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A Cross-Platform Comparison of Visual Marker Based
Approaches for Autonomous Flight of Quadrocopters

A. Masselli, S. Yang, K. E. Wenzel and A. Zell

Abstract— In this paper, we compare three different
marker based approaches for six degrees of freedom
(6DOF) pose estimation, which can be used for position
and attitude control of micro aerial vehicles (MAV). All
methods are able to achieve real time pose estimation
onboard without assistance of any external metric sensor.
Since these methods can be used in various working
environments, we compare their performance by carry-
ing out experiments across two different platforms: an
AscTec Hummingbird and a Pixhawk quadrocopter. We
evaluate each method’s accuracy by using an external
tracking system and compare the methods with respect
to their operating ranges and processing time. We finally
compare each method’s performance during autonomous
takeoff, hovering and landing of a quadrocopter.

I. INTRODUCTION

Micro aerial vehicles (MAV) have become a
major trend in robotics research. Kumar et al. out-
lined the opportunities and challenges of this fast-
growing field in [10] . While controllers of MAVs
already show an amazing performance, most sys-
tems lack autonomy and depend on global localiza-
tion based on external sensors or processing. The
goal is to eliminate this dependency and to enable
MAVs navigating through the environment using
only onboard hardware. This is still a challenging
task because of the limited payload.

Common pose estimation methods for MAVs
use artificial landmarks. Such methods play an im-
portant role for landing of MAVs, when normally
MAVs require accurate pose estimation related
to a specified target. In our previous work, we
developed three different methods for this task.
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In [18], we estimate the pose using a WiiMote
camera combined with a group of infrared (IR)
markers. It is a low cost solution for autonomous
flight of quadrocopters. But the working environ-
ment of this method is limited to indoor scenarios
with existing IR markers. In [21], our monocular
vision method for pose estimation was shown to
work robustly in cluttered environments with a
regular landing pad, which consists of a letter “H”
surrounded by a circle. This method would enable
autonomous flight of MAVs with more flexibility,
at the expense of much more computational effort.
We also developed a method for pose estimation
based on a pattern of four table tennis balls [12],
which has moderate computational cost and is
independent of IR markers as used in [18], while
sensitive to color information in the environment.

These methods use different approaches to
achieve the same task. Therefore it is instructive
to comprehensively compare their performance in
both accuracy and processing time, to see which of
the methods should be chosen for which scenario.
Thus we chose two popular and very different
quadrocopter platforms, as will be described in
section III, to evaluate the performance of those
methods for enabling autonomous flight of MAVs.

After presenting related work in section II, we
describe our quadrocopters in section III and our
visual marker based approaches in section IV.
In section V, we test all methods using ground
truth data from an external tracking system and
conclude our results in section VI.

II. RELATED WORK

In Mellinger et al. [14] the ability to perform
quick and precise movements of quadrocopters is
shown, using external pose estimation based on
infrared markers on the MAVs as well as an exter-
nal flight controller. Low level flight commands are



sent back to the MAV wirelessly. Wenzel et al. [18]
demonstrated an intermediate system for visual
tracking, whose IR markers are on the ground and
all sensing and processing is done onboard of a
quadrocopter. This method has been improved and
successfully tested with the pattern mounted on
a moving platform [19]. Xu et al. [20] also use a
cooperative object and an infrared camera for pose
estimation of MAVs, but only the yaw angle is
computed. The technology presented by Grzonka
et al. [6] enabled autonomous quadrotor navigation
in indoor environments using a modified 2-D laser
range finder setting.

Previous work on controlling UAVs (unmanned
aerial vehicles) visually mainly focuses on the
landing task, since landing is the most challenging
part of a flight, requiring precise pose estimation
of the UAV relative to the landing target. In
[16][15][11] and[19] methods incorporating pre-
defined targets have been successfully used. Hov-
ering and landing control of a UAV on a large
textured moving platform enabled by measuring
optical flow is achieved in [7]. Other work focuses
on visually finding a suitable area for landing
[5][1].

Saripalli et al. [16] solved the landing task of a
helicopter quite early by using image moments for
object recognition and estimating the relative po-
sition to the landing pad with precise height of the
helicopter provided by differential GPS. However,
this approach is bound to fail in either cluttered
or GPS-denied environments. A distinct landing
pad with five circle triplets in different scale was
designed by Merz et al. [15] in order to estimate
the relative pose in a coarse-to-fine process. Lange
et al. [11] achieved autonomous landing and posi-
tion control of an MAV by estimating the relative
position from a landing pad consisting of several
concentric circles. This approach only works as
long as it is guaranteed that the MAV is flying
exactly parallel to the landing pad.

