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Abstract— We present a quadrotor Micro Aerial Vehicle
(MAV) capable of autonomous indoor navigation. The MAV
is equipped with four cameras arranged in two stereo configu-
rations. One camera pair is facing forward and serves as input
for a reduced stereo SLAM system. The other camera pair
is facing downwards and is used for ground plane detection
and tracking. All processing, including sparse stereo matching,
is run on-board in real-time and at high processing rates. We
demonstrate the capabilities of this MAV design in several flight
experiments. Our MAYV is able to recover from pose estimation
errors and can cope with processing failures for one camera
pair. We show that by using two camera pairs instead of one,
we are able to significantly increase navigation accuracy and
robustness.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) are becoming increasingly
popular in the robotics research community. In particular,
much attention has been drawn to quadrotor MAVs, which
can now even be obtained by consumers at relatively low
costs. Quadrotors are able to take-off and land vertically,
hover in one place and move at low speeds. These prop-
erties make them ideal for being used inside buildings or
other confined spaces. When constructing a robotic MAYV,
however, achieving autonomous indoor flight is particularly
challenging. The key problem is that we generally lack GPS
coverage. Hence, other measures are required for indoor-
navigation, for which we need additional sensors.

The payload that can be carried by an MAV is, however,
considerably low, as is the available on-board power. This
greatly limits the choice of available sensors that such an
autonomous MAV could be equipped with. In particular,
sensors that enable an accurate 3D-localization, such as
LIDARS, are usually too heavy to be carried and have a high
power consumption. This draws attention to cameras, which
only require little energy and can be built very lightly. Cam-
eras can be used for three-dimensional localization within an
unknown environment, as has e.g. been shown in [1]. This
circumstance has led to significant research on using cameras
for the navigation of autonomous MAVs.

Most early approaches relied on using a monocular camera
for this purpose. However, the problem with using monoc-
ular cameras is that they only allow the estimation of the
MAV position with respect to an unknown and unobservable
scaling factor. Only very recently it has been possible to
use two cameras in a stereo configuration, while performing
stereo processing on an on-board computer. If stereo vision
is used for MAV navigation, the scaling factor problem
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disappears and the absolute position can be observed, thanks
to additional information from depth measurements.

The cameras are often mounted on the MAV in a forward-
facing stereo configuration. This provides a large field of
view and can enable the detection of obstacles in flying direc-
tion. Forward-facing cameras, however, do not perform well
when encountering fast yaw rotations. In this case, a forward-
facing camera registers large image movements or might
be subject to motion blur. Both effects have a degrading
impact on current visual navigation methods. A downward-
facing camera, on the other hand, is generally much better at
observing yaw rotations and might also — in the case of stereo
vision — be used for obtaining measurements for altitude, roll
and pitch. However, fast horizontal movements of the MAV
will be poorly observable in case of ground proximity flight.
Further, stereo matching will not be possible at take-off, as
a minimum ground-distance is required.

The dissimilar strengths and weaknesses of forward- and
downward-facing cameras lead us to believe that they will
complement each other when used in a combined setting. In
this paper we present an MAV, which does exactly that: we
use both, a forward-facing and a downward-facing camera
pair. This means that our MAV is equipped with four cameras
in total and we are running stereo matching twice. Even
though this greatly increases the amount of data that has
to be processed, we are still able to perform all processing
on-board and in real-time. We show in this paper that the
additional use of a downward-facing camera significantly
improves the self-localization, and hence the accuracy of
the autonomous flight. To our knowledge, we are the first
to realize stereo matching with more than two cameras on-
board of an MAV.

II. RELATED WORK

The key to autonomous flight is to enable the MAV to
estimate its current pose (i.e. position and orientation) with
respect to its environment. While such an estimate can be ob-
tained by integrating readings from an Inertial Measurement
Unit (IMU), the accuracy of this estimate quickly degrades
with integration time. Visual motion estimation, known as
visual odometry, can serve as a more accurate source for
pose inference. As we have already mentioned, however,
the MAV position can only be observed with respect to an
unknown scaling factor, if only one camera is used. This
is why most MAVs featuring monocular vision are only
operable in specific environments.

One example is the quadrotor MAV presented in [2] that
relies on visual markers. This MAV, however, does not per-
form any on-board image processing, but wirelessly transmits



the camera images to a ground computer. The computer then
remotely controls the MAV. An example for an approach with
on-board processing can be found in [3], where the authors
track the location of a landing pad. Because the geometry of
this pad is known, it is possible to infer the MAV’s relative
pose from the observed perspective projection.

