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Abstract
We present a novel approach to self-localization with passive RFID fingerprints using vector space similarity measures
and weighted k-nearest neighbors (WKNN). Embedded in a particle filter, our technique provides robust and accurate
position estimates. This is shown through various experiments with a mobile robot. The formulation of the observation
model guarantees applicability to any type of off-the-shelf RFID reader which counts RFID tag detections. Different
similarity measures are investigated, and a new measure is proposed.

1 Introduction

Due to its high-fidelity data association, radio-frequency
identification (RFID) has become a valuable sensor in
robotics. Several studies have shown how to localize
robots – and mobile devices in general – at an accuracy
far better than just the cell of origin defined by a detected
transponder. The developed techniques have made it pos-
sible to cope with the inherent noisiness of long-range pas-
sive RFID measurements, and they have tackled the prob-
lem that RFID tags are merely identified, without informa-
tion about bearing and range to them.
In this paper we revisit self-localization with long-range
(UHF) passive RFID. We pursue a combination of parti-
cle filtering for position estimation and fingerprinting for
modeling observations. As usual, the term fingerprinting
means that raw observations (RFID measurements) are as-
sumed to explicitly characterize the locations where they
were recorded. An explicit model of the interaction be-
tween sensor and environment is not required. The de-
rived observation model has the advantage that it is sim-
ple and applicable to all long-range RFID readers of the
standard EPC Class 1 Gen. 2. This standard is currently
used for carton and pallet tagging in industry and of grow-
ing interest for item-level tagging. Our approach compares
RFID measurements to reference fingerprints for inferring
pose estimates, using vector similarity measures. We ex-
amine different measures for the core fingerprint retrieval
and assessment task. Some measures are well-known and
broadly used, others less common or entirely novel.
This paper is organized as follows: In Sect. 2 we review
related work. Thereafter, in Sect. 3, we briefly describe
the technology and the consequences for the localization
task. Our proposed approach is presented in Sect. 4. In
Sect. 5 we describe and briefly discuss vector space simi-
larity measures. Experiments with a mobile robot are eval-
uated in Sect. 6, before we draw conclusions in Sect. 7.

2 Related Work

Localization has been an active field of research for sev-
eral years. Among countless pieces of scientific work, we
here focus on three types: RFID-based localization, posi-
tioning with fingerprints using wireless identification, and
fingerprinting-based localization with mobile robots. With
regard to the latter category, the visual appearance of a
scene is probably the most widely used type of fingerprint:
A robot is localized using visual features extracted from
camera images which are compared to reference views. In
contrast to stereo vision or structure from motion, the co-
ordinates of landmarks corresponding to recognized fea-
tures need not be reconstructed. Examples are [17, 21],
in which local integral invariants are employed, in [21]
combined with Monte Carlo localization. Ulrich and Nour-
bakhsh also compared similarity measures for appearance-
based place recognition using color histograms [18]. Re-
cent examples of the more general approach without prior
environment map, known as appearance-based simultane-
ous localization and mapping (SLAM), are the works by
Cummins and Newman [4], Konolige and Agrawal [9], or
the minimalistic approach by Andreasson et al. [1]. All
these works more or less build on techniques developed
for the more general field of content-based image retrieval
(CBIR). A comparison of similarity measures for CBIR is
presented in [13], for instance.

Wireless fingerprinting approaches utilize the identifica-
tion mechanisms of wireless standards (WiFi, Bluetooth,
GSM etc.) which can be regarded as active (=battery-
powered) RFID. Fingerprints commonly consist of the ad-
dresses of detected devices and information about signal
strength or link quality. Sample approaches using signal
strength (RSSI) are Radar [3] and its extension to Markov
localization by Ladd et al. [10]. Li et al. [11] compared
WKNN and Markov localization based on WLAN signal



strength measurements. Examples of fingerprinting with
other proprietary active RFID systems are [14, 22].
With regard to fingerprinting-based localization with
RFID, Lim and Zhang developed a deterministic approach
for passive RFID tags on the ceiling [12]. Joho et al. local-
ized a shopping cart with a signal strength map which was
recorded with a passive RFID reader [8]. In [15], we pre-
sented a probabilistic fingerprinting approach based on lo-
cal regression and Bayes estimation of detection rates, em-
bedded in a particle filter. This approach requires knowl-
edge about how often the RFID reader issues inquiries.