III. OUR QUADROCOPTERS
We evaluated the performance of the three tech-

niques on two types of quadrocopters of different
weight and onboard processing capabilities. This
way we could prove a method’s portability, and
could also compare the differences of the methods
with the effect of changing the platform.

1) AscTec Hummingbird: Our first platform to
test and compare our methods was a Hummingbird
made by Ascending Technologies GmbH (AscTec),
Munich, Germany (see Fig. 1). It is known for
its high agility, shown in [14]. With the Wi-
iMote/Microcontroller setup used for the first tech-
nique, it weighs 480 g including battery. With the
PointGrey FireFly/Gumstix setup for the second
method it has a total weight of 570 g.

Fig. 1. AscTec Hummingbird

2) Pixhawk Cheetah: Our second test platform
was a Pixhawk Cheetah quadrocopter developed at
the ETH Zurich [13]. It is equipped with an Intel
Core 2 duo processor with 1.8 GHz and weighs
1370 g with our setup (see Fig. 2), including bat-
tery and the two cameras. While carrying more
computing power, it is less maneuverable than
the Hummingbird, mainly caused by its heavier
weight.

Both MAVs are controlled by four inde-
pendent, classical proportional-integral-derivative
(PID) controllers via a serial interface to maintain
a constant position and yaw.

IV. METHODS
The following sections describe the three meth-

ods for visual pose estimation in detail:

A. IR-LED Pattern and WiiMote
The follwing method was formerly used in [19]

and has been further developed. It uses a pattern of
four infrared LEDs, which is tracked by a single
camera taken from a Nintendo Wii controller. From
the pixel positions of the IR spots, all 6 degrees



Fig. 2. Pixhawk Cheetah

of freedom are determined using an 8 bit ATmega
microcontroller.

1) Spot Recognition: A pattern of four high-
power infrared LEDs was constructed as an ar-
tificial landmark, measuring 38 cm in diameter.
The LEDs are coplanar and parallel to the ground
plane. Three of them form an isosceles triangle,
one is used as a redundant spot for determining
a confidence (see below). It is tracked by an
infrared camera from the Nintendo Wii controller,
which communicates via I2C and already provides
the pixel positions of four infrared light sources
at once. Because of its small size and weight
the camera is especially suited as an onboard
sensor for MAVs. Having a physical resolution
of 128×96 pixels, the coordintates of the IR spots
are returned with a resolution of 1024×768 pixels
using eight times subpixel analysis.

The field of view (FOV) of the camera is about
42 degrees in diagonal. A lightweight pan/tilt unit
was constructed with two miniature servo motors.
This unit enlarges the operating range by direct-
ing the camera towards the IR-pattern. In order
to estimate the current servo angle, two analog
inputs of the microcontroller were connected to the
potentiometer of each servo motor. A calibration
function from voltage measurements gives precise
and fast results compared to estimating the servo
position over time by means of the PWM signal.

2) Retrieving 6DOF Pose: With the image
coordinates of four points and the knowledge

of the corresponding points’ positions in the
world/pattern frame, the full pose of the camera
and therefore of the quadrotor can be determined
relative to the pattern. The underlying problem
is known in literature as the Perspective-4-Point
Problem, or P4P, in general PnP for n points:
Given n points in world coordinates and the corre-
sponding coordinates in a camera image which the
points are projected on, the task is to find the set
of feasible camera poses. For n = 4 patterns can
be found such that in general there is only one
unambiguous solution. We solve the problem in
the following manner: Since the operating range is
restricted, i.e. we can assume that the quadrocopter
is flying in an upright position and in front of the
LED pattern, we can find the correspondences by
simply sorting the four image points along their x-
coordinates of the camera image to identify them
as L, M, R and V . The next step is solving the P4P,
for which we first consider the points L, M and
R, technically solving a P3P, and then adding V to
verify the solution. In P3P, up to four solutions can
be found [3]. We can already exclude three solu-
tions by considering the operating range again and
therefore gain a full pose estimate using only three
markers. However, with the 4th marker we add
redundancy to achieve a confidence measurement,
successfully rejecting most of the false positive
detections of the pattern.

