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Abstract— A safe traversal of a mobile robot in an unknown
environment requires the determination of local ground surface
properties. As a first step, a broad structure of the underlying
environment can be established by clustering terrain sections
which exhibit similar features. In this work, we focus on an
unsupervised learning approach to segment different terrain
types according to the clustering of acquired vibration signals.
Therefore, we present a Markov random field-based clustering
approach taking the inherent temporal dependencies between
consecutive measurements into account. The applied generative
model assumes that the class labels of neighboring vibration
segments are generated by prior distributions with similar pa-
rameters. A temporally constrained expectation maximization
algorithm enables the efficient estimation of its parameters
considering a predefined set of neighboring vibration segments.
Since the size of the neighbor set proves to be data-dependent,
we derive a general means of estimating this set size from
the observed data. We show that the Markov random field
clustering approach generates valid models for a variety of
driving speeds even in situations of frequent terrain changes.

I. INTRODUCTION

Employed for a growing number of tasks like rescue
missions or agricultural assignments, mobile robots are ex-
posed to a variety of terrain types. To ensure a safe terrain
traversal the robot must be aware of ground surface hazards
induced by the presence of slippery and bumpy surfaces.
These hazards are known as non-geometric hazards [19].
In this paper, we consider an unsupervised learning approach
for the problem of terrain clustering, in which we assume
the number of clusters k to be known. Inertial sensors,
that is, accelerometer sensors, provide the data on which
the terrain segmentation is based on. Although the exact
terrain types (such as grass, asphalt, etc.) are not inferred
an unsupervised clustering of varying ground surfaces still
yields beneficial information: when the robot navigates over
unknown terrain, meta data such as the degree of bumpiness
or slippage of the ground surface can be stored along with
the accelerometer data. After data clustering this meta data
is an integral part of each cluster. Hence, whenever the robot
traverses a certain terrain type, and this terrain type reveals
potentially hazardous characteristics according to the clus-
tering, adjustments to its driving style should be made. Note
that in some situations some of the meta information may
change whereas other meta information remains the same
(e.g., wet grass can become dry while a bumpy surface most
likely remains bumpy). Here, a simple binary classification
strategy which separates the data into a hazardous class and
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a non-hazardous one is inappropriate since class assignments
have to be retrained whenever the degree of hazardousness of
some of the data changes. In a multi-class setting, however,
we can simply modify the meta information assigned to a
certain cluster without the need of retraining the classifier.
Unsupervised terrain clustering is a non-trivial problem.
Problems arise due to the potentially large overlap between
terrain classes in feature space. In this work, we use temporal
dependencies between consecutive measurements to obtain a
better clustering, taking ambiguous cases into account. Here,
an ambiguous case occurs if two measurements belong to
the same class, but are clustered into two different clusters.
The applied clustering technique is based on the Markov
random field (MRF) model of [4] for incorporating temporal
coherences between consecutive measurements. Exploiting
temporal dependencies for vibration data clustering is justi-
fied by the fact that terrain changes only appear infrequently
resulting in a high probability that the terrain type does
not change from one measurement to the next. Further
justification is provided by previous work which successfully
adopted the technique of Bayesian filtering to the problem
of supervised classification [9], [10]. In this work, we show
how temporal coherences can be integrated in unsupervised
clustering tasks as well.
The remainder of this paper is organized as follows: In
Sect. II we present an overview of related work. There, we
focus on research about the integration of both constraints
and temporal dependencies into a clustering framework.
Sect. III briefly summarizes the adopted techniques for data
clustering: a Gaussian mixture model approach and a Markov
random field approach which embeds temporal coherences
into the clustering process. In Sect. IV, we provide details
of our clustering experiments whose results are presented and
discussed in Sect. V. Finally, Sect. VI gives conclusions.

II. RELATED WORK

Terrain identification using vibration data was considered
by many authors: Originally proposed in [8], it was success-
fully applied to planetary robots [2], to autonomous ground
vehicles [18], and passenger vehicles [17]. Yet, all these
techniques only handle supervised classification and thus
cannot be adopted to our unsupervised clustering problem.
The sole exception is the work of [7]. There, they established
a cost function to find an optimal classifier with respect to
its parameter set. The applied cost function also incorporates
temporal dependencies of vibration signatures as it constrains
the posterior distributions of consecutively performed terrain
estimates to be similar. The main drawback of this approach
is the time spent on minimizing the proposed cost function.



