM) software. This SLAM software is based on

Parallel Tracking And Mapping (PTAM) [10], which is

a popular open source SLAM implementation known

for its robustness and efficiency. The scale is estimated

using additional measurements from an on-board ultra-

sound altimeter. The MAV presented in [1] also employs

PTAM for estimating its pose, but here the authors

were able to perform all processing on-board. The re-

quired scaling factor is obtained by using measurements

from an accelerometer and pressure sensor. A similar

system, which is also based on PTAM, has been pub-

lished in [22]. Here the authors estimate the scale using

measurements form an IMU.

As mentioned before, the scaling factor problem dis-

appears if stereo vision is used instead of monocular

vision. Stereo matching, however, generally has high

computational demands. Most less-recent work has thus

focused on off-board stereo processing. For example,

ground mounted stereo cameras were used in [2,13] that

are focused on a quadrotor MAV, which is remotely con-

trolled by a ground computer. In [5] a forward-facing
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Fig. 1: Our quadrotor MAV seen from front and bottom.

stereo camera is mounted on a quadrotor MAV, which

wirelessly transmits all camera images at a relatively

low frame rate. Again, a computer receives those im-

ages and then remotely controls the MAV.

Only very recently, the first MAVs have emerged

that are able to perform stereo processing on-board.

The MAV presented in [9] features a forward-facing

stereo camera and runs a dense block matching algo-

rithm with a resolution of 320× 240. This MAV was

later extended in [12] to use an image resolution of

640× 480. While in both cases, the stereo matching re-

sults are only used for obstacle avoidance and visual

markers are still required for navigation, this limitation

was resolved with a further extension of this platform

in [7]. However, according to the numbers given for this

final revision, stereo processing only runs at a relatively

low frame rate of just 5 Hz.

One example for a downward-facing stereo camera

and on-board stereo processing can be found in [20]. For

this MAV, the authors use a dense correlation based

stereo algorithm which runs at a very low frame rate

of just 3 Hz. The movement of the MAV is calculated

using visual odometry and the resulting data is fused

with further odometry data gained from an on-board

laser scanner. Other work that is worth mentioning in-

cludes the lighter-than-air MAV presented in [8], which

is equipped with three fisheye cameras, of which two are

arranged in a stereo configuration. However, no stereo

matching is being performed, but rather the imagery of

each camera is tracked individually using PTAM. Af-

ter tracking, the data from all cameras is fused using

a pose alignment step. For this MAV, all processing

is performed off-board and no autonomous control has

been demonstrated.

What the presented MAVs that perform stereo

matching have in common is that they all employ dense

stereo algorithms. There exists, however, at least one

example for sparse stereo matching with a forward-

facing camera pair [14]. Here, the sparsely matched

features are used for a modified version of the SLAM

method presented in [17], which itself is an extension

of PTAM that incorporates depth information. Because

sparse stereo matching is much faster than any dense al-

gorithm, this MAV can maintain a high pose estimation

rate of 30 Hz. This high performance can be credited to

the efficiency of PTAM as well as to the efficiency of

the used sparse stereo algorithm, which was previously

published in [15]. Because this method appears to be

much faster than all other existing approaches, it makes

the most promising base for creating an MAV capable

of simultaneously processing the imagery of two stereo

cameras.

3 Hardware Overview

A front- and bottom-view of our quadrotor MAV can

be seen in Fig. 1. This quadrotor is based on the open

source and open hardware PIXHAWK platform, which

was developed by the ETH Zürich [12]. We equipped

this quadrotor with four USB cameras in two stereo

configurations. Two cameras are facing forward with a

baseline of 11 cm, while the remaining two cameras are

facing downwards with a baseline of 5 cm. We operate

the forward-facing cameras with a frame rate of 30 Hz,

and the downward-facing cameras with 15 Hz. This un-

equal frame rate has been chosen in order to reduce the

computational requirements. Even though the cameras

are operated with different frame rates, they are still

synchronized with the downward-facing cameras skip-
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ping every other frame. All cameras have a gray-scale

image sensor with a resolution of 640× 480.

The MAV features an on-board computer with an

Intel Core 2 Duo CPU, running at 1.86 GHz. All cam-

eras are connected to this computer, which executes all

image processing and motion estimation software. In

addition to this on-board computer, the MAV is also

equipped with a microcontroller, dedicated to all low-

level control tasks. The microcontroller board, which

also includes an IMU, is connected through an I2C bus

with the main on-board computer. Through this bus,

the on-board computer transmits high-level control in-

structions to the microcontroller, which in return trans-

mits the current IMU measurements.