P3P is solved using an own method developed
to run in real time on the microcontroller. We
compared it to the method introduced in [9] and
found it to be about 20 times faster while being
comparably accurate. However, it provides only
one solution and is restricted to symmetric patterns
using isosceles triangles, which is appropriate for
our application. Given the points L, M and R in
world coordinates and their corresponding image
points Li, Mi and Ri, we first want to determine
the camera’s position P in world coordinates. In
a second step the orientation can be inferred, if
needed.

By applying a standard pinhole camera model,
we can determine the light rays l, m, r going
through Li, Mi and Ri and meeting in P in camera
coordinates. Let m′ be the projection of m onto the
plane spanned by l and r, so we can calculate the
angles α = ∠(l, r), β = ∠(m′, r) and γ = ∠(m′,m).



We now define a right-handed intermediate co-
ordinate system as follows (see Fig. 3):

Fig. 3. Scheme of the solving approach to the P3P problem.

Let the origin be the middle of L and R, the y-
axis go through L and R pointing towards R, and
the x, y-plane go through L, R and P with the x-
axis being directed such that Px ≥ 0.

Using the inscribed angle theorem, we know that
P must lie on a circle k with center C( yR

tanα , 0, 0) and
radius d(C,R).

Using the inscribed angle theorem a second
time, we find that m′ intersects k in B, independent
of where P on k is located. B can directly be
constructed by rotating R around C by 2β.

From the definition of our intermediate coordi-
nate system and from the symmetry of the pattern,
we know that M lies on a circle w in the x, z-
plane with the origin as center and the offset of M
in world coordinates as radius rw.

We therefore know that

zM =

√
r2

w − x2
M. (1)

Since M lies on m, we can also derive that

zM = d(P,M′)tanγ, (2)

with M′(xM, 0, 0) being the foot of M in the x, y-
plane. With m′ going through B and M′, P can
be described dependent on xM by intersecting m′

with k (and picking the solution unequal to B).
We can finally equate (1) and (2) to determine xM.
Squaring and further expanding yields the quartic
polynomial

c4x4 + c3x3 + c2x2 + c1x + c0 = 0 (3)

with x = xM − xC and coefficients

c4 = m2 + 1
c3 = 2(xC − xB)
c2 = v + (1 − 2x2

C)B2 − 4xC xB

c1 = 2(xC B2 − vxB)
c0 = vB2 + m2(B2)2,

with v = x2
C − r2 and B2 = x2

B + y2
B.

From the limited operating range it can be
inferred that the largest root will yield the correct
estimate. It is found using Newton’s method. Back
substituting x will get M and P in the intermediate
coordinate system. P can then be transformed into
world coordinates by simply rotating around the
y-axis by ε = atan2(zM, xM).

Finally, a confidence is calculated by re-
projecting all four points based on the current pose
estimate and determining the euclidean distances
ei to the actual measurements in the image plane.
Assuming Gaussian noise, the confidence c then
equals:

c = e−
∑

ei
σ2 . (4)

The confidence value can be used to determine
the Kalman Gain in order to filter the pose estimate
using a Kalman Filter,

B. Table Tennis Balls and Color Segmentation
In this method the active IR-LEDs from the

first method are replaced by passive markers. Four
orange table tennis balls are glued onto a black
piece of cardboard to form a distinct pattern, mea-
suring 40 cm in diameter. Live images are taken
with a PointGrey FireFly USB 2.0 color camera
with VGA resolution (640×480), global shutter,
and capable of 60 fps. Together with the lens, it has
a diagonal FOV of about 48 degrees. The camera
is turned by 90 degrees to maximize the vertical
FOV. This is due to the fact that we can control
the yaw angle of the quadrocopter in order to point
the camera towards the pattern, whereas we have
no influence on the pitch angle, since pitching
the quadrocopter would immediately change its
position and is therefore reserved for controlling
the quadrocopter with respect to the target position.
A (pan/)tilt unit would also be possible, but is
harder to implement compared to the WiiMote



setup, since the PointGrey camera is larger and
heavier.

This method has been published in [12]. The use
of passive markers has shown to be more robust
in the presence of sunlight compared to the first
method.

The algorithm is designed to be fast even on
limited hardware. To control the AscTec Humming-
bird, all image processing plus controlling of roll,
pitch, yaw and thrust is done on a Gumstix Overo
Fire, a single-board computer, equipped with a
600 MHz ARM Cortex-A8 CPU. It runs in real-
time on the ARM processor, processing all of the
60 frames coming from the camera.