In contrast, the clustering technique presented in this work
is based on an efficient expectation maximization approach
which yields a valid clustering within several seconds.
Other approaches regard temporal coherences as (pairwise)
constraints which are to be integrated into the Gaussian
mixture model-based clustering process [16]: If two mea-
surements are acquired at approximately the same time
a hard constraint can be established to enforce a certain
Gaussian mixture component to contain both measurements.
The problem of this approach is its error-proneness in the
presence of false hard constraints. Even a small number of
erroneous hard constraints can result in inferior results [14].
This is a significant observation in our case, since these hard
constraints have to be estimated and cannot be guaranteed
to be valid. Soft constraints as proposed in [12] can handle
these situations more adequately, yet, it is still not clear of
how to derive a stable measure to estimate the degree of
cohesion between two consecutive measurements.
In [6] and [1], Markov random fields (MRF) models were in-
troduced into the domain of image analysis. In the following,
they were applied to a number of image analysis tasks such as
image segmentation [20] or image interpretation [13]. MRF
models offer a convenient means for incorporating context,
or dependence among neighboring pixels. Context is impor-
tant because contiguous pixels are likely to belong to the
same region. In this work, we exploit spatial dependencies
among neighboring terrain patches instead of pixel arrays:
The applied MRF model [4] assumes that the class labels
of observations are generated by prior distributions which
share similar parameters for neighboring observations. As
we will show in Sect. V, the integration of local environment
properties can significantly improve the clustering results if
the number of considered neighbors is chosen adequately. As
a further contribution we derive a general technique which
estimates this neighbor set size from the given data.

III. APPLIED TECHNIQUES

A. Gaussian Mixture Model-based Clustering

The Gaussian mixture model (GMM) is a semi-parametric
technique for modeling an unconditional probability density
function p(x), given a set of unlabeled, d-dimensional data
points u0:n = {u0, u1, . . . , un}. The probabilistic model
is expressed as a linear combination of k basis functions
p(ui) =

∑k
j=1 πjp(ui|j), where k denotes the number of

components of the model, πj is the mixing coefficient of
component j, and p(ui|j) is the component likelihood. The
latter defines the probability of a data point ui to belong
to a certain mixture component j. For Gaussian mixture
models the basis functions are given by Gaussian distribution
functions with parameters {µj ,Σj}:

p(ui|j) =
1

(2π)d/2 |Σj |1/2
· e−

1
2 (ui−µj)

T Σ−1
j (ui−µj). (1)

Here, µj denotes a d-dimensional mean vector and Σj is a
positive definite d× d matrix. The corresponding generative
model is shown in Fig. 1(a). Here, two neighboring vibration
segments i and j are shown. The model assumes a common

(a) (b)

Fig. 1. The employed probabilistic graphical models: (a) Standard Gaussian
mixture model. (b) MRF on vibration segment priors.

prior distribution π which independently generates all vibra-
tion segment labels ui.
The Gaussian mixture parameters ~θj = {µj ,Σj , πj}, j ∈
[1; k] can be efficiently trained using the expectation maxi-
mization (EM) algorithm. The EM algorithm is an iterative
technique guaranteeing a monotone decrease of the negative
log-likelihood of the data set during optimization. The log-
likelihood is defined as:

L(t)
1 =

n∑
i=0

log p(ui|~θ(t)), (2)

which is the sum of the probability of each data point
given the current model parameters ~θ(t). Provided with an
initial estimate of the mixture model parameters ~θ(0), the
EM algorithm iteratively reestimates these parameters until
convergence of the data log-likelihood:

1) E-step:

p(j|ui) =
p(ui|j)πj∑k

c=1 p(ui|c)πc

(3)

2) M-step:

µ̂j =
1

(n + 1)πj

n∑
i=0

p(j|ui)ui (4)

Σ̂j =
1

(n + 1)πj

n∑
i=0

p(j|ui)uiu
T
i − µ̂jµ̂

T
j (5)

π̂j =
1

n + 1

n∑
i=0

p(j|ui) (6)

While the E-step determines the probability of the jth mix-
ture component given the data and model parameters ~θ(t), the
M-step performs a reestimation of the model parameters. The
algorithm terminates if 1 − L(t−1)

1

L(t)
1

< ε. In our experiments,
we used ε = 0.001.