3 Long-range Passive RFID
Radio-frequency identification (RFID) is a technology
originally designed for the contactless identification of
RFID-tagged objects via radio waves. An RFID reader
emits an electromagnetic field which enables passive
(=batteryless) transponders in read range to send back their
unique identifier. According to the industry standard EPC
C1G2, transponder IDs consist at least of a unique 96-bit
number, the electronic product code (EPC). Long-range
systems in the UHF band have a read range of several
meters (sometimes up to 10 m) at full power level (2 W
EIRP). Since tag IDs are unique and the reader detects
transmission errors, it is virtually impossible to recognize
the wrong object. This property is valuable for robotics:
RFID tags can be used as navigation landmarks with per-
fect data association.
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Figure 1: Left: The experimental platform, a MetraLabs
SCITOS G5, with an onboard passive UHF RFID reader
(reader antennas are white) and a laser range finder (yel-
low) for ground truth. Right: A model of detection rates for
the employed RFID system. This model is not required for
our fingerprinting approach and just shown to depict detec-
tion characteristics. Right in front of the reader antenna a
single transponder is identified six times per measurement
on average, and only once in a distance of approx. 2.5 m.

Passive RFID also has some shortcomings, which we ad-
dress in the work at hand: First, detection rates are noisy,

and transponders within theoretical read range are fre-
quently not detected. Moreover, standard-compliant RFID
systems can only determine the presence of a tag; the dis-
tance or bearing to the tag are not disclosed. This is in
opposition to active RFID, where signal strength indicates
the distance to a tag. Detection rates, however, do depend
on the relative position of the RFID tag with respect to
the antenna of the RFID reader. A model of this relation-
ship is visualized in Fig. 1. Such a sensor model can be
utilized for localization purposes, as shown by several re-
searchers [7, 8] if, besides the model, the positions of static
RFID tags in the environment are known. Other factors
such as materials (metal or water) in the vicinity of RFID
reader and tag reveal major influence on the possibility to
successfully read the tag ID, too, and can hardly be mod-
eled.
For this reason, we again pursue a fingerprinting approach
to localization in this paper: Instead of using a model
of the detection rates of the reader, we infer the pose
of the robot directly from reference RFID measurements
recorded in a prior mapping phase. The idea is to make no
assumptions about how and where RFID transponders are
distributed. Aiming at future application scenarios, tags
will most likely mark shelves and products to the sides
of corridors in stores, and our localization technique uti-
lizes the given RFID infrastructure. The learnt distribution
of measurements also implicitly contains the hardly mod-
elable environment characteristics, which promises better
localization accuracy. During a calibration/mapping stage,
the robot records RFID detections at several positions. A
laser range finder provides reference positions in our case.
Later, in the localization stage, the pose of the robot is esti-
mated by comparing the current RFID measurement to the
fingerprints from the calibration step.
Passive RFID systems always report tag detection counts,
i.e., for each tag which was detected, the reader reports
how often. In autonomous mode, the RFID reader re-
peatedly perform inquiries in the background. Only af-
ter a (usually fixed) time interval T , the list of detection
counts is reported. The actual number of read attempts
made in T depends on several factors, e.g., the number
of transponders close to the RFID reader, and may be un-
known. This information, however, is required in other
probabilistic RFID fingerprint approaches [15].
In this paper, we generalize the interpretation of an RFID
measurement. Mathematically, we treat RFID tag detec-
tion counts as vectors fa = (f1, . . . , fL), where fi ∈ N0

counts how often tag i has recently been detected by an-
tenna a. L is the number of tags in the environment, but
needs not be known in advance. It typically increases while
the robot is moving through the environment. So, techni-
cally, we store fa as a list and set, when required, fl = 0
for every not observed transponder l. Moreover, contrary
to related approaches [12, 15], fi does not have a prede-
fined upper bound. f = (f1, . . . , fA) finally makes the tu-
ple comprised of tag lists fa for all A antennas.