Pose estimation is done in two steps: First the
table tennis balls are detected within the camera
image. After that all six degrees of freedom are
determined based on the image coordinates of
the balls and the P4P solving algorithm described
above.

Table Tennis Ball Recognition: We assume the
table tennis balls to appear as an orange circular
region with a radius of least three pixels within the
image. Figure 4 shows the steps for detecting the
table tennis marker balls: Each frame is received
as raw image containing color information from
the Bayer pattern. To ensure fast processing, we
omit debayering the whole image. Instead, we
only evaluate the color of a pixel when testing it.
Initially, we only have to test each fourth pixel
in both x and y direction to ensure a ball region
of radius bigger than two is hit. If and only if
the color matches the orange signal color of a
ball, the surrounding region is searched pixel-
wise by applying the floodfill algorithm. Floodfill
also calculates a bounding box for each region
incrementally. This reduction on a 4×4 search grid
accelerates the region finding process by a factor of
almost 16, since balls appear rarely in the image.
Testing for the color is done directly on the RGB
pixel values on the raw image using a binary
look-up table of candidate ball colors. Each region
of interest is then validated to have a feasible
size. Then their surrounding contour is extracted
and tested via a Randomized Hough Transform
(RHT) for having a circular shape. The four largest
regions passing RHT are taken as detections of the
table tennis balls. In Fig. 4 it can be seen that

this final check discards false positives from the
segmentation step and therefore ensures robustness
even in cluttered environments. For the following
pose estimation only the center coordinates of the
bounding boxes are regarded. The size of the balls
is too small to get reliable distance data.

Fig. 4. Detection of the table tennis ball pattern: Upper left:
Input image from the camera Upper right: 4×4 pixel scan grid
and segmented regions. Lower left: Output of contour following
algorithm. Lower right: Successful detection.

C. Landing Pad Detection
In this method, published in [21], we estimate

the 6DOF pose of the quadrocoptor based on
a single image of a typical landing pad which
consists of the letter “H” surrounded by a circle
with a diameter of 9 cm. This passive marker is
natural to use for UAVs to guide approach and
landing, since patterns of this type are commonly
used to mark landing pads.

1) Landing Pad Recognition: Images are taken
with a downward looking PointGrey FireFly
USB 2.0 monochrome camera with VGA resolu-
tion and 60 fps. The FOV angle with the used
lens is about 90 degrees. Since the landing pad is
not particularly textured, whereas its background
might be very cluttered, we decided to treat the
recognition of it as a sign detection problem and



solve it similarly as in [17]. We use adaptive
thresholding implemented using an integral im-
age to binarize each camera image and find its
connected components using blob detection. Next
we classify these connected components using an
artificial neural network to detect the “H” pattern.
Finally we suppress false positives by enforcing
that each letter “H” only belongs to a landing pad
if it is surrounded by a circle.

Fig. 5 is an exemplary image processing result
for landing pad recognition. It shows that different
circles and letters “H” can be efficiently detected
even if the perspective changes dramatically. False
positives for the individual circle class or letter
“H” class might appear, but would not be finally
classified as a landing pad.

Fig. 5. Landing pad recognition results when the quadrotor hovers
above the landing pad in a cluttered environment. While many “H”-
patterns and circles are detected, only the proper combination is
recognized.

2) Ellipse Fitting: After detecting the landing
pad, we estimate the relative pose to the pad by
obtaining the ellipse corresponding to the per-
spective projection of the landing pad circle and
that of the letter “H”. We do so by applying
a Canny edge detector on the gray scale image
pattern corresponding to the landing pad and fitting
ellipses to these edges by implementing a so called
direct least square fitting algorithm [4]. The lens
distortion effect to the ellipse parameters is also
taken into account during this process.

3) 6DOF Pose from Ellipses: We use one el-
lipse originating from the projection of a known
circle for the 5DOF pose estimation of the quadro-
tor, including its 3D position ~T B

W and the roll
and pitch angles (φ, θ) of the quadrotor within
the landing pad. φ and θ are derived from the
normal vector of the landing pad plane. Then we
extend this to a 6DOF pose estimation by using the
orientation of the major axis of the ellipse fitted to

the letter “H” as yaw angle (ψ) approximation. We
use the computational geometry results in [2] and
[8] for the pose estimation, and then use an IMU-
aided approach to eliminate ambiguity inherited
from this method.