4 Processing of Forward-Facing Cameras

For the forward-facing cameras we use a method that

largely matches the processing pipeline described in

[14]. We improved the performance of this method

mainly through code level optimizations and by resolv-

ing one problem in the original PTAM code, which in

case of small maps causes Bundle Adjustment to be ex-

ecuted too frequently. We have made several extensions

in order to allow the conjoint use with our processing

methods for the downward-facing cameras. Those ex-

tensions will be explained later, when their necessity

becomes apparent. For completeness, we provide a sum-

mary of the original method from [14] at this point.

As this method is based on sparse stereo matching,

the first processing step is to apply a feature detector

and a sparse stereo matching algorithm. The two al-

gorithms published in [15], for which an efficient open

source implementation is available, are used for both of

these tasks. Feature detection is, however, extended to

include a scale space and an upper bound for the total

number of features. We set our bound to 800 features,

which is less than the 1000 features used in [14]. An ex-

ample for the performance of this stereo method during

indoor flight of our MAV is given in Fig. 2

The successfully matched features are used for esti-

mating the current MAV pose. A SLAM system is em-

ployed for this task, which is based on the method pro-

posed in [17]. This method is an adaptation of PTAM

that incorporates depth information, which we receive

from stereo matching. This SLAM system has, how-

ever, been modified in several ways. Most importantly,

the map is continuously cleared of old keyframes, such

that only a small set of most recent keyframes persist.

In our case, only the four most recent keyframes are

preserved. This enables us to achieve a constant pro-

cessing performance, which is crucial for the control of

Fig. 2: Example for on-board stereo matching perfor-

mance.

Fig. 3: Schematics of sensor fusion for only two cameras.

an MAV. Only keeping the most recent keyframes, how-

ever, does no longer resemble real SLAM, as this leads

to the absence of a global map. The resulting approach

can be regarded as a compromise between SLAM and

plain visual odometry. To avoid confusion, we will be

referring to this method as local SLAM for the rest of

this paper.

The received pose is fused with measurements from

the IMU. The basic schematics of the sensor fusion are

depicted in Fig. 3. For this task, the open source ROS

package imu filter [11] is employed, which is based

on an extended Kalman filter. Here, the IMU measure-

ments are used for performing the Kalman prediction,

while the Kalman correction is then executed with the

estimated pose. Unlike in [14], we process the IMU mea-

surements at a higher rate of 100 Hz.

For tracking a new frame, the local SLAM system

requires an estimate for the current pose, which is ob-

tained through a motion model. This motion model

extrapolates the fused pose that is fed back to local

SLAM after sensor fusion. Rotation, however, is pre-

dicted by using an Efficient Second Order Minimization

(ESM) [3] based image alignment method, which can be

found in the original PTAM implementation.
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5 Problems with Forward-Facing Cameras

The method we have discussed above can be used to

achieve autonomous hovering of an MAV, as has been

demonstrated in [14]. However, there are some prob-

lems with using this approach as is. In this section we

provide a qualitative overview of these issues. Quantita-

tive examples for some of these problems can be found

in Sec. 10.

One key issue is the potential drift of the estimated

position and orientation. If the orientation estimated

by local SLAM is used for controlling the quadrotor,

any errors in the estimated pitch and roll angles will

have a disrupting impact on the flight stability. In [14]

the MAV was controlled with the original PIXHAWK

flight controller, which only relies on IMU measure-

ments for determining the current attitude. It would

be very preferable to use the more accurate vision es-

timated orientation instead. However, this would make

the handling of orientation errors even more important.

Not only orientation drift can be problematic, but

also drift errors for the estimated position are an issue.

If the MAV is programmed to fly on a preset track, a

position deviation would cause the MAV to leave this

track, which can potentially lead to a crash. But even

if the MAV performs on-board path planning in consid-

eration of the perceived environment, position drift can

still cause troubles. For example, the MAV presented

in [7] performs such autonomous on-board path plan-

ning, but this happens only in two dimensions with a

fixed flying altitude. If such an MAV does not have any

other means for perceiving the current altitude, it is un-

able to react on position drifts in the vertical direction.

The local SLAM method also has difficulties with

yaw rotations. This was more severe for the original

PTAM version, which just processes imagery of one

monocular camera. Because no triangulation can be

performed for rotation-only movements, PTAM is not

able to obtain reliable depth measurements in this case.

The local SLAM method we use obtains its depth in-

formation from stereo vision, which should make yaw

rotations less problematic. However, fast yaw rotations

still lead to large image movements, which can result in

bad tracking accuracy or even tracking failure.

Finally, if tracking ever fails, recovery can only occur

if the camera still depicts a scene that has been well ob-

served by at least one existing keyframe. Since the MAV

is likely to be on a flying trajectory, we cannot expect

that this is the case. Even if the camera hasn’t moved

much since the previous keyframe, recovery might still

fail which can lead to a random new position. Thus,

recovery needs to be improved if we want to achieve

robust flight.