Instead of avoiding the scaling factor problem by only
flying in known environments, one can alternatively try to es-
timate this factor by means of additional sensors. An example
is the remote controlled low-cost quadrotor used in [4], which
streams camera images from an on-board monocular camera
to a ground computer, running a Simultaneous Localization
And Mapping (SLAM) software. This SLAM software is
based on Parallel Tracking And Mapping (PTAM) [1], which
is a popular open source SLAM implementation known
for its robustness and efficiency. The scale is estimated
using additional measurements from an on-board ultrasound
altimeter. The MAV presented in [5] also employs PTAM
for estimating its pose, but here the authors were able to
perform all processing on-board. The required scaling factor
is obtained by using measurements from an accelerometer
and pressure sensor. A similar system, which is also based on
PTAM, has been published in [6]. Here the authors estimate
the scale using measurements form an IMU.

As mentioned before, the scaling factor problem disap-
pears if stereo vision is used instead of monocular vision.
Stereo matching, however, generally has high computational
demands. Most less-recent work has thus focused on off-
board stereo processing. For example, ground mounted stereo
cameras were used in [7], [8] that are focused on a quadrotor
MAYV, which is remotely controlled by a ground computer. In
[9] a forward-facing stereo camera is mounted on a quadrotor
MAV, which wirelessly transmits all camera images at a
relatively low frame rate. Again, a computer receives those
images and then remotely controls the MAV.

Only very recently, the first MAVs have emerged that
are able to perform stereo processing on-board. The MAV
presented in [10] features a forward-facing stereo camera
and runs a dense block matching algorithm with a resolution
of 320 x 240. This MAV was later extended in [11] to use
an image resolution of 640 x 480. While in both cases, the
stereo matching results are only used for obstacle avoidance
and visual markers are still required for navigation, this
limitation was resolved with a further extension of this
platform in [12]. However, according to the numbers given
for this final revision, stereo processing only runs at a
relatively low frame rate of just 5SHz.

One example for a downward-facing stereo camera and on-
board stereo processing can be found in [13]. For this MAYV,
the authors use a dense correlation based stereo algorithm
which runs at a very low frame rate of just 3 Hz. The move-
ment of the MAV is calculated using visual odometry and
the resulting data is fused with further odometry data gained
from an on-board laser scanner. Other work that is worth
mentioning includes the lighter-than-air MAV presented in
[14], which is equipped with three fisheye cameras, of which
two are arranged in a stereo configuration. However, no

Fig. 1: Our quadrotor MAV seen from front and bottom.

stereo matching is being performed, but rather the imagery
of each camera is tracked individually using PTAM. After
tracking, the data from all cameras is fused using a pose
alignment step. For this MAV, all processing is performed
off-board and no autonomous control has been demonstrated.

What the presented MAVs that perform stereo matching
have in common is that they all employ dense stereo algo-
rithms. There exists, however, at least one example for sparse
stereo matching with a forward-facing camera pair [15].
Here, the sparsely matched features are used for a modified
version of the SLAM method presented in [16], which itself
is an extension of PTAM that incorporates depth information.
Because sparse stereo matching is much faster than any dense
algorithm, this MAV can maintain a high pose estimation
rate of 30Hz. This high performance can be credited to the
efficiency of PTAM as well as to the efficiency of the used
sparse stereo algorithm, which was previously published in
[17]. Because this method appears to be much faster than all



other existing approaches, it makes the most promising base
for creating an MAV capable of simultaneously processing
the imagery of two stereo cameras.

III. HARDWARE OVERVIEW

A front- and bottom-view of our quadrotor MAV can be
seen in Fig. 1. This quadrotor is based on the open source and
open hardware PIXHAWK platform, which was developed
by the ETH Ziirich [11]. We equipped this quadrotor with
four USB cameras in two stereo configurations. Two cameras
are facing forward with a baseline of 11cm, while the
remaining two cameras are facing downwards with a baseline
of 5cm. We operate the forward-facing cameras with a
frame rate of 30 Hz, and the downward-facing cameras with
15Hz. This unequal frame rate has been chosen in order
to reduce the computational requirements. Even though the
cameras are operated with different frame rates, they are still
synchronized with the downward-facing cameras skipping
every other frame. All cameras have a gray-scale image
sensor with a resolution of 640 x 480.