A trained GMM can then be employed for classification
and clustering tasks by assuming a one-to-one correspon-
dence between mixture components and classes and mixture
components and clusters, respectively. That is, we assign
a certain class ci or cluster i to the mixture component i.
Finally, the class (or cluster) belonging to a given data
point ul is chosen by selecting the mixture component j
that maximizes the posterior probability p(j|ul). Since in the
unsupervised learning case each cluster represents a certain
terrain class to discriminate, both “cluster” and “class” are
used as equivalent terms in the remainder of this paper.

B. MRF-based Clustering

1) The Markov Random Field Model: The model pre-
sented in the previous section does not exploit temporal a
priori-dependencies between vibration segments since the
prior πk is independent from the vibration segment index i.
In our context, this assumption does not (necessarily) hold
since, during robot traversal, it is very likely that the terrain
does not change from one measurement to the next. To in-
corporate temporal dependencies, we applied the generative
model of [4] (Fig. 1(b)). There, each label is generated by
an individual prior distribution πi. Further, it is assumed
that these priors are similar among neighboring vibration
segments.
We enforce the latter by including a penalty term p(π|β)
to the log-likelihood function of (2). This term penalizes
neighboring pixels with different priors:

L2 = L1 − p(π|β).

To model the joint density over vibration segment priors, the
following Besag approximation is used:

p(π|β) ≈
∏

i

p(πi|πNi
, β),

where Ni is the set of neighboring vibration segments of
vibration segment i, β is a non-negative scalar, and πNi de-
notes the mixture distribution over the priors of neighboring
vibration segments of vibration segment i:

πNi =
∑

l∈Ni,l 6=i

λilπl. (7)

Here, the mixture weights λil, l ∈ Ni, l 6= i are constrained
to be non-negative and sum to one over all l. They determine
the influence of each prior to the mixture relative to the offset
between vibration segments i and l.
The conditional density p(πi|πNi

, β) is then approximated
by the following log-model (ignoring constants):

log p(πi|πNi
, β) = −β [D(πi||πNi

) + H(πi)] . (8)

D(πi||πNi) denotes the KL divergence between πi and
πNi

and is defined as D(πi||πNi
) =

∑k
j=1 πij log πij −∑k

j=1 πij log πNij
. The KL divergence is a measure of

similarity between the prior of a vibration segment i and the
one of its neighbors. The KL divergence is always positive
and becomes zero if πi = πNi . Hence, by minimizing the
KL divergence, we constrain the neighbors to have similar

class labels. H(πi) is the entropy of the distribution πi. It is a
non-negative measure which is the larger the more similar is
πi to a uniform distribution. The minimization of the entropy
H(πi) is necessary since although regions of the same terrain
should exhibit similar priors, we do not expect these priors
to be distributed uniformly.
Instead of optimizing (8) directly, the following approxima-
tion of the conditional density is employed:

log p(πi|πNi , β, si) ≈ −β [D(si||π) + D(si||πNi) + H(si)] ,
(9)

where {si} is an auxiliary set of distributions. Replacing (8)
by (9) turns the constrained optimization problem into an
efficient one which can be solved using the EM algorithm
described below. We note that si (as well as the other
auxiliary distribution qi introduced in the next paragraph) is
not user-specified, but arises directly from the optimization
process.
In addition to the penalty term of (9), a data-dependent
penalty term Ps is introduced, which incorporates useful do-
main knowledge. Therefore, we consider the posterior distri-
butions and constrain them to be similar among neighboring
vibration segments and to be as informative as possible:

Pd = −0.5 [D(qi||pi) + D(qi||pNi
) + H(qi)] .

Here, qi is an arbitrary class distribution for a vibration
segment i and pi is the posterior of a vibration segment
given the model parameters θ and priors πi.
The complete penalized log-likelihood of the observed data
as a function of the model parameters and the introduced
auxiliary distributions {si} and {qi} then becomes (ignoring
constants):

L2(θ, π, s, q) =
∑

i

[
log

∑
j

p(ui|j, θ)πij

−β [D(si||πi) + D(si||πNi) + H(si)]

− 0.5 [D(qi||pi) + D(qi||pNi
) + H(qi)]

]
.