Fig. 4: Example for on-board ground plane detection.

The problems we have described so far can be solved

or at least be reduced, if we employ a pair of downward-

facing cameras in addition to the already used forward-

facing ones. How exactly this can be achieved will be

discussed in the following sections.

6 Processing of Downward-Facing Cameras

Our processing method for the downward-facing cam-

eras differs fundamentally from the method presented

above. At the beginning, however, there is again stereo

matching, for which we employ the same technique pre-

viously used for the forward-facing cameras. This time,

however, we set the maximum feature count to 300 and

process images at a rate of just 15 Hz. This is done in

order to save computing resources, as the method is less

sensitive to feature count and image rate, than the used

local SLAM system.

6.1 Ground Plane Detection

If we assume that the ground is flat, then all 3D points

received from stereo matching are expected to lie in

the same geometric plane. We obtain an estimate for

this ground plane with a RANdom SAmpling Consen-

sus (RANSAC) based plane estimator. Given a plane

equation in the form of

ax+ by + cz + d = 0, (1)

we can extract the height h, pitch angle Θ and roll angle

Φ with the following equations:

h =
−d
b

(2)

Θ = tan−1

(
−a
b

)
(3)

Φ = tan−1

(
−c
b

)
(4)
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Unlike the pose estimates of the local SLAM sys-

tem, these measurements are absolute. Hence, they are

not prone to drift or erroneous offsets, which is why

we expect those measurements to increase the overall

accuracy in a combined system. We estimate the vari-

ances of those measurements by using a sampling based

approach. For the height variance σh this happens by

calculating the distance between the plane model and

each point that was selected as inlier by the RANSAC

method. The variance of the mean distance is then our

estimate for σh. For the angular variances σΘ and σΦ,

we first shuffle the set of inliers such that three con-

secutive points always have a large distance to each

other. We then repeatedly draw three such points and

use them to calculate samples for Θ and Φ. The vari-

ances of the means of those samples are then our final

estimate.

Finally, we apply a simple outlier rejection based

on the previously detected plane model. An example

on how our method performs for ground plane detec-

tion can be found in Fig. 4. Here, the plane has been

projected back into the unrectified camera image. The

red points indicate features that were selected as inliers

by the RANSAC plane estimator, while yellow points

were classified as outliers.

6.2 Frame-to-Frame Tracking

It is unfortunately not possible to infer horizontal dis-

placement or yaw rotation from the detected plane.

For measuring these quantities, we hence need to ap-

ply a different method. In our case, we have selected

an approach based on frame-to-frame tracking. Because

we assume a flat ground, horizontal displacements and

yaw rotations will result in an affine image transforma-

tion. This transformation consists of a 2d-translation

and an in-plane rotation. We hence attempt to find the

transformation that aligns a previously captured cam-

era frame to the current camera image.

For this task we chose the previously mentioned

ESM-algorithm, which uses a homography to align two

images. This happens by iteratively applying transfor-

mations to an initial homography until the algorithm

converges to a steady solution. In our case, we limit

ourselves to a homography consisting of translations

and in-plane rotations. Even though ESM is an efficient

method, finding the transformation between two full-

resolution frames is still very time consuming. Hence,

we perform this step with two very low-resolution sub-

sampled frames. In fact, we use a resolution of just

80× 60 pixels. This number might seem small, but be-

cause ESM works well at the sub-pixel level, we still

receive sufficiently accurate results.

To have a large field of view, we use lenses with

small focal lengths on the downward-facing cameras.

This, however, leads to strong lens distortions that dis-

rupt the frame-to-frame tracking. Hence, we first per-

form image rectification, which can be combined with

the required sub-sampling into one single image trans-

formation. This transformation is much faster than an

individual rectification at full image resolution, and also

avoids unnecessary blur.

Once the ESM algorithm has converged, we extract

our measurements from the found homography. The

translation vector matches the fourth column of the

homography matrix. The rotation, however, cannot as

easily be extracted without applying a homography de-

composition. Thus, we apply the simple approach of

transforming a distant point with the found homogra-

phy, and then measuring the angle towards the point’s

initial location. Using the height that we received from

the detected ground plane and the known camera pa-

rameters, we can convert the translation vector from

pixel to world coordinates. Together with the yaw rota-

tion and the measurements received from the detected

ground plane, we obtain a full 6DoF estimate of the

current MAV pose.