The MAV features an on-board computer with an In-
tel Core 2 Duo CPU, running at 1.86 GHz. All cameras
are connected to this computer, which executes all image
processing and motion estimation software. In addition to
this on-board computer, the MAV is also equipped with
a microcontroller, dedicated to all low-level control tasks.
The microcontroller board, which also includes an IMU,
is connected through an I>C bus with the main on-board
computer. Through this bus, the on-board computer transmits
high-level control instructions to the microcontroller, which
in return transmits the current IMU measurements.

IV. PROCESSING OF FORWARD-FACING CAMERAS

For the forward-facing cameras we use a method that
largely matches the processing pipeline described in [15].
We improved the performance of this method mainly through
code level optimizations and by resolving one problem in
the original PTAM code, which in case of small maps
causes Bundle Adjustment to be executed too frequently. We
have made several extensions in order to allow the conjoint
use with our processing methods for the downward-facing
cameras. Those extensions will be explained later, when their
necessity becomes apparent. For completeness, we provide
a summary of the original method from [15] at this point.

As this method is based on sparse stereo matching, the first
processing step is to apply a feature detector and a sparse
stereo matching algorithm. The two algorithms published in
[17], for which an efficient open source implementation is
available, are used for both of these tasks. Feature detection
is, however, extended to include a scale space and an upper
bound for the total number of features. We set our bound to
800 features, which is less than the 1000 features used in
[15]. An example for the performance of this stereo method
during indoor flight of our MAV is given in Fig. 2

The successfully matched features are used for estimating
the current MAV pose. A SLAM system is employed for
this task, which is based on the method proposed in [16].

Fig. 2: Example for on-board stereo matching performance.
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Fig. 3: Schematics of sensor fusion for only two cameras.

This method is an adaptation of PTAM that incorporates
depth information, which we receive from stereo matching.
This SLAM system has, however, been modified in several
ways. Most importantly, the map is continuously cleared of
old keyframes, such that only a small set of most recent
keyframes persist. This enables us to achieve a constant
processing performance, which is crucial for the control of
an MAV. Only keeping the most recent keyframes, however,
does no longer resemble real SLAM, as this leads to the
absence of a global map. The resulting approach can be
regarded as a compromise between SLAM and plain visual
odometry. To avoid confusion, we will be referring to this
method as local SLAM for the rest of this paper.

The received pose is fused with measurements from the
IMU. The basic schematics of the sensor fusion are depicted
in Fig. 3. For this task, the open source ROS package
imu_filter! is employed, which is based on an extended
Kalman filter. Here, the IMU measurements are used for per-
forming the Kalman prediction, while the Kalman correction
is then executed with the estimated pose. Unlike in [15], we
process the IMU measurements at a higher rate of 100 Hz.

For tracking a new frame, the local SLAM system requires
an estimate for the current pose, which is obtained through
a motion model. This motion model extrapolates the fused
pose that is fed back to local SLAM after sensor fusion.
Rotation, however, is predicted by using an Efficient Second
Order Minimization (ESM) [18] based image alignment
method, which can be found in the original PTAM imple-
mentation.

ISee http://ros.org/wiki/imu_filter



V. PROBLEMS WITH FORWARD-FACING CAMERAS

The method we have discussed above can be used to
achieve autonomous hovering of an MAYV, as has been
demonstrated in [15]. However, there are some problems
with using this approach as is. In this section we provide
a qualitative overview of these issues. Quantitative examples
for some of these problems can be found in Sec. X.

One key issue is the potential drift of the estimated
position and orientation. If the orientation estimated by local
SLAM is used for controlling the quadrotor, any errors in the
estimated pitch and roll angles will have a disrupting impact
on the flight stability. In [15] the MAV was controlled with
the original PIXHAWK flight controller, which only relies
on IMU measurements for determining the current attitude.
It would be very preferable to use the more accurate vision
estimated orientation instead. However, this would make the
handling of orientation errors even more important.

Not only orientation drift can be problematic, but also drift
errors for the estimated position are an issue. If the MAV is
programmed to fly on a preset track, a position deviation
would cause the MAV to leave this track, which can poten-
tially lead to a crash. But even if the MAV performs on-board
path planning in consideration of the perceived environment,
position drift can still cause troubles. For example, the MAV
presented in [12] performs such autonomous on-board path
planning, but this happens only in two dimensions with a
fixed flying altitude. If such an MAV does not have any
other means for perceiving the current altitude, it is unable
to react on position drifts in the vertical direction.