An ellipse in the image frame can be described
by the following quadratic equation,

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0. (5)

Following the interpretation in [8], with f being
the focal length of the camera, we get a conic Q
in the form of

~Q =


A B D

f
B C E

f
D
f

E
f

F
f 2

 (6)

We directly derive the results for the 5DOF pose
of the circle in the camera frame from the conic
~Q. Detailed proof of this result can be found in [8]
and [2]. Let r be the radius of the original circle,
λ1, λ2, and λ3 be the eigenvalues of ~Q, and the
corresponding unit eigenvectors ~u2 and ~u3. As ~Q
has a signature of (2, 1) [8], we can assume that
λ3 < 0 < λ1 ≤ λ2. Then the unit normal vector
and the center of the landing pad described in the
camera frame (denoted by ~n and ~T W

C ) are given by

~n = S 1

√
(λ2 − λ1)
(λ2 − λ3)

~u2 + S 2

√
(λ1 − λ3)
(λ2 − λ3)

~u3, (7)

~T W
C = z0

S 1
λ3

λ1

√
(λ2 − λ1)
(λ2 − λ3)

~u2 + S 2
λ2

λ1

√
(λ1 − λ3)
(λ2 − λ3)

~u3

 ,
(8)

where z0 = S 3
λ1r
√
−λ2λ3

, and S 1, S 2 and S 3 are
undetermined signs. As ~n faces to the camera, and
the center of the circle is in front of the camera, we
can get two constraints for the undetermined signs,
then two solutions remain. If we assume that the
error of the attitude estimates by the IMU is small,
and the landing pad is placed horizontally oriented,
the gravity vector (~g) calculated form this attitude
estimation can provide us the third constraint: we
chose ~n to be the one closer to ~g. From (7) and
(8) and the three constraints, we get the 5DOF
pose of the circle. Together with the yaw angle
calculated from the letter “H”, we can obtain the
6DOF pose of the quadrotor in the landing pad
frame by performing a coordinate transformation.



V. EXPERIMENTS

Tests were performed in an indoor flying lab,
equipped with a Natural Point OptiTrack1 tracking
system to provide ground truth pose data. It runs at
100 Hz, covering a test area of about 2× 2× 2 m3.

We tested the methods with two scenarios: In
the first the quadrocopters were remotely flown in
order to evaluate the range and accuracy of the
pose estimation methods. In the second scenario
the task was to perform an autonomous flight
consisting of take-off, hovering and landing. On
the Pixhawk all methods have been implemented.
Since the Hummingbird cannot provide enough
computation power for our landing pad method,
we only implemented the IR-pattern method and
the table tennis ball method on the Hummingbird.
This yielded five setups for our cross-platform
comparison experiments as shown in Table I.

TABLE I

Setups for our cross-platform experiments

IR-pattern Table tennis Landing pad
Hummingbird × × n.a.
Pixhawk × × ×

A. Manual Flight

We performed several flights remotely control-
ling the quadrocopters. Hereby we made sure to
cover a large part of the operating range of each
method, which is usually not the case during the
autonomous flight, since the controller tries to keep
a constant position. In Fig. 6 we can see one
representative trajectory of the flights, using the
Hummingbird with the IR pattern. The y direction
is similar to x and is omitted for clarity. The curves
are well in line with the ground truth data. The
other four setups had similar errors. Table II shows
the mean error for three flights of each setup,
defined as the absolute difference between the
pose estimate of the tracking system and of each
method, respectively. The table tennis method and
the “H” landing pad method performed slightly
better than the IR-LED method, still all approaches
provide tolerable errors for our application.

1http://www.naturalpoint.com/optitrack

Fig. 6. Pose estimate of the IR-LED method on the Hummingbird
during manual flight, compared to ground truth. Red line: x. Blue
line: z (height). Dashed lines: Ground truth.

TABLE II

Mean error during manual flights. X, Y and Z in cm

X Y Z
Hummingbird with IR-LEDs 3.42 3.86 3.12
Hummingbird with table tennis balls 1.42 2.56 1.59
Pixhawk with IR-LEDs 3.64 4.18 3.02
Pixhawk with table tennis balls 3.44 3.95 1.82
Pixhawk with landing pad 2.20 1.91 0.44

B. Autonomous Flight
We performed ten flights for each of the four

setups, using the corresponding onboard estimates
as input to the controller. The target position for
the first three setups was 170 cm in front of the
pattern at 100 cm height, for the last setup the
target position was 100 cm directly over the middle
of the landing pad. The mean error in x, y, z and
yaw was evaluated during hovering using the data
of the tracking system and defining the error as
the absolute difference between current and target
pose. The results are listed in table III. We also
evaluated the precision of the landing procedure
by observing the mean error in x, y and yaw after
landing. See table IV for the results.