7 Sensor Fusion

With the methods described above we receive two in-

dependent estimates for the MAV pose: one from the

forward-facing, and one from the downward-facing cam-

era pair. These two estimates need to be unified into

one single pose estimate, which happens during sensor

fusion. For this purpose we can complement the sensor
fusion we have discussed earlier. The schematics of our

extended sensor fusion are shown in Fig. 5. For now we

ignore the block labeled “Angular Drift Correction”, as

this part will be discussed in detail later on.

Thanks to camera synchronization, measurements

will be from exactly the same point of time, if received

from both camera pairs. In this case, we fuse both poses

before applying the Kalman filter. This happens by cal-

culating the variance weighted mean, which delivers us

a maximum likelihood estimate for the current pose.

The reason why we fuse both poses before applying the

Kalman filter is that we want to avoid giving prefer-

ence to either of them. If both pose estimates would be

processed individually, the pose processed last would

have the higher influence on the filter outcome. This is

usually the pose obtained through the forward-facing

cameras, as it requires more time to be computed.

If only one pose is available due to the bottom cam-

eras skipping one frame, or because one method fails to

deliver a reliable pose estimate, the variance weighted
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Fig. 5: Schematics of sensor fusion with forward-facing and downward-facing cameras.

mean is avoided and the single pose estimate is pro-

cessed by the Kalman filter as is. In any case, the fused

pose is passed on to the low-level flight controller. Un-

like the original PIXHAWK flight controller, we use the

fused pose for attitude estimation, rather than only re-

lying on IMU measurements.

8 Drift Correction

Preliminary experiments with the method presented

so far have shown that there are still problems with

flight stability. This can mostly be credited to accumu-

lated errors that lead to unwanted drift. Two such error

sources have been identified and we have been able to

compensate them by using additional processing steps.

8.1 Map Drift

One major source of error is the map generated by the

local SLAM system. Once a keyframe has been cre-

ated, its position is only altered by Bundle Adjust-

ment, which generally only performs minor corrective

changes. This means that if a keyframe has been cre-

ated at an incorrect position, this error will not be cor-

rected until the keyframe is discarded. Hence, all pose

estimates that are obtained by matching against this

keyframe will be inaccurate.

The downward-facing cameras deliver us absolute

measurements for height, roll and pitch. With those

absolute measurements we should be able to at least

partially correct inaccurate keyframes. The fused posi-

tion, which contains contributions from those absolute

measurements, is already fed back to the local SLAM

method (see Fig. 5). However, so far the fused pose is

only used for motion prediction, which does not have

an influence on the existing map.

It is thus necessary to correct the pose of existing

keyframes. We do this by applying a global transforma-

tion to the entire map. This transformation is chosen

such that it compensates the difference between the last

pose estimated by the local SLAM system and the final

pose estimate after sensor fusion. If Ts is the transfor-

mation matrix for the pose estimated by local SLAM,

and Tf is the transformation matrix after sensor fusion,

then the matrix product T−1
f · Ts represents the trans-

formation that we required to map Ts to Tf . We hence

define our corrective transformation Tc as:

Tc = λ(T−1
f · Ts) (5)

Here, the transformation is scaled with the weight-

ing factor λ. This weight is set to a small value (we use

a value of 0.05), such that only small corrective steps

are performed. Any drift or error will thus be gradually

reduced over several frames. Further, we force the hor-

izontal displacement of the corrective transformation

to 0. Because there is no sensor that delivers absolute

measurements of the horizontal position, we prefer to

keep the position estimated by local SLAM instead.

8.2 Angular Drift

Although the previously described drift correction

works well for correcting the height of a keyframe, its

performance is generally poor for roll and pitch errors.

This can be explained by examining the variances used

during sensor fusion. While the height measurements

received from the downward-facing cameras are more

accurate than the measurements received from local

SLAM, the variances for the measured roll and pitch an-

gles are several orders of magnitude larger. This means

that roll and pitch measurements from the downward-

facing cameras are mostly ignored during sensor fusion.

Unlike local SLAM, however, the downward facing

cameras provide an absolute measurement, which is

why we do not want do disregard this information. We

solve this problem by introducing an additional process-

ing step during sensor fusion, which has been labeled

“Angular Drift Correction” in Fig. 5. In this step, we

try to estimate the angular drift of the local SLAM pose

and correct it before sensor fusion starts. Because the
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angular measurements from the downward-facing cam-

eras are considerably noisy, we employ an additional

Kalman filter for this task. This Kalman filter tracks

the difference between the orientation estimate gained

from local SLAM and from the downward-facing cam-

eras. We represent the orientation as quaternions, which

matches the representation used in the entire sensor fu-

sion pipeline.