The local SLAM method also has difficulties with yaw
rotations. This was more severe for the original PTAM
version, which just processes imagery of one monocular
camera. Because no triangulation can be performed for
rotation-only movements, PTAM is not able to obtain reliable
depth measurements in this case. The local SLAM method
we use obtains its depth information from stereo vision,
which should make yaw rotations less problematic. However,
fast yaw rotations still lead to large image movements, which
can result in bad tracking accuracy or even tracking failure.

Finally, if tracking ever fails, recovery can only occur if
the camera still depicts a scene that has been well observed
by at least one existing keyframe. Since the MAV is likely
to be on a flying trajectory, we cannot expect that this is
the case. Even if the camera hasn’t moved much since the
previous keyframe, recovery might still fail which can lead to
a random new position. Thus, recovery needs to be improved
if we want to achieve robust flight.

The problems we have described so far can be solved or
at least be reduced, if we employ a pair of downward-facing
cameras in addition to the already used forward-facing ones.
How exactly this can be achieved will be discussed in the
following sections.

V1. PROCESSING OF DOWNWARD-FACING CAMERAS

Our processing method for the downward-facing cameras
differs fundamentally from the method presented above. At
the beginning, however, there is again stereo matching, for

Fig. 4: Example for on-board ground plane detection.

which we employ the same technique previously used for
the forward-facing cameras. This time, however, we set the
maximum feature count to 300 and process images at a
rate of just 15Hz. This is done in order to save computing
resources, as the method is less sensitive to feature count
and image rate, than the used local SLAM system.

A. Ground Plane Detection

If we assume that the ground is flat, then all 3D points
received from stereo matching are expected to lie in the same
geometric plane. We obtain an estimate for this ground plane
with a RANdom SAmpling Consensus (RANSAC) based
plane estimator. Given a plane equation in the form of

ar +by+cz+d=0, (1

we can extract the height h, pitch angle © and roll angle ®
with the following equations:

—d
h = e )
© = tan! (b“> 3)
o = tan! <bc> )

Unlike the pose estimates of the local SLAM system, these
measurements are absolute. Hence, they are not prone to
drift or erroneous offsets, which is why we expect those
measurements to increase the overall accuracy in a combined
system. We estimate the variances of those measurements by
using a sampling based approach. For the height variance o,
this happens by calculating the distance between the plane
model and each point that was selected as inlier by the
RANSAC method. The variance of the mean distance is then
our estimate for o,. For the angular variances og and oo,
we first shuffle the set of inliers such that three consecutive
points always have a large distance to each other. We then
repeatedly draw three such points and use them to calculate
samples for © and ®. The variances of the means of those
samples are then our final estimate.

Finally, we apply a simple outlier rejection based on the
previously detected plane model. An example on how our
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Fig. 5: Schematics of sensor fusion with forward-facing and downward-facing cameras.

method performs for ground plane detection can be found
in Fig. 4. Here, the plane has been projected back into the
unrectified camera image. The red points indicate features
that were selected as inliers by the RANSAC plane estimator,
while yellow points were classified as outliers.

B. Frame-to-Frame Tracking

It is unfortunately not possible to infer horizontal displace-
ment or yaw rotation from the detected plane. For measuring
these quantities, we hence need to apply a different method.
In our case, we have selected an approach based on frame-to-
frame tracking. Because we assume a flat ground, horizontal
displacements and yaw rotations will result in an affine
image transformation. This transformation consists of a 2d-
translation and an in-plane rotation. We hence attempt to find
the transformation that aligns a previously captured camera
frame to the current camera image.

For this task we chose the previously mentioned ESM-
algorithm, which uses a homography to align two images.
This happens by iteratively applying transformations to an
initial homography until the algorithm converges to a steady
solution. In our case, we limit ourselves to a homography
consisting of translations and in-plane rotations. Even though
ESM is an efficient method, finding the transformation be-
tween two full-resolution frames is still very time consuming.
Hence, we perform this step with two very low-resolution
sub-sampled frames. In fact, we use a resolution of just
80 x 60 pixels. This number might seem small, but because
ESM works well at the sub-pixel level, we still receive
sufficiently accurate results.