(10)

2) Estimating the Model Parameters: The parameter set
{θ, s, q} is estimated using an EM algorithm which maxi-
mizes the energy of L2 by coordinate ascent: in the E-step,
we fix θ and π and maximize L2 over s and q. In the M-step,
we fix s and q and we maximize L2 over θ and π. Pseudo
code for the EM algorithm is provided below (see [4] for a
complete derivation of the respective formulas). We note the
similarity between the EM formulation for training the MRF-
based generative model and the one for Gaussian mixtures
(cf. Sect. III-A). The main difference is that in the temporally
coherent approach the label posteriors are “smoothed” over
vibration segments between each E- and M-step by a one
dimensional filter.

3) Selection of the Free Parameters: The determination of
the mixture distributions over the priors (πNi

), the posteriors
(pNi), and the auxiliary set qi (qNi) require the definition
of both the mixing weights λij and the neighborhood size.
Note that the evaluation of (7) is equivalent to a convolution
operation π·j � λ, for each mixture component j. In this



Algorithm 1 The temporally constrained EM algorithm
1: Initialize the parameter vector θ (including the priors
{πi}) using the k-means algorithm (see Sect. IV-C).

2: E-step: Determine posterior probabilities pi using the
current estimates of θ and {πi}:

pij ≡ p(j|ui) =
p(ui|j)πij∑k

c=1 p(ui|c)πic

3: Determine {si} :

si ∝ πiπNi , πNi =
∑

l∈Ni,l 6=i

λilπl.

4: Normalize each si such that
∑

j sij = 1.
5: Determine {qi} :

qi ∝ pipNi
, pNi

=
∑

l∈Ni,l 6=i

λilpl.

6: Normalize each qi such that
∑

j qij = 1.
7: M-step: Update the parameter vector θ:

qNi =
∑

l∈Ni,l 6=i

λilql

µj =
∑

i(qij + qNi,j)yi∑
i(qij + qNi,j)

Σj =
∑

i(qij + qNi,j)yiyi
T∑

i(qij + qNi,j)
− µjµj

T

8: Update {πi}:

πi =
1

(1 + 2β)

[
1
2
(qi + qNi

) + β(si + sNi
)
]

.

9: Evaluate L2 using (10)
10: if convergence of L2 then
11: terminate.
12: else
13: goto step 2.
14: end if

context, λ is a linear one-dimensional filter with certain prop-
erties: First, the center coefficient has to be zero and second,
all coefficients have to sum to one. In our experiments, we
applied modified versions (i.e., the center coefficient was set
to zero) of a box, tent, quadratic, cubic, and a Gaussian filter.
Although we expected relevant differences in the results
when adopting the varying filters these differences did not
prove to be statistically significant. Hence, we only present
the results of the Gaussian filter in the result section which
tend to yield slightly better results in comparison with the
other filters. Further, we chose the standard deviation of the
Gaussian filter to be equal to half of the neighbor set size.
The neighbor set size should be selected data-dependent:
Choosing a large neighborhood is only appropriate when the
robot navigates over homogeneous terrain for a longer period
of time. In this case, the influence of erroneously chosen
priors is reduced due to the inclusion of neighboring priors.

Fig. 2. The terrain types we used in our experiments: 1: asphalt, 2: gravel,
3: grass, 4: paving, 5: clay.

In situations of high-frequency terrain changes, however, a
large neighbor set is inadequate since the neighboring vibra-
tion segments most likely belong to a another terrain class
and thus should provide priors with different distributions.
Although the exact frequency of terrain changes is not
known, we propose the following technique to estimate the
neighbor set size from the acquired sensor data: first, we
perform a k-means clustering of the vibration signals. This
clustering provides a broad assignment of each vibration
segment ui to one of the terrain classes. We then determine
the homogeneous neighbor size S for each vibration segment
ui which is defined as:

S(ui) = arg max
l

T (ui, {uj}), j ∈ [i− l; i + l]\{i},

T (ui, v) =
{

0, ∃vj ∈ v, vj = outlier w.r.t. Nµc,Σc

|v|, else

In other words, the homogeneous neighbor set size S of a
vibration segment ui is the maximum number of contiguous
vibration segments which are located symmetrically around
observation ui and belong to the same terrain class c as
vibration segment ui with a certain probability. Since the
terrain class c of ui is represented by a multivariate Gaussian
distribution with mean µc and covariance matrix Σc we
can perform the latter verification using the Mahalanobis
distance-based outlier test of [15], pp. 224: This test is
based on the fact that the Mahalanobis distances between
the instances of class c and the cluster center µc are ap-
proximately χ2

d-distributed with d degrees of freedom [11].
Here, d denotes the dimensionality of a vibration segment
ui. The test defines a given vibration segment vj as outlier
with respect to class c if the squared Mahalanobis distance
between vj and the cluster center µc is larger than χ2

d,0.95,
where χ2

d,0.95 is the 95th percentile of the χ2
d distribution.