4 Approach
4.1 Mapping/Calibration
Every fingerprinting approach starts with a mapping stage
during which fingerprints are collected at known reference
positions. As common, our robot (see Fig. 1) possesses
a laser range finder: Hence, it can be steered through the
environment while recording RFID measurements and an-
notating them with the latest pose estimates obtained via
classical laser-based localization [6]. The result of the
mapping phase is a set m = {F1,F2, . . .} of reference
fingerprints Fi = (fi,xi), containing RFID measurement
fi and the corresponding pose xi = (xi, yi, θi) of the robot.
(xi, yi) are the coordinates of the robot in a global frame
of reference, and θi is the global heading of the robot.
The mapping stage can be tedious if intensive human inter-
vention is required. If transponder positions are not known,
however, model-based approaches require thorough map-
ping as well. Moreover, reference positions from another
positioning system are required. Solutions to these issues
are provided by exploration and SLAM techniques (e.g.,
[20]), but are beyond the scope of this work.

4.2 Localization
4.2.1 Particle Filtering

For localizing the robot, we employ a particle filter [2]
(also known as Monte Carlo localization [6]): At each time
step t the pose of the robot xt is modelled by a probabil-
ity density function (pdf) over the space of locations. This
pdf is approximated by a set of n samples (particles). Each
sample consists of a pose hypothesis xit = (xit, y

i
t, θ

i
t) (2D

position+heading) and an importance weight wit. The ini-
tial distribution, p(x0), is usually assumed uniform over
the state space. The filtering algorithm then iteratively per-
forms three steps:

1. Prediction: Given a new odometry reading ot since
iteration t − 1, the robot pose at time t is predicted
by propagating all particle positions according to a
motion model p(xt|ot,xt−1).

2. Correction: A new measurement gt leads to a cor-
rection of particle weights according to the likeli-
hood function p(g|x,m), the observation model:

wit = ηt w
i
t−1 p(gt|xit,m) (1)

m is an environment representation (in our case the
set of reference fingerprints from Sect. 4.1). The
normalizer ηt ensures that

∑n
i=1 w

i
t = 1.

3. Resampling: A new set of n particles with equal
weights 1/n is obtained by drawing n times a sam-
ple from the old set of particles. The probability of
choosing particle i corresponds to its weight wit. An

option is to resample not always, but only if the esti-
mate n̂eff ≈ 1/

(∑n
i=1(wit)

2
)

of the effective sam-
ple size falls below some threshold, e.g. n/2. There
are several resampling methods (for a comparison
we refer to [5]), among which we chose residual re-
sampling.

The current pose of the robot can be estimated by x̂t =∑n
i=1 w

i
tx
i
t. In this way, particle filtering enables a robot

both to localize itself globally and to track its position over
time. A major factor of robustness and versatility is that
particle filters can deal with arbitrary probability distribu-
tions of noise with respect to motions and sensor data. This
makes them a good choice when using passive RFID.

4.2.2 Modeling Observations

The observation model is represented by the likelihood
p(g|xi,m) for a sample placed at position xi, given the
current measurement g. Analogously to the reference fin-
gerprints, g = (g1, . . . ,gA) consists of tag counts for all
A antennas. In the following, we derive a likelihood func-
tion, based on a k-nearest neighbor search for reference
fingerprints and subsequent weighting.
First, all reference fingerprints fi are searched which con-
tain at least one tag also detected in g. An inverted in-
dex of reference fingerprints is used for this purpose, that
is, a mapping from transponder identifiers l to indices of
reference fingerprints containing l. Then the similarities
sima(ga, fi,a) are computed individually for all antennas
a, a = 1, . . . , A, by means of similarity measures depicted
in Sect. 5. Generally, there are only few basic constraints
on the choice of the function sim: First, it should yield
nonnegative values. Second, values close to 0 indicate dis-
similarity, and the larger the computed value, the larger is
the similarity of the two compared RFID measurements.
In the next step we calculate the similarity of the current
measurement g and all reference fingerprints fi. The simi-
larities at all antennas are integrated by a weighted average:

sim(g, fi) =

A∑

a=1

sima(ga, fi,a) · n(ga, fi,a)
∑A
a=1 n(ga, fi,a)