C. Runtime Analysis
For all setups the processing time was measured

(see table V). P4P took 21 ms on average on
the ATMega microcontroller, 6 ms on the Gum-
stix Overo Fire and 1 ms on the Pixhawk’s Intel
Core 2 duo processor. Ball detection took 9 ms on
the Gumstix and 1 ms on the Intel Core 2 duo.
Together with P4P it yields an overall detection
time of the table tennis ball method of 15 ms on
the Gumstix and 2 ms on the Intel Core 2 duo.



TABLE III

Mean error during the hovering phase of autonomous flights. X,

Y and Z in cm, yaw in degrees

X Y Z yaw
Hummingbird with
IR-LEDs 7.30 6.53 3.44 8.5

Hummingbird with table
tennis balls 10.78 9.23 6.89 4.66

Pixhawk with IR-LEDs 3.34 7.34 10.28 4.80
Pixhawk with table tennis
balls 12.89 12.64 7.14 2.77

Pixhawk with landing pad 8.95 7.90 2.52 3.13

TABLE IV

Mean error after landing. X and Y in cm, yaw in degrees

X Y yaw
Hummingbird with IR-LEDs 6.64 6.54 7.1
Hummingbird with table tennis balls 8.38 15.32 7.03
Pixhawk with IR-LEDs 3.70 10.50 7.43
Pixhawk with table tennis balls 11.74 7.01 5.95
Pixhawk with landing pad 3.79 7.86 5.26

Detection of the H-Pattern on the Pixhawk took
10 ms on average, the subsequent pose estimation
1 ms. Using the respective processing hardware, all
methods could be run at 60 Hz, the full frame rate
of the camera.

VI. CONCLUSIONS
In this paper, we evaluated three methods for

estimating an MAV’s pose by using visual mark-
ers and a monocular camera. All methods are
applicable for autonomous take-off, hovering and
landing of an MAV. The error in pose estimation
was significantly less than the error introduced by
the controller during autonomous flight. Also the
operating range for each method is large enough
to tolerate the movements of the quadrocopter.
Though the test setup was with a downward look-
ing camera for the “H” pattern and a sideways

TABLE V

Runtime analysis of all methods

Microcontroller Gumstix Intel
IR-LEDs 21 ms 6 ms 1 ms
table tennis balls - 15 ms 2 ms
landing pad - - 10 ms

looking camera for the other two approaches, one
should also be able to place each pattern and mount
the camera according to the current application, no
matter which method one chooses.

Regarding the processing time, the IR-LED
based system is the fastest, and also the only one
being able to run on a microcontroller, exploiting
the abilities of the Wii Remote camera. Yet it
is the least accurate system in our comparison.
One further drawback is its dependence on active
markers, therefore requiring additional power and
being more sensitive to sunlight.

The table tennis ball approach is faster than
the “H”-pattern approach, but depends on color
information. It is comparable in accuracy to the
last method. For the hovering task it is interesting
to notice that it was the worst of all three in
position error, but in both cases better in yaw
error compared to the other method on the same
platform, respectively. This is due to the fact that
for this method yaw was the most critical quantity
to control in order to keep the pattern in sight of
the camera. Therefore the PID parameters were
adjusted based on a high priority on yaw. Using
passive markers, the method can be used under
sunlight conditions and is therefore also suited for
outdoor scenarios, where the first method will fail.

The last method is the most computing intensive
and thus slowest method, impractical in porting it
onto our smaller Hummingbird platform. However,
it is notably the most accurate along the normal of
the pattern, in our case the z-axis, resulting in a sta-
ble altitude controller, proven during autonomous
hovering. It also got the quadrocopter closest to
the landing pad, with the least yaw error. The use
of passive markers also enables it for outdoor use.
Compared two the second method, no color camera
is needed.

From the manual and autonomous flight exper-
iments, it can be said that all methods have a
comparable accuracy. Therefore one should choose
the method depending on processing power and
lighting conditions.
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