Finally, we define the homogeneous neighbor set size of the
whole data set S to be the mean neighbor set size averaged
over all vibration segments ui, i ∈ [0;n], mapped to the
next multiple of 2. For the last free parameter β, we follow
the suggestion of [4] and set β to 0.5. Experimental results
proved this choice to be valid.

IV. EXPERIMENTAL SETUP

A. Data Acquisition and Feature Extraction

The objective of our approach is to establish a clustering
of different terrain types after the robot has covered a
certain distance. The estimation is based on acceleration data
collected by an Xsens MTi altitude and heading reference
system which was mounted on an aluminum plate on top of



the robot. The inertial sensor measured vibration signals in
left-right direction at a frequency of 100 Hz. The collected
acceleration data can be regarded as the vibration which the
terrain induces to the robot’s body. During data acquisition,
the robot navigated over five different terrains (Fig. 2):
asphalt, gravel, grass, paving, and clay (the surface of a boule
court). To demonstrate that our method is not constrained to
work at a certain driving speed, we varied the speed between
0.2, 0.4, and 0.6 m/s. In total, the dataset consists of more
than 4000 patterns.
A compact, low-dimensional representation of the 100-
sample-sized vibration segment s = {s1, s2, . . . , s100} has
to be chosen. Feature selection should be handled with care
since high dimensional density estimation is known to be a
non-trivial task suffering from the curse of dimensionality. In
the context of Gaussian mixture models k + k · d + k d·(d+1)

2
free parameters have to be estimated for defining the k
mixing coefficients, the mean vectors, and the covariance
matrices. Here, k is the number of mixture components
(classes) and d is the dimensionality of the data set. With
an increase of the latter we also increase the possibility of
getting stuck in a local minimum when applying the EM
algorithm.
In this work, our vibration signature u consists of a subset
of the features proposed in [18]: Given a raw vibration
segment s, the feature vector u is defined as:

u = { sgn, rk, norm(s), min(s), max(s), std(s) }T
,

where sgn denotes the number of sign changes in s, rk is
the autocorrelation rk of s at lag k = 1, and norm(s),
min(s), max(s), and std(s) denote the Euclidean norm, the
minimum, the maximum and the standard deviation σ of s,
respectively.

B. Experiments

Since some terrain transitions are easier to detect than
other ones, creating an adequate test set must be handled
with care. This is because the results depend on the order
in which assembled terrain segments of varying terrain type
are presented. We minimized this effect by arranging our
test sets in a systematic manner: After data acquisition and
feature extraction we obtain k vibration segment sets, one
for each terrain type. From each of these sets, we draw a
homogeneous terrain patch consting of δ consecutive vibra-
tion segments without replacement. Depending on the robot
speed the assembled segments yield travel distances between
δ · 0.2 m and δ · 0.6 m. Then, homogeneous terrain patches
of varying terrain types were grouped together yielding the
final test set.
In total, two experiments were carried out to investigate the
performance of the MRF-based clustering technique. In a
first experiment, we generated test sets which consisted of
homogeneous terrain patches of constant size δ. To analyze
the temporally coherent clustering approach in situations
of low-frequency and high-frequency terrain transitions, we
systematically altered the homogeneous terrain patch size for
varying test sets: Here, δ was chosen from the set {2s},

s ∈ [0; 5]. In a further experiment, we generated a set of 32
δ

homogeneous terrain patches. Each homogeneous patch con-
sisted of δ vibration segments acquired consecutively. From
these sets we iteratively drew k random patches, one from
each set, without replacement and assembled these patches
using a random order. We repeated the drawing process
until all sets of homogeneous terrain patches were empty.
Finally, we iteratively applied the homogeneous terrain patch
generation and patch drawing process with increasing δ.
Starting from δ = 4, the value of δ was increased by a factor
of 2 in each step and reset to 4 if a homogeneous patch size
of 32 was exceeded. The resulting test set represents a more
realistic terrain setting with both high-frequency and low-
frequency terrain transitions.
In both experiments, each vibration segment originated from
a robot traversal at constant speed. Note that this is not a
significant limitation since the speed is known at each time
step and can thus be logged. After data acquisition the data
is split according to the recorded speed and each data subset
can be clustered separately.