(2)

where

n(ga, fi,a) := max(|ga|, |fi,a|)

be the maximal number of detected tags in the vectors ga
and fi,a.
Using sim, we search for the k most similar reference fin-
gerprints Fi1 , . . . ,Fik .1

Then, we compute the likelihood p(g|x,m) of observing
g from the pose x (the positions of the particles), given M

1If there are only k′ < k fingerprints of nonzero similarity, one proceeds with only k′ fingerprints.



reference fingerprints in m:

p(g|x,m) (3)

=
M∑

j=1

p(g|x,Fj)p(Fj |x) (4)

=

M∑

j=1

νssim(g, fj) νd exp

(
−1

2
d(xj ,x)

)
(5)

Eq. 4 follows from the law of total probability. In Eq. 5,
we model p(g|x,Fj) (with Fj = (fj ,xj)) by the similar-
ity of g and fj , normalized with a suitable νs. Moreover,
p(Fj |x) is represented by a density depending on the dis-
tance between x and the jth reference fingerprint fj , again
normalized with a suitable νd. d(·) is a squared distance
assessing both translational and rotational displacement:

d(x,xij ) =
(x− xij )2

σ2
d

+
(y − yij )2

σ2
d

+
(θ � θij )2

σ2
r

(6)

The � denotes the difference of angles, restricted to the
interval [−π, π]. σd and σr are bandwidth parameters for
the translational and the rotational distance components,
respectively. The final approximation

p(g|x,m) ≈ ν
k∑

j=1

sim(g, fij ) exp

(
−1

2
d(xij ,x)

)
(7)

builds on the assumption that the k most similar measure-
ments capture most of the likelihood in Eq. 5. We further
set ν = νsνd. Note that ν needs not be computed explic-
itly, because sample weights are normalized after applying
the observation model.

5 Similarity Measures
In this section we investigate similarity measures for com-
paring two RFID measurement vectors (fingerprints) and
for weighting particles as described in the previous section.
In addition to well-known measures, we examine new sim-
ilarity measures which take characteristics of passive long-
range RFID into account.

5.1 General Considerations
The choice of an adequate similarity measure can have ma-
jor impact on the localization result. In the technical liter-
ature, a variety of similarity measures has been employed
for different applications. This already shows that a suit-
able measure is task-dependant. A similarity measure for
long-range passive RFID should take into consideration:

1. Data association is known. Hence measurement
vectors can be compared in a component-wise fash-
ion. Cross-bin similarity measures (such as earth
mover’s distance or cross-correlation) need not be
used.

2. False-negative detections frequently occur and must
not be overrated. RFID tags in read range may not
be detected even if detected by a prior inquiry in the
same position.

3. The number of tag IDs in common in two compared
measurements may be more important than how of-
ten each of the tags was counted: Detection rates
are typically noisy, but if there are several RFID tags
spread over the environment, the overlap of tag iden-
tifiers helps to refine the position of the RFID an-
tenna.

5.2 A Selection of Similarity Measures

In Tab. 1 we list the employed measures, which we de-
tail in the following. All functions are nonnegative and
symmetric. That is, sim(g, f) = sim (f ,g) ≥ 0. We
need not bound sim (f ,g), because our approach is scale-
independent w.r.t. the similarity space.2

5.2.1 Measures of Similarity

Histogram intersection (abbreviated by HIST) is a
widespread measure of similarity. It was originally de-
veloped to compare color histograms [16] for image re-
trieval. Given two RFID measurement vectors, it indicates
how many tag counts two measurements have in common
in each component. This makes the measure partly robust
to outliers in single components of measurements
Another classical similarity measure under investigation is
the cosine similarity (COS). Visually, it represents the co-
sine of the angle spanned by two vectors. We have already
successfully used it for determining loop closure in trajec-
tory estimation [20]. As a variant, we also examine C*H, a
function which simply multiplies the values of COS and
HIST, with the idea to yield a more distinctive measure
combining the advantages of COS and HIST.
The Bhattacharyya coefficient (BHA) is similar to the vec-
tor dot product, but possesses an additional inner square
root. This makes the coefficient less sensitive to larger tag
detection counts in single components.
Additionally, we examine a novel measure, which we
called overlap score (OSC). The idea was to use the cosine
similarity, COS, and weight it with the number of tags in
common, NCT. The enclosing logarithm introduces non-
linearity, with the idea that another tag in common only
marginally increases the likeliness that both RFID mea-
surements stem from the same position.