If we are able to correct the angular drift, then the

pose received after sensor fusion should contain the cor-

rect orientation. We know that the fused pose is fed

back to local SLAM, where it is used to correct the

map drift with respect to the weight λ. Hence, we can

also expect that the angular drift will be reduced in

the next frame. This knowledge can be incorporated

into the model of our Kalman filter. We assume that

the arithmetic difference between the two orientation

quaternions ∆q reduces to ∆q · (1 − λ) from one frame

to another. If we ignore all other influences on the orien-

tation drift, then we arrive at the following state tran-

sition matrix:

Fk =


1 − λ 0 0 0

0 1 − λ 0 0

0 0 1 − λ 0

0 0 0 1 − λ

 (6)

The filtered quaternion difference is then added to

the orientation quaternion from local SLAM, which ef-

fectively removes orientation drift. However, we further

adapt this pose by restoring the yaw rotation to its un-

corrected value, as there are no absolute measurements

for the yaw angle.

9 Recovery

The last remaining problem that needs to be solved is

recovery of the local SLAM system in case of track-

ing failure. As discussed previously, the recovery ap-

proach employed by PTAM does not work well for our

application. We hence use a different technique that

makes use of the redundant information available from

both camera pairs. Even when the local SLAM method

fails, we still receive a full 6DoF pose estimate from the

downward-facing cameras. Thus, the pose of the MAV

is still known but with a degraded accuracy. Neverthe-

less, we should be able to maintain control of the MAV

until local SLAM has recovered.

If tracking fails, we force the local SLAM pose to the

current output of the sensor fusion. In this case, the

fused pose is only obtained through measurements of

the downward-facing cameras and the IMU. This pose

will, however, not match the current map of the local
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Fig. 6: Ground truth and estimated position during

hovering flight in (top) perspective view and (bottom)

top-down view. Scale is in meters.

SLAM system, which prevents the system from recover-

ing by itself. We hence discard the entire map and begin

mapping from scratch. We start by adding the current

frame at the currently available fused pose. The system

should thus quickly recover once the cause of the error

has disappeared. Usually, tracking failures result from

quick camera movements. Hence, once the MAV has

stabilized itself by using the less error prone pose esti-

mates from the downward-facing cameras, local SLAM

will continue functioning.

10 Evaluation

We have conducted several experiments to evaluate the

quality of the proposed MAV design. All flying experi-

ments took place in the same indoor lab environment.

We covered the floor with a texture rich carpet in or-

der to provide sufficient features for the downward-

facing cameras. Examples for the scene observed by the
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Method RMSE Avg. Error

On-Board Estimate 1.41 cm 1.44 cm
Local SLAM only 3.14 cm 3.15 cm
Ground Plane Only 26.2 cm 23.7 cm

Table 1: Position estimation errors for hovering flight.

forward- and downward-facing cameras are shown in

Fig. 2 and 4. For all experiments we recorded ground

truth motion information with an OptiTrac optical

tracking system.

10.1 Hovering

In our first experiment we instructed the quadrotor

to hover at a height of approximately 1 m for one

minute, with take-off and landing being performed au-

tonomously. This should allow an assessment of the

MAV’s flight stability and demonstrate its general oper-

ativeness. During this flight, the MAV recorded all sen-

sor data (i.e. camera imagery and IMU measurements),

allowing us to re-process all test-runs offline.

The ground truth position and the position esti-

mate obtained by the on-board software are depicted

in Fig. 6. This figure contains yet two more curves,

which are the position estimates received when offline

processing the recorded data with only the local SLAM

system or only our ground-plane-based pose estimation.

By plotting these offline results, we can compare how

the MAV would have behaved, if it had been equipped

with only two cameras. All plotted tracks have been

aligned such that their starting position and orientation

match closely. For this purpose we iteratively performed

an error minimization for each position coordinate and

the yaw rotation for the first 0.5 s of each track.

The slow take-off and landing in this experiment, as

well as the stable hovering position, are also an easy

challenge for the local-SLAM-only test run. Hence, the

corresponding curve and the curve for our on-board es-

timate both closely match the recorded ground truth.

The ground-plane-only based pose estimate, however,

shows accurate height but exhibits high horizontal drift.

While in this case, the absolute height can be measured,

the horizontal position is only obtained through frame-

to-frame tracking, which is particularly prone to error

accumulation.

We can quantify the deviation from the ground

truth by examining the Euclidean distances between

the estimated and ground truth positions, which we de-

picted in Fig. 7. We further computed the average and

Root Mean Square Error (RMSE) for all position esti-

mates received during this test flight, which are listed

in Table 1. Both times we see that the errors received

0
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Fig. 7: Position error during hovering flight.

with our combined method are significantly lower than

for the local-SLAM-only system. In fact, the average

error and RMSE for the local-SLAM-only version are

more than twice as large as for our on-board results.