To have a large field of view, we use lenses with small
focal lengths on the downward-facing cameras. This, how-
ever, leads to strong lens distortions that disrupt the frame-to-
frame tracking. Hence, we first perform image rectification,
which can be combined with the required sub-sampling
into one single image transformation. This transformation
is much faster than an individual rectification at full image
resolution, and also avoids unnecessary blur.

Once the ESM algorithm has converged, we extract our
measurements from the found homography. The translation
vector matches the fourth column of the homography matrix.
The rotation, however, cannot as easily be extracted without
applying a homography decomposition. Thus, we apply the
simple approach of transforming a distant point with the

found homography, and then measuring the angle towards
the point’s initial location. Using the height that we received
from the detected ground plane and the known camera
parameters, we can convert the translation vector from pixel
to world coordinates. Together with the yaw rotation and the
measurements received from the detected ground plane, we
obtain a full 6DoF estimate of the current MAV pose.

VII. SENSOR FUSION

With the methods described above we receive two inde-
pendent estimates for the MAV pose: one from the forward-
facing, and one from the downward-facing camera pair.
These two estimates need to be unified into one single
pose estimate, which happens during sensor fusion. For this
purpose we can complement the sensor fusion we have
discussed earlier. The schematics of our extended sensor
fusion are shown in Fig. 5. For now we ignore the block
labeled “Angular Drift Correction”, as this part will be
discussed in detail later on.

Thanks to camera synchronization, measurements will be
from exactly the same point of time, if received from both
camera pairs. In this case, we fuse both poses before applying
the Kalman filter. This happens by calculating the variance
weighted mean, which delivers us a maximum likelihood
estimate for the current pose. The reason why we fuse both
poses before applying the Kalman filter is that we want to
avoid giving preference to either of them. If both pose es-
timates would be processed individually, the pose processed
last would have the higher influence on the Kalman filter.
This is usually the pose obtained through the forward-facing
cameras, as it requires more time to be computed.

If only one pose is available due to the bottom cameras
skipping one frame, or because one method fails to deliver a
reliable pose estimate, the variance weighted mean is avoided
and the single pose estimate is processed by the Kalman filter
as is. In any case, the fused pose is passed on to the low-
level flight controller. Unlike the original PIXHAWK flight
controller, we use the fused pose for attitude estimation,
rather than relying on IMU measurements.

VIII. DRIFT CORRECTION

Preliminary experiments with the method presented so
far have shown that there are still problems with flight
stability. This can mostly be credited to accumulated errors



that lead to unwanted drift. Two such error sources have
been identified and we have been able to compensate them
by using additional processing steps.

A. Map Drift

One major source of error is the map generated by the
local SLAM system. Once a keyframe has been created,
its position is only altered by Bundle Adjustment, which
generally only performs minor corrective changes. This
means that if a keyframe has been created at an incorrect
position, this error will not be corrected until the keyframe
is discarded. Hence, all pose estimates that are obtained by
matching against this keyframe will be inaccurate.

The downward-facing cameras deliver us absolute mea-
surements for height, roll and pitch. With those absolute
measurements we should be able to at least partially correct
inaccurate keyframes. The fused position, which contains
contributions from those absolute measurements, is already
fed back to the local SLAM method (see Fig. 5). However,
so far the fused pose is only used for motion prediction,
which does not have an influence on the existing map.

It is thus necessary to correct the pose of exiting
keyframes. We do this by applying a global transformation
to the entire map. This transformation is chosen such that it
compensates the difference between the last pose estimated
by the local SLAM system and the final pose estimate after
sensor fusion. If Ty is the transformation matrix for the
pose estimated by local SLAM, and T is the transformation
matrix after sensor fusion, then the matrix product Tf_ ! -Ty
represents the transformation that we required to map T to
Ts. We hence define our corrective transformation T as:

T. = \T; " Ts) (5)

Here, the transformation is scaled with the weighting
factor A\. This weight is set to a small value (we use a value
of 0.05), such that only small corrective steps are performed.
Any drift or error will thus be gradually reduced over several
frames. Further, we force the horizontal displacement of the
corrective transformation to 0. Because there is no sensor that
delivers absolute measurements of the horizontal position, we
prefer to keep the position estimated by local SLAM instead.