2The k-nearest neighbors search is scale-independent, and particle weights will be normalized due to Eq. (1).



Similarity measure Abbreviation Formula Range

Cosine similarity COS simCOS (f ,g) =
PL
l=1 flgl√PL

l=1(fl)
2·
√PL

l=1(gl)
2

[0, 1]

Histogram intersection HIST simHIST (f ,g) =
∑L
l=1 min(fl, gl) [0,∞)

Bhattacharyya coefficient BHA simBHA (f ,g) =
∑L
l=1

√
flgl [0,∞)

Overlap score OSC simOSC (f ,g) = log(1 + simNCT (f ,g) simCOS (f ,g)) [0,∞)

Minkowski distance Lp dp(f ,g) = (
∑
l |fl − gl|p)

1
p [0,∞)

Hellinger distance HD dHD (f ,g) =
√∑L

l=1(
√
fl −√gl)2 [0,∞)

χ2 statistics CHI dCHI (f ,g) =
∑L
l=1(fl − µl)2/µl, µl = fl+gl

2 [0,∞)

Jeffrey divergence JD dJD (f ,g) =
∑L
l=1(fl log (fl/µl) + gl log (gl/µl)) [0,∞)

Dot (or scalar) product DOT simDOT (f ,g) =
∑L
l=1 flgl [0,∞)

Number of common tags NCT simNCT (f ,g) = |{l | flgl > 0, l = 1, . . . , L}| [0,∞)

Table 1: Investigated similarity measures sim for comparing two tag lists f and g.

5.2.2 Measures of Dissimilarity

Vector distance measures assess only the dissimilarity of
vectors. Still, they can easily be transformed into similar-
ity functions: If d ∈ [0,∞) is a distance value, then

s(d) =
1

d+ ε
∈ (0, ε−1], ε > 0 (8)

is a similarity value. This is not the only method of how to
transform distance to similarity, even for the case treated
here that d is quasi-unbounded. Another transformation is
s(d) = exp (−τ · d) for some positive real τ . We found,
however, that the resulting behavior is quite sensitive to
the values of τ , because the function converges to zero
quickly, and committed ourselves to Eq. 8. We should un-
derline that also the constant ε does have impact on both
the resulting values of s and the final localization accuracy.
Theoretically, the variable should thus be subject to opti-
mization. We think, however, that ε = 1 is an intuitive,
well justifiable choice, since s(0) = 1.
A widespread class of distances are the Minkowski dis-
tances (or Lp-norm). Euclidean distance (p = 2), L2, and
Manhattan/city block distance (p = 1), L1, are two special
cases which are frequently used in the fingerprinting liter-
ature. However, when it comes to comparing RFID mea-
surements, one can find undesirable mathematical proper-
ties. As one example, let us consider three measurements
f , g, and h, where the counts of the jth tag are fj = 0,
gj = 1, hj = 2, and for simplicity let all other tag counts
equal some value c. Then dp(f ,g) = dp(g,h). This is
counterintuitive, because given a measurement gj = 1,
the tag count hj = 2 is a stronger indication that h was
recorded in the same area as g than that f was recorded in
the same place, because in f tag j was not detected.
An alternative against this background is the Hellinger
distance (HD, the square root of the squared chord mea-
sure [13]). It differs from the Euclidean distance by a non-
linearity in the vector components, which solves the above
paradox.

Another option is to scale deviations with the inverse of
the mean of two measurements. This is captured by the
χ2 statistics (CHI)3. In probabilistic terms, dCHI represents
the likeliness of f being drawn from a distribution g.
The fourth distance measure, also known from information
theory, is the Jeffrey divergence (JD). It represents the sym-
metric, numerically stable variant of the Kullback-Leibler
divergence. We conclude this section with the remark that
χ2 statistics and JD are known to work well if a large num-
ber of observations are available.