Much of this improvement can be credited to the more

accurate height that we obtain with the combined ap-

proach. As we have already anticipated from Fig. 6,

the errors received with the ground-plane-only based

method are much higher than for the other two test

runs. However, the errors still remain bounded in this

case.

The more interesting measure, however, is the

MAV’s ability to keep its hovering location. To remain

comparable, we apply the same measure as used in [14].

This means that we calculate the position error with

respect to the average position during hovering. In our

case we receive an average error of 11.0 cm and a RMSE

of 12.6 cm. Compared to the values reported in [14] (av-

erage error of 26 cm and RMSE of 32 cm), our posi-

tion errors are much smaller, meaning that our MAV

can keep its hovering location more precisely. We be-

lieve that much of this performance improvement can

be credited to our modified flight controller, which now

obtains its attitude estimate from our on-board vision

software.

10.2 Drift Compensation

The next interesting characteristic is the performance

of our drift correction methods. Because it is difficult

to evaluate the drift correction in a flying experiment,

we decided to simulate drift errors instead. We take the

sensor data recorded during an autonomous hovering

flight, and re-process this data offline. While the MAV is

hovering, we force an erroneous orientation and height

into the system. We do this by disturbing the output of

the sensor fusion for a short period of time. During this

time, we keep on applying an erroneous rotation and

vertical translation to the fused pose, which is being

fed back to local SLAM. This disturbance forces local
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SLAM into recovery, which means that mapping starts

again from scratch.

The height recorded in this experiment is plotted

in Fig. 8. The disturbance is applied during the high-

lighted section. For comparison, we also included the

undisturbed height that was estimated on-board during

autonomous hovering. We see that the height from both

recordings diverge once the disturbance is applied. Once

the disturbance period ends, however, the height mea-

surements quickly converge again to the undisturbed

on-board estimates. Similarly, the disturbed and undis-

turbed roll and pitch angles are shown in Fig. 9. Again,

the angular measurements converge to the undisturbed

estimates after the disturbance period has finished.

This successfully demonstrates the functioning of our

drift correction methods.

10.3 Square Flight

The previous hovering flight is a particularly easy chal-

lenge for the local SLAM method, as the MAV re-

mains mostly stationary and is thus not required to

map many keyframes. In a further flight experiment,

we hence let the MAV fly a trajectory, which resem-

bles a horizontal square with an edge length of 1 m.

Please note that this is just 2.5 times the rotor-to-rotor

distance, which makes a precise following of this tra-

jectory challenging. In this experiment, the MAV took
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Fig. 10: Flight of a horizontal rectangle shape.

Method RMSE Avg. Error

On-Board Estimate 2.38 cm 2.20 cm
Local SLAM only 4.53 cm 4.39 cm
Ground Plane Only 33.7 cm 41.3 cm

Table 2: Position estimation errors for square flight.

off autonomously and then approached each corner of

the square twice before landing again. It hovered at

each corner for about 5 seconds before continuing to

the next corner. A top view of the ground truth and

on-board position estimate is given in Fig. 10. Again,

this figure contains the offline processing results for a

local-SLAM-only and ground-plane-only version of our

software system. The achieved results show the same

tendency we previously observed in the hovering exper-

iment: while our on-board estimates and local-SLAM-

only test runs provide results that closely match the

recorded ground truth, the ground-plane-only version

exhibits significant drift.

Like previously for the hovering flight, we again

plotted the position error in Fig. 11, and calculated

the average error and RMSE in Tab. 2. Again, we

see that our on-board estimates have a significantly

lower error compared to a local-SLAM-only system.

The received RMSE and average error for such a local-

SLAM-only version are again almost twice as large as

for our on-board estimates. In this experiment, the er-

ror for the ground-plane-only version no longer stays

bounded, which is why we have truncated the corre-

sponding curve in Fig. 11.

Despite the relatively small dimensions of the flown

square trajectory, the movements performed by the

MAV are large enough to force our local SLAM method

into continuously adding new keyframes. Hence, even
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though this experiment was performed in a small con-

fined space, the performance results should be equiv-

alent to the performance on a long-range flight. In

Fig. 12 we have plotted the age of the oldest keyframe

in the current map. Initially, the maximum keyframe

age increases until the map has reached the maximum

keyframe count of four. Then, with every new keyframe

that is added to the map, the maximum age decreases

again as an older keyframe has to be deleted. We have

marked the times where new keyframes are added with
a small arrow.

If we take a closer look at Fig. 12, we can see that pe-

riods with high maximum keyframe age alternate with

periods with low maximum age. Those high age peri-

ods occur when the MAV reaches a new corner of the

square trajectory. Because the MAV will stay station-

ary for a few seconds at each corner, there will be a

short period where local SLAM is not required to map

new keyframes. In total, local SLAM has mapped 61

keyframes during a time of 88 seconds in this flight ex-

periment.