B. Angular Drift

Although the previously described drift correction works
well for correcting the height of a keyframe, its performance
is generally poor for roll and pitch errors. This can be
explained by examining the variances used during sensor
fusion. While the height measurements received from the
downward-facing cameras are more accurate than the mea-
surements received from local SLAM, the variances for
the measured roll and pitch angles are several orders of
magnitude larger. This means that roll and pitch measure-
ments from the downward-facing cameras are mostly ignored
during sensor fusion.

Unlike local SLAM, however, the downward facing cam-
eras provide an absolute measurement, which is why we
do not want do disregard this information. We solve this

problem by introducing an additional processing step during
sensor fusion, which has been labeled “Angular Drift Cor-
rection” in Fig. 5. In this step, we try to estimate the angular
drift of the local SLAM pose and correct it before sensor
fusion starts. Because the angular measurements from the
downward-facing cameras are considerably noisy, we employ
an additional Kalman filter for this task. This Kalman filter
tracks the difference between the orientation estimate gained
from local SLAM and from the downward-facing cameras.
We represent the orientation as quaternions, which matches
the representation used in the entire sensor fusion pipeline.

If we are able to correct the angular drift, then the
pose received after sensor fusion should contain the correct
orientation. We know that the fused pose is fed back to local
SLAM, where it is used to correct the map drift with respect
to the weight A\. Hence, we can also expect that the angular
drift will be reduced in the next frame. This knowledge
can be incorporated into the model of our Kalman filter.
We assume that the arithmetic difference between the two
orientation quaternions A, reduces to A, - (1 — \) from
one frame to another. If we ignore all other influences on
the orientation drift, then we arrive at the following state
transition matrix:

1—X 0 0 0
0 1-X 0 0

By, = 0 0 1-X 0 ©)
0 0 0 1-2A

The filtered quaternion difference is then added to the
orientation quaternion from local SLAM, which effectively
removes orientation drift. However, we further adapt this
pose by restoring the yaw rotation to its uncorrected value,
as there are no absolute measurements for the yaw angle.

IX. RECOVERY

The last remaining problem that needs to be solved is re-
covery of the local SLAM system in case of tracking failure.
As discussed previously, the recovery approach employed by
PTAM does not work well for our application. We hence
use a different technique that makes use of the redundant
information available from both camera pairs. Even when
the local SLAM method fails, we still receive a full 6DoF
pose estimate from the downward-facing cameras. Thus, the
pose of the MAV is still known but with a degraded accuracy.
Nevertheless, we should be able to maintain control of the
MAV until local SLAM has recovered.

If tracking fails, we force the local SLAM pose to the cur-
rent output of the sensor fusion. In this case, the fused pose
is only obtained through measurements of the downward-
facing cameras and the IMU. This pose will, however, not
match the current map of the local SLAM system, which
prevents the system from recovering by itself. We hence
discard the entire map and begin mapping from scratch. We
start by adding the current frame at the currently available
fused pose. The system should thus quickly recover once
the cause of the error has disappeared. Usually, tracking
failures result from quick camera movements. Hence, once
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Fig. 6: Ground truth and estimated position during au-
tonomous take-off, hovering and landing. Scale is in meters.

the MAV has stabilized itself by using the less error prone
pose estimates from the downward-facing cameras, local
SLAM will continue functioning.

X. EVALUATION

We have conducted several experiments to evaluate the
quality of the proposed MAV design. All flying experiments
took place in the same indoor lab environment. We covered
the floor with a texture rich carpet in order to provide suf-
ficient features for the downward-facing cameras. Examples
for the scene observed by the forward- and downward-facing
cameras are shown in Fig. 2 and 4. For all experiments we
recorded ground truth motion information with an OptiTrac
optical tracking system.

A. Hovering

In our first experiment we instructed the quadrotor to
hover at a height of approximately 1 m for one minute, with
take-off and landing being performed autonomously. This
should allow an assessment of the MAV’s flight stability
and demonstrate its general operativeness. During flight, the
MAV recorded all sensor data (i.e. camera imagery and IMU
measurements), allowing us to re-process all test-runs offline.

The ground truth position and the position estimate ob-
tained by the on-board software are depicted in Fig. 6. This
figure contains yet two more curves, which are the position
estimates received when offline processing the recorded data
with only the local SLAM system or only our ground-plane-
based pose estimation. By plotting these offline results, we
can compare how the MAV would have behaved, if it had

Method | RMSE | Avg. Error
On-Board Estimate | 1.41cm 1.44cm
Local SLAM only 3.14cm 3.15cm
Ground Plane Only | 26.2cm 23.7cm

TABLE I: Position estimation errors for the examined pro-
cessing methods.

been equipped with only two cameras. All plotted tracks have
been aligned such that their starting position and orientation
match closely. For this purpose we iteratively performed an
error minimization for each position coordinate and the yaw
rotation for the first 0.5 s of each track.