C. Evaluation of Clustering

We evaluated the quality of a clustering by means of
the classification performance. As classification performance
measure we used the true positive rate (TPR). It is the
ratio (measured in percent) between the number of correct
class assignments for which the predicted terrain class equals
the actual terrain class and the number of measurements
contained in the data set. In this context, the predicted
terrain class i is the one that belongs to the Gaussian
mixture component i. Note, however, that a Gaussian mixture
model is not unambiguous with regard to class assignment.
Exchanging mixture component i by mixture component j
we still have the same Gaussian mixture model in matters of
unconditional probability estimation, but class assignment is
now different from the unmodified model. Hence, we cannot
generally expect that mixture component i truly represents
class i. Instead, we have to find the permutation of Gaussian
mixture model indices η which maximizes the likelihood that
the permuted cluster index ηc(i), c ∈ [1; k], represents terrain
class i. Evaluating our results we did this by searching the
permutation of mixture component indices which maximized
the true positive rate.
Given certain homogeneous terrain patch and neighbor set
sizes, the classification performance is influenced by two
further parameters: the initialization of the Gaussian mixture
parameter set θ and varying terrain transition detection
capabilities. We countervailed the effects of the latter by gen-
erating 20 test sets for given neighbor set and homogeneous
terrain patch sizes. Here, each test set offered a permuted
order of terrain classes.
In our experiments, we initialized the Gaussian mixture pa-
rameter set θ using the k-means algorithm. That is, the mix-
ture model covariances are initialized with the covariances of
the clusters found by the k-means algorithm and the mixing
coefficients are set to the fractions of data points assigned to
the respective clusters. For the MRF-based approach, these



fractions define the initial values of each prior distribution
πi. Since the k-means clustering can yield a different initial
Gaussian mixture parameter set at each run due to its random
initialization, the EM algorithm might terminate with varying
solutions as well. Thus, we performed 20 reruns of each
clustering (given a certain test set) using a random k-means
setup for each run. Note, however, that relating to a single
clustering both the original and the MRF-based clustering
approach used the same initial parameter values.

V. RESULTS AND DISCUSSION

In Table II, we present the maximum (max.) and average
(avg.) true positive rates (TPR) along with the respective
standard deviations (std.) for given neighbor set and homo-
geneous terrain patch (δ) sizes. For each velocity profile,
the first row represents the results of the Gaussian mixture
model-based clustering approach (gmm). The following rows
represent the clustering performance of the first experiment
when adopting the temporally constrained MRF-based ap-
proach. In the last row (var), the true positive rates of the
second experiment are shown. Results which are derived
from the homogeneous neighbor set size estimation tech-
nique (Sect. III-B.3) are presented in the last column.
Table II reveals that the MRF-based approach benefits from
the use of temporal constraints when enough temporal de-
pendencies are provided. Related to the maximum TPR the
classification performance is the better, the larger is the
homogeneous patch size (δ). We obtain the largest maximum
true positive rates when the neighbor set size is smaller than,
but similar to the homogeneous patch size. If the neighbor set
size exceeds the homogeneous patch size the classification
performance decreases and falls below the one of the GMM-
based clustering approach. Here, the filtered priors (and
posteriors) are significantly influenced by neighboring prior
(and posterior) distributions which likely generate another
label as compared to the one of the center observation.
For the averaged TPRs, we obtain similar trends with respect
to an increase of the homogeneous terrain patch size. When
varying the neighbor set size in situations of low-frequent
terrain transitions (δ=32), however, the neighbor set size does
not significantly influence the average TPR. These results
suggest that, on average, a small set of 2 neighbors suffices
to resolve ambiguous class assignments. Similar findings can
be derived from the second experiment, which also shows an
insensibility against varying neighbor set sizes.
If there is no or only a small amount of temporal coherence
contained in the data set (δ ≤ 2), a neighbor set size
of 2 results in an inferior classification performance. This
case, however, can be identified using the homogeneous
neighbor set size estimation technique presented in Sect. III-
B.3. As shown in Table I, it reliably estimates a homogeneous
neighbor set size S of 0 which is equivalent to switching
to the standard GMM-based clustering approach. For the
remaining homogeneous terrain patch sizes, the estimated
homogeneous neighbor set sizes yield average true positive
rates which are superior or at least close to those of the
ones obtained when applying the most appropriate neighbor