10.4 Yaw Rotations

While the previous flight experiments are also feasi-

ble with only two cameras and local SLAM, the sit-

uation is different if we encounter yaw rotations. As we

have discussed earlier, observing fast yaw rotations with

the forward-facing cameras is particularly challenging.

Ground Truth
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Fig. 13: Ground truth and estimated position during

360◦ yaw rotation. Scale is in meters.

Thus, we expect that our MAV will benefit much from

our additional downward-facing cameras. For putting

this assumption to a test, we let our MAV perform a

360◦ yaw rotation. This rotation was divided into four

separate 90◦ turns, for which our MAV required an

average time of 2.3 s each. After each turn, the MAV

waited for itself to stabilize and then hovered for 5 sec-

onds before continuing with the next turn. An example

for the scene observed by the forward-facing cameras

after each turn is shown in Fig. 14.

Figure 13 contains the recorded ground truth and

on-board position estimates for a typical test run of

this experiment. We again re-processed the recorded

camera imagery and IMU measurements offline with a

local-SLAM-only and ground-plane-only version of our

software system, and included the results in Fig. 13. In

this figure we see that despite the yaw rotations, the

MAV is able to maintain an accurate estimate of its

current position. The ground-plane-only test run again

shows the already observed behavior of accurate height

estimates but strong horizontal drift.

The position estimated by the local-SLAM-only ver-

sion, on the other hand, shoots off in a random direction

after the first 90◦ turn. Please note that the diagram

has been truncated and that the position estimation

continues to show the same erroneous behavior for each

of the four turns. In fact, we have never been able to

obtain a valid position estimate beyond the first turn

for any test-run with the local-SLAM-only version. If

the MAV had used this erroneous position estimate for

navigation, this would have inevitably led to a crash.

The recorded and estimated yaw rotations are de-

picted in Fig. 15. In this diagram we see that the yaw

rotation estimated with our on-board method closely

follows the ground truth, while the ground-plane-only

version follows the ground truth less accurately. The
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Fig. 14: Scene observed by the forward-facing cameras during 360◦ yaw rotation.
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Fig. 15: Yaw angles measured during 360◦ yaw rotation.

local-SLAM-only version, starts deviating significantly

after the first turn, which matches the observation from

Fig. 13.

The good performance of our method can in large

parts be credited to our recovery strategy. In fact, recov-

ery of the local SLAM method was performed once dur-

ing each turn. Because the more rotation-robust pose

from the downward-facing cameras is used during recov-

ery, our MAV is able to keep an accurate pose estimate

throughout the experiment.

11 Conclusions

In this paper we have proposed a novel design for an au-

tonomous quadrotor MAV. In a GPS-denied space, the

key problem of autonomous flight is self-localization.

We have solved this problem for our MAV by employ-

ing four cameras in two stereo configurations. We are

able to perform stereo processing for both camera pairs

on-board the MAV in real time. To our knowledge, on-

board stereo processing with more than two cameras

has not been demonstrated before.

We have used a dedicated processing technique

for the stereo matching results of each camera pair.

While the imagery of the forward-facing cameras is

processed with an approach based on stereo SLAM,

the downward-facing cameras can be processed more

efficiently if we assume that the ground is flat. For

this camera pair we thus use a method based on

RANSAC plane detection and ESM homography esti-

mation. Combining the pose estimates we obtain from

each camera pair was one of the main challenges. While

a sensor fusion can be applied to receive the current

pose estimate, we also need to update the map created

by the local SLAM method. For this task, we included

the two presented drift correction techniques.

The resulting MAV has been evaluated in several

flight experiments. In a hovering test, the MAV took

off autonomously, hovered at a given height and then

landed again by itself. It was able to keep its hover-

ing location with an average error of only 11.0 cm. By

re-processing the collected sensor data with only the

forward-facing cameras, we have been able to show that

the downward-facing cameras indeed increase the pose

estimation accuracy. The same observation has been

made for an experiment where the MAV flew a trajec-

tory resembling a horizontal square.

In further experiments we have demonstrated the

robustness of our MAV design. Pose estimation is able

to automatically recover when an erroneous height and

orientation are forcefully introduced into the system.

Further, we have shown that our MAV is able to suc-

cessfully fly a 360◦ yaw rotation. This is a difficult ma-

neuver, for which we received very bad results when

using only the forward-facing cameras. Our MAV was

able to perform this operation thanks to the availability

of a redundant pose estimate from the downward-facing

cameras. Further, our tracking recovery method played

an important role in this experiment, which is able to

perform a re-initialization of the local SLAM system.