The slow take-off and landing in this experiment, as well
as the stable hovering position, are also an easy challenge
for the local-SLAM-only test run. Hence, the correspond-
ing curve and the curve for our on-board estimate both
closely match the recorded ground truth. The ground-plane-
only based pose estimate, however, shows accurate height
but exhibits high horizontal drift. While in this case, the
absolute height can be measured, the horizontal position
is only obtained through frame-to-frame tracking, which is
particularly prone to error accumulation.

We can quantify the deviation from the ground truth by
examining the Euclidean distance between the estimated and
ground truth position. If we do this for all position estimates,
we receive the errors listed in Table I. The table reveals
that the errors for our on-board estimates are less than half
as large as the errors we receive when re-processing the
sequence with the local-SLAM-only system. Much of this
improvement can be credited to the more accurate height
that we obtain with the combined approach. As we have
already anticipated from Fig. 6, the errors received with the
ground-plane-only based method are much higher than for
the other two test runs.

The more interesting measure, however, is the MAV’s
ability to keep its hovering location. To remain comparable,
we apply the same measure as used in [15]. This means that
we calculate the position error with respect to the average
position during hovering. In our case we receive an average
error of 11.0cm and a RMSE of 12.6 cm. Compared to the
values reported in [15] (average error of 26 cm and RMSE of
32 cm), our position errors are much smaller, meaning that
our MAV can keep its hovering location more precisely. We
believe that much of this performance improvement can be
credited to our modified flight controller, which now obtains
its attitude estimate from our on-board vision software.

B. Drift Compensation

The next interesting characteristic is the performance
of our drift correction methods. Because it is difficult to
evaluate the drift correction in a flying experiment, we
decided to simulate drift errors instead. We take the sensor
data recorded during an autonomous hovering flight, and re-
process this data offline. While the MAV is hovering, we
force an erroneous orientation and height into the system.
We do this by disturbing the output of the sensor fusion
for a short period of time. During this time, we keep on
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Fig. 7: Recovery of (top) height estimates and (bottom) roll- and pitch-angle after forceful disturbance.

applying an erroneous rotation and vertical translation to the
fused pose, which is being fed back to local SLAM. This
disturbance forces local SLAM into recovery, which means
that mapping starts again from scratch.

The height recorded in this experiment is plotted in
the top half of Fig. 7. The disturbance is applied during
the highlighted section. For comparison, we also included
the undisturbed height that was estimated on-board during
autonomous hovering. We see that the height from both
recordings diverge once the disturbance is applied. Once the
disturbance period ends, however, the height measurements
quickly converge again to the undisturbed on-board esti-
mates. Similarly, the disturbed and undisturbed roll and pitch
angles are shown in the bottom half of Fig. 7. Again, the
angular measurements converge to the undisturbed estimates
after the disturbance period has finished. This successfully
demonstrates the functioning of our drift correction methods.

C. Yaw Rotations

While our previous hovering experiment is also a feasible
task with only two cameras and local SLAM, the situation
is different if we encounter yaw rotations. As we have
discussed earlier, observing fast yaw rotations with the
forward-facing cameras is particularly challenging. Thus, we
expect that our MAV will benefit much from our additional
downward-facing cameras. For putting this assumption to a
test, we let our MAV perform a 360° yaw rotation. This
rotation was divided into four separate 90° turns, for which
our MAV required an average time of 2.3s each. After
each turn, the MAV waited for itself to stabilize and then
hovered for 5 seconds before continuing with the next turn.
An example for the scene observed by the forward-facing
cameras after each turn is shown in Fig. 8.

Figure 10 contains the recorded ground truth and on-board
position estimates for a typical test run of this experiment.
We again re-processed the recorded camera imagery and
IMU measurements offline with a local-SLAM-only and
ground-plane-only version of our software system, and in-
cluded the results in Fig. 10. In this figure we see that despite
the yaw rotations, the MAV is able to maintain an accurate
estimate of its current position. The ground-plane-only test
run again shows the already observed behavior of accurate
height estimates but strong horizontal drift.