5.2.3 Benchmark Measures

In order to investigate the difference in performance be-
tween the rather sophisticated, traditional similarity mea-
sures above and other rather simple functions, we compare
our results to two benchmark functions: The first bench-
mark measure is the vector dot product (or scalar prod-
uct), DOT. In our context the dot product is useful be-
cause the more detected tags in common (fi, gi > 0) and
the greater the tag counts in both components fi and gi
under investigation, the higher the similarity. Moreover,
the dot product is appealing because of its simplicity of
computation. A weakness, on the other hand, is that mea-
surement pairs yielding the same product flgl in a compo-
nent will receive the same similarity value. For instance,
simDOT((1), (4)) = simDOT((2), (2)) = 4. Note that the
Bhattacharyya coefficient reveals the same issue, but it is
less sensitive to larger tag detection counts in single com-
ponents due to the inner square root. Moreover, it may be
undesirable that simDOT((0), (c)) = 0, independent of c (a
property that holds for all presented measures of similarity,
too).
As another non-classical benchmark we utilize the number
of common tags (NCT) in two measurements. In opposi-
tion to the other measures, the number of detections of a
specific RFID tag is quantified in a boolean fashion only.
Although potentially valuable information is ignored, that

3In the formula of χ2 statistics, we set the ith summand zero if fi = gi = 0.



mechanism makes the measure robust to outliers in the de-
tection values. In [19], we presented a loop closure model
for SLAM which was based on NCT. There, it served to
recognize previously visited places.

6 Experiments
Setup We conducted experiments with an indoor mobile
robot of type SCITOS G5 by MetraLabs (Fig. 1). The robot
is equipped with a 270◦ laser range finder for ground truth
positioning and an Elatec SR-113 RFID reader. Two cir-
cularly polarized UHF antennas are connected to the RFID
reader. They scan along horizontal axes spanning an angle
of approx. 90◦in the xy plane.
In the environment depicted in Fig. 2 (a corridor with adja-
cent hall) we attached passive RFID tags (type Alien Tech-
nology Squiggle, ISO/IEC 18000-6C) to walls, at different
heights between the floor and the height of the RFID an-
tennas (0.8 m). The installation was intendedly not overly
systematic, besides that we tried to spread tags roughly in
a balanced distribution. We tested two different transpon-
der densities. The first density corresponds coarsely to dis-
tances of 1.0-2.0 m between each pair of neighboring tags,
the second density to an average of 0.5-1.0 m.

Figure 2: The experimental environment has a traversable
space of approx. 160 m2. Tags were attached to walls in
the orange/gray areas.

For each density, we manually steered the robot on 5 differ-
ent paths, each of which comprises 1000 RFID measure-
ments and corresponding reference positions. The RFID
reader was configured to transmit at full power level (1 W
EIRP) and to supply the results of RFID inquiries every
T = 0.5 s. The mean (and maximum) numbers of de-
tected transponders per inquiry were 8.5 (max. 27) and 4.5
(max. 16) for the higher and the lower tag density, respec-
tively. At the same time, the mean (and maximum) detec-
tion counts per detected transponders were 4.1 (max. 24)
and 6.6 (max. 26), respectively. In all subsequent ex-
periments, we performed cross-validation by picking the
datasets of two recorded paths, random sampling ofM ref-
erence measurements, and running the particle filter five
times on each of the remaining three recorded paths.

Results Fig. 3 shows the tracking results (i.e., the initial
pose is known) for the similarity measures from Sect. 5.
The four subfigures illustrate the effect of the two differ-
ent transponder densities and two different numbers of ref-