With this work we have shown that by simultane-

ously using both, a forward-facing and a downward-

facing camera pair, we can significantly increase accu-

racy and robustness of the MAV navigation. Forward-

and downward-facing cameras have different strengths

and weaknesses, and are thus able to complement each

other. Using more cameras also adds redundancy to the

system, which leads to an increased fail-safety. There

exist, however, situations in which the performance of

all cameras can be impeded, such as low lighting, fog

or an insufficiently textured environment. To further in-

crease redundancy, we would thus propose to equip the
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MAV with additional sensors, such as laser scanners, ul-

trasonic transceivers or a depth camera. The very lim-

ited payload of most MAVs, however, does not allow

us to carry too much sensory equipment. Hence, such

extensions will have to wait until lighter and smaller

sensors are available.
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5. Carrillo, L.R.G., López, A.E.D., Lozano, R., Pégard, C.:
Combining Stereo Vision and Inertial Navigation System
for a Quad-Rotor UAV. Journal of Intelligent & Robotic
Systems 65(1), 373–387 (2012)

6. Engel, J., Sturm, J., Cremers, D.: Camera-Based Naviga-
tion of a Low-Cost Quadrocopter. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 2815–2821 (2012)

7. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H.,
Meier, L., Tanskanen, P., Pollefeys, M.: Vision-Based Au-
tonomous Mapping and Exploration Using a Quadrotor
MAV. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 4557–4564 (2012)

8. Harmat, A., Sharf, I., Trentini, M.: Parallel Tracking
and Mapping with Multiple Cameras on an Unmanned
Aerial Vehicle. In: International Conference on Intelligent
Robotics and Applications (ICIRA), vol. 1, pp. 421–432.
Springer (2012)

9. Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., Polle-
feys, M.: Autonomous Obstacle Avoidance and Maneu-
vering on a Vision-Guided MAV Using On-Board Pro-
cessing. In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 2472–2477 (2011)

10. Klein, G., Murray, D.: Parallel Tracking and Mapping for
Small AR Workspaces. In: IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR),
pp. 1–10 (2007)

11. Klose, S.: imu filter. http://ros.org/wiki/imu_filter

(2011)
12. Meier, L., Tanskanen, P., Heng, L., Lee, G., Fraundor-

fer, F., Pollefeys, M.: PIXHAWK: A Micro Aerial Vehicle
Design for Autonomous Flight Using Onboard Computer
Vision. Autonomous Robots 33, 21–39 (2012)

13. Pebrianti, D., Kendoul, F., Azrad, S., Wang, W., Nonami,
K.: Autonomous Hovering and Landing of a Quad-Rotor

Micro Aerial Vehicle by Means of on Ground Stereo Vi-
sion System. Journal of System Design and Dynamics
4(2), 269–284 (2010)

14. Schauwecker, K., Ke, N.R., Scherer, S.A., Zell, A.: Mark-
erless Visual Control of a Quad-Rotor Micro Aerial Ve-
hicle by Means of On-Board Stereo Processing. In: Au-
tonomous Mobile System Conference (AMS), pp. 11–20.
Springer (2012)

15. Schauwecker, K., Klette, R., Zell, A.: A New Feature De-
tector and Stereo Matching Method for Accurate High-
Performance Sparse Stereo Matching. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), pp. 5171–5176 (2012)

16. Schauwecker, K., Zell, A.: On-Board Dual-Stereo-Vision
for Autonomous Quadrotor Navigation. In: International
Conference on Unmanned Aircraft Systems (ICUAS), pp.
332–341. IEEE (2013)

17. Scherer, S.A., Dube, D., Zell, A.: Using Depth in Vi-
sual Simultaneous Localisation and Mapping. In: IEEE
International Conference on Robotics and Automation
(ICRA), pp. 5216–5221 (2012)

18. Shen, S., Michael, N., Kumar, V.: Autonomous Multi-
Floor Indoor Navigation with a Computationally Con-
strained MAV. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 20–25 (2011)

19. Shen, S., Michael, N., Kumar, V.: Autonomous Indoor
3D Exploration with a Micro-Aerial Vehicle. In: IEEE
International Conference on Robotics and Automation
(ICRA), pp. 9–15 (2012)

20. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker,
M., Mair, E., Grixa, I., Ruess, F., Suppa, M., Burschka,
D.: Toward a Fully Autonomous UAV: Research Platform
for Indoor and Outdoor Urban Search and Rescue. IEEE
Robotics & Automation Magazine 19(3), 46–56 (2012)

21. Tournier, G.P., Valenti, M., How, J., Feron, E.: Estima-
tion and Control of a Quadrotor Vehicle Using Monocular
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