TABLE I
THE ESTIMATED HOMOGENEOUS NEIGHBOR SET SIZE S FOR VARYING

TERRAIN PATCH SIZES (δ) AVERAGED OVER ALL GENERATED TEST SETS.

patch size (δ) vel. 1 vel. 2 vel. 3
1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
2 0.0 ± 0.0 0.2 ± 0.6 0.0 ± 0.0
4 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
8 2.7 ± 1.0 2.6 ± 0.9 3.9 ± 0.4

16 5.3 ± 1.0 4.0 ± 0.1 6.2 ± 0.6
32 8.1 ± 0.5 5.6 ± 0.8 9.5 ± 1.5
var 6.0 ± 0.0 4.4 ± 0.8 8.8 ± 1.1

set size. Comparing the average TPRs of the GMM-based
clustering approach to those of the MRF-based approach
applied with the homogeneous neighbor set size estimation
technique, the latter increases the classification performance
by up to 8.2%, 22.8%, and 14.3% for velocity profiles 1-
3, respectively. Considering homogeneous patch sizes larger
than 2, all differences in the TPRs proved to be statistically
significant at a significance level of 5%.
As can be seen from the pseudo code in Sect. III-B.2
the application of the temporally coherent EM algorithm
only introduces little additional overhead in comparison with
the Gaussian mixture model EM approach. The additional
overhead of determining filtered distributions is reduced by a
decrease in the number of iterations required for meeting the
convergence criterion (95 ± 64 iterations for the temporally
coherent EM approach, vs. 116 ± 22 iterations for the
standard Gaussian mixture model EM approach). Finally,
we note that the run-time complexity of the temporally
constrained EM algorithm has not been an issue in our
experiments: The model generation process only took 3.9 s
(± 3.8 s) on average using an Intel Core Duo 2.40 GHz CPU.

VI. CONCLUSION AND FUTURE WORKS

This work focused on the clustering of different terrain
types using vibration data. We therefore adopted the frame-
work of Markov random fields which exploits temporal
dependencies between consecutive observations. Extensive
tests using a variety of terrain transition frequencies demon-
strated the efficiency of the MRF model in situations of
both low- and high-frequency terrain changes. Depending on
the chosen driving speed of the robot and the frequency of
terrain transitions we obtain an absolute increase in the true
positive rate of up to 23.2%. We further derived a general
approach which yields an estimate of the amount of temporal
coherence contained in the data set. It also provides a reliable
indication of the absence of temporal dependencies.
In further works, we will concentrate on unsupervised clus-
tering approaches which do not require the number of classes
to be known a priori. Referring to Markov random fields
this can be realized by infinite MRFs which were recently
introduced in [3]. Alternatively, we can adopt the technique
of PG-means [5]. Since the latter approach is also based
on Gaussian mixture model clustering it might benefit from
temporally coherent mixture models as well.



TABLE II
THE MAXIMUM (MAX.) AND AVERAGE (AVG.) TRUE POSITIVE RATES ALONG WITH THE CORRESPONDING STANDARD DEVIATIONS (STD.) DEPENDING

ON THE NEIGHBOR SET AND HOMOGENEOUS TERRAIN PATCH SIZES (δ).

neighbor set size
2 4 8 16 estimated

ve
l.

1

max. avg. std. max. avg. std. max. avg. std. max. avg. std. max. avg. std.
gmm 66.6 64.4 ± 5.3 66.6 64.4 ± 5.3 66.6 64.4 ± 5.3 66.6 64.4 ± 5.3 66.6 64.4 ± 5.3