erence fingerprints (M = 500, 2000), while the parame-
ter k was varied. Each outcome is based on 300 single
runs of a particle filter with 1000 samples. The parameters
σxy = 0.5 and σθ = 0.3 were fixed.
For the higher tag density and M = 2000 reference fin-
gerprints, all similarity measures yielded roughly the same
accuracy. For k = 16, the mean errors were below 0.25 m,
with standard deviations of approx. 0.025 m. HIST per-
formed best (0.237 m± 0.025 m), but not significantly bet-
ter. For the case that the tag density is sufficient, also
the benchmark measures, DOTand NCT, yield surprisingly
good accuracy.
If the transponder density or the number of reference fin-
gerprints is decreased, tracking errors and variances in-
crease, which corresponds to intuition. On average, the
tracking accuracy of the measures of dissimilarity (L1, L2,
HD, CHI, and JD) seems to degrade faster than the accuracy
of the measures of similarity (COS, HIST, BHA, OSC, and
the product of COS and HIST), which is documented by
larger means and variances. In our experiments, especially
the L1 and the L2 norm were sensitive to tag density and
number of reference measurements.
Results for global localization (i.e., with unknown initial
position) under variation of the number of reference finger-
prints are illustrated in Fig. 4. In this case, we used 2000
samples to account for the increased uncertainty in the first
localization iterations. The mean ad-hoc localization error
(that is, the error after evaluating the first observation) was
0.945 m. The error thereafter converged to an average of
0.254 m± 0.037 m.
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The influence of the bandwidth parameters σd and σr
(Eq. 6) on the tracking results is illustrated in Fig. 5. For
these measurements, we ran a particle filter with 1000 sam-
ples, performing cross-validation as above. We employed
histogram intersection, 2000 reference fingerprints were
used, k was 16, and σd and σr were varied.
The setting σd = 0.5 and σr = 0.3 (17◦) yielded the small-
est mean error. The differences in the mean errors obtained
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Figure 3: Mean absolute tracking errors for the different similarity measures, tag densities, and choices of k and the
number of reference fingerprints (top row lower tag density, bottom row higher tag density; left column 500 reference
fingerprints, right column 2000 reference fingerprints). The mean values of L1 and L2 in the top left figure are approx.
1.15 m and cut for the sake of clarity.

are, however, not statistically significant. Besides the case
σd = 1.0 and σr = 0.15, all means differ by at most 3 cm
only. Consequently, even in the case of slightly subopti-
mally chosen bandwidth parameters, the localization accu-
racy can be expected to not degrade considerably.
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Figure 5: Means and standard deviations of tracking re-
sults for varying bandwidths σd (horizontal axis) and σr
(bars).

Discussion The insight that – under the better conditions
– the choice of similarity measure seems irrelevant was un-
expected, since in many other applications, the choice of
measure does matter. The observed invariance to the simi-
larity measure, however, allows the programmer to choose
the function depending on other criteria such as compu-
tational complexity. On the other hand, in the cases in
which fewer information is available – if fewer RFID tags
or fewer reference measurements are available –, the per-
formances of the compared similarity measures do differ.
Fortunately, if RFID tags are used on a large scale (in su-
permarkets, for instance), the tag densities will be even

higher than our densest distribution. This promises even
better localization accuracy. We did not further increase
the transponder density because we think that if a human
is required to prepare an environment, the chosen density
can quickly be installed.
We conclude this section with the note that all estimations
can be performed in real-time. Each correction step took
less than 9 ms on a 3 GHz PC for 1000 particles, k = 16,
and M = 2000.

7 Conclusion
The presented approach combines location fingerprinting
with the filtering of passive RFID measurements. Advan-
tages are the high accuracy due to location-specific mea-
surements and the universal applicability of the approach.
In a number of experiments, we achieved global localiza-
tion and tracking errors of approx. 0.25 m or even bet-
ter. These results are comparable to other fingerprinting
approaches to RFID-based localization [15]. At the same
time, the implementation of the presented novel technique
is comparatively simple. We compared different functions
and observed that the measures of similarity, as opposed to
distance measures, reliably achieved accurate localization.
The observation model performs a k-nearest neighbor
search in similarity space. Computationally, it scales
also for larger environments because of the efficient in-
verse index for reference fingerprints. The requirement
of a reference positioning system and the potentially time-
consuming training are drawbacks, as with all fingerprint-
ing approaches. They can be tackled by further automation
based on exploration and SLAM algorithms (e.g., [20]).



As part of future work, we plan to investigate the impact of
transponder relocations on the localization accuracy.
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