The position estimated by the local-SLAM-only version,
on the other hand, shoots off in a random direction after the
first 90° turn. Please note that the diagram has been truncated
and that the position estimation continues to show the same
erroneous behavior for each of the four turns. In fact, we have
never been able to obtain a valid position estimate beyond the
first turn for any test-run with the local-SLAM-only version.
If the MAV had used this erroneous position estimate for
navigation, this would have inevitably led to a crash.

The recorded and estimated yaw rotations are depicted in
Fig. 9. In this diagram we see that the yaw rotation estimated
with our on-board method closely follows the ground truth,
while the ground-plane-only version follows the ground
truth less accurately. The local-SLAM-only version, starts
deviating significantly after the first turn, which matches the
observation from Fig. 10.

The good performance of our method can in large parts
be credited to our recovery strategy. In fact, recovery of the
local SLAM method was performed once during each turn.
Because the more rotation-robust pose from the downward-
facing cameras is used during recovery, our MAV is able to
keep an accurate pose estimate throughout the experiment.
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D. Square Flight

In a final experiment we let the MAV fly a horizontal
square-shape, with an edge length of 1 m. Please note that
this is just 2.5 times the rotor-to-rotor distance. Therefore,
this task requires precise rotor control and poses a con-
siderable challenge for the MAV. The MAV first took-off
autonomously and then approached each corner of the square
twice before landing again. It hovered at each corner for
5 seconds before continuing its trajectory. A top view of
the recorded ground truth flight path is given in Fig. 11.
For clarity, we have omitted the MAV path during take-off
and landing. Further, we also included an idealized reference
track, which we aligned against the starting pose of the MAV.
These results shall only serve as a qualitative impression
on the performance of our MAV, which is why we omit a
quantitative analysis.

XI. CONCLUSIONS

In this paper we have proposed a novel design for an
autonomous quadrotor MAV. In a GPS-denied space, the
key problem of autonomous flight is self-localization. We
have solved this problem for our MAV by employing four
cameras in two stereo configurations. We are able to perform
stereo processing for both camera pairs on-board the MAV in
real time. To our knowledge, on-board stereo processing with
more than two cameras has not been demonstrated before.

We have used a dedicated processing technique for the
stereo matching results of each camera pair. While the
imagery of the forward-facing cameras is processed with
an approach based on stereo SLAM, the downward-facing
cameras can be processed more efficiently if we assume that
the ground is flat. For this camera pair we thus use a method

based on RANSAC plane detection and ESM homography
estimation. Combining the pose estimates we obtain from
each camera pair was one of the main challenges. While
a sensor fusion can be applied to receive the current pose
estimate, we also need to update the map created by the local
SLAM method. For this task, we included the two presented
drift correction techniques.

The resulting MAV has been evaluated in several flight
experiments. In a hovering test, the MAV took-off au-
tonomously, hovered at a given height and then landed again
by itself. It was able to keep its hovering location with an
average error of only 11.0 cm. By re-processing the collected
sensor data with only the forward-facing cameras, we have
been able to show that the downward-facing cameras indeed
increase the pose estimation accuracy.

In further experiments we have demonstrated the robust-
ness of our MAV design. Pose estimation is able to auto-
matically recover when an erroneous height and orientation
are forcefully introduced into the system. Further, we have
shown that our MAV is able to successfully fly a 360° yaw
rotation. This is a difficult maneuver, for which we received
very bad results when using only the forward-facing cameras.
Our MAV was able to perform this operation thanks to the
availability of a redundant pose estimate from the downward-
facing cameras. Further, our tracking recovery method played
an important role in this experiment, which is able to perform
a re-initialization of the local SLAM system.

With this work we have shown that by simultaneously
using both, a forward-facing and a downward-facing camera
pair, we can significantly increase accuracy and robustness
of the MAV navigation. Forward- and downward-facing
cameras have different strengths and weaknesses, and are
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thus able to complement each other. Using more cameras
also adds redundancy to the system, which leads to an in-
creased fail-safety. There exist, however, situations in which
the performance of all cameras can be impeded, such as
low lighting, fog or insufficient texture. To further increase
redundancy, we would thus propose to equip the MAV
with additional sensors, such as laser scanners, ultrasonic
transceivers or a depth camera. The very limited payload of
most MAVs, however, does not allow us to carry too much
sensory equipment. Hence, such extensions will have to wait
until lighter and smaller sensors are available.
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