pa
tc

h
si

ze

1 28.9 27.4 ± 0.9 27.5 26.0 ± 0.7 25.1 24.3 ± 0.5 25.4 24.4 ± 0.5 66.6 64.2 ± 6.0
2 54.0 50.4 ± 2.0 48.6 43.0 ± 2.5 33.1 29.9 ± 1.2 26.9 25.7 ± 0.7 66.6 64.7 ± 5.4
4 71.4 68.0 ± 2.4 70.0 67.3 ± 2.4 60.9 56.4 ± 2.5 34.9 30.0 ± 1.4 70.6 68.2 ± 2.3
8 73.1 70.2 ± 2.3 75.9 69.8 ± 2.6 72.9 66.7 ± 2.7 63.6 58.4 ± 3.0 74.1 69.4 ± 2.5
16 76.8 72.4 ± 2.4 77.9 72.2 ± 2.9 80.7 73.0 ± 4.1 76.5 70.5 ± 3.5 76.7 72.6 ± 2.7
32 77.6 71.1 ± 2.8 78.3 71.8 ± 3.7 77.6 71.0 ± 3.5 80.0 70.9 ± 4.2 80.3 71.3 ± 4.2
var 74.9 72.5 ± 2.2 74.4 72.2 ± 2.1 75.4 72.5 ± 2.7 77.7 72.5 ± 4.7 74.6 72.4 ± 2.2

2 4 8 16 estimated

ve
l.

2

max. avg. std. max. avg. std. max. avg. std. max. avg. std. max. avg. std.
gmm 51.2 48.4 ± 0.8 51.2 48.4 ± 0.8 51.2 48.4 ± 0.8 51.2 48.4 ± 0.8 51.2 48.4 ± 0.8

pa
tc

h
si

ze

1 26.9 24.6 ± 0.7 25.7 23.6 ± 0.6 23.8 22.7 ± 0.4 24.1 22.8 ± 0.4 48.9 48.5 ± 0.7
2 50.3 42.5 ± 4.3 44.9 35.6 ± 4.3 29.1 25.7 ± 1.1 25.2 23.4 ± 0.6 50.6 48.2 ± 1.0
4 62.6 57.7 ± 2.4 62.6 57.2 ± 2.1 56.4 50.0 ± 4.1 33.7 27.6 ± 1.8 62.3 57.7 ± 2.1
8 67.9 62.0 ± 2.6 68.9 62.5 ± 2.8 68.2 61.4 ± 2.9 60.9 54.7 ± 3.0 67.4 62.3 ± 2.5
16 74.1 67.3 ± 3.6 76.1 67.4 ± 3.6 78.1 67.7 ± 4.2 75.6 66.1 ± 4.0 74.6 67.4 ± 3.9
32 78.5 70.2 ± 2.8 79.0 70.8 ± 3.0 81.1 71.6 ± 3.4 83.4 71.0 ± 3.6 78.9 71.2 ± 3.0
var 73.4 63.9 ± 2.9 69.9 64.1 ± 2.9 73.8 65.0 ± 3.4 71.5 65.7 ± 2.9 70.1 64.7 ± 2.9

2 4 8 16 estimated

ve
l.

3

max. avg. std. max. avg. std. max. avg. std. max. avg. std. max. avg. std.
gmm 57.9 57.4 ± 0.2 57.9 57.4 ± 0.2 57.9 57.4 ± 0.2 57.9 57.4 ± 0.2 57.9 57.4 ± 0.2

pa
tc

h
si

ze

1 26.0 25.1 ± 0.5 24.1 23.5 ± 0.4 23.7 22.5 ± 0.5 23.9 23.1 ± 0.4 57.4 57.4 ± 0.0
2 45.9 39.8 ± 2.3 36.6 34.3 ± 1.0 28.2 27.0 ± 0.6 25.1 24.3 ± 0.5 57.4 57.4 ± 0.0
4 61.1 55.7 ± 1.4 61.5 54.4 ± 1.9 48.6 41.8 ± 3.7 30.1 28.1 ± 1.0 62.6 56.2 ± 1.7
8 69.3 62.8 ± 1.6 68.9 63.1 ± 1.9 68.5 59.5 ± 2.5 55.7 50.0 ± 2.4 67.4 62.4 ± 2.1
16 71.0 65.6 ± 2.0 72.4 67.0 ± 1.5 73.0 66.6 ± 2.0 68.6 61.8 ± 2.8 72.0 67.2 ± 1.5
32 73.9 70.7 ± 1.5 72.7 69.9 ± 1.4 76.5 71.6 ± 1.5 77.2 72.0 ± 1.6 74.1 71.6 ± 1.4
var 67.8 64.2 ± 2.0 67.6 65.6 ± 0.7 70.7 65.6 ± 2.2 66.9 62.9 ± 2.3 70.7 65.5 ± 2.1
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