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Abstract— In this paper, we address the problem of dis-
tributed role assignment for multiple mobile robots. This
problem arises when a mobile robot in the team must decide
what role to take on in a desired formation configuration. In
some applications, in which the center and the orientation
of a desired formation are not predetermined, the rotation
and translation of the formation can be computed by using
average consensus protocols. However, the conflict arises when
the same role is assigned to more than one robot. This problem
is resolved by using a negotiation strategy, while each assigned
robot is traveling to the target position. We evaluate our
proposed framework through two experiments on a team of
physical nonholonomic mobile robots, i.e., (i) robots reconfigure
themselves from one formation to another, and (ii) formation
switching happens, while each robot is following a reference
path.

I. INTRODUCTION

Recent advances in computation and communication have

led to distributed control of multi-robot systems (MRS)

which, compared to centralized control, offers many advan-

tages, such as increased flexibility and efficiency of operating

a group of robots and failure tolerance due to redundancy [1].

Formation control is one of the active research topics in MRS

and it has received significant attention during the last two

decades (e.g., [2], [3], [4]). The goal of formation control is

to maintain the position of a team of robots relative to each

other or relative to a reference.

In this work, we address the problem of distributed role

assignment. One of the key problems is what role to take

on in a given formation when the individual robots do not

have complete information about other robots in the team

[5], [6], [7]. We propose a novel distributed and online

solution to this problem by using consensus protocols and

negotiation algorithms. We evaluate our proposed framework

through two scenarios, i.e., (i) to drive each robot to the

target position transformed through the common translation

and rotation of the target formation, and (ii) to maintain a

desired formation and to change one formation to another

while the robots are following a reference path. It is worth

noting that selecting a particular formation shape, in general,

relies on a dynamical context, e.g., environments and tasks.

There is still no underlying theory that handles this problem.

However, in this paper, we assume to have such a mechanism

that can choose a suitable formation (e.g., [8]).

The presentation of the paper is organized as follows. Sec-

tion II presents the problem definition, while our distributed
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role assignment algorithms are proposed in Section III. The

experiments on formation switching and on coordinated path

following are given in Section IV and Section V, respectively.

The last section contains a conclusion and a discussion of

further work.

II. PROBLEM DEFINITION

Given a team of N mobile robots, whose positions are

xi ∈ R
2, i = 1, ..., N , and the target formation represented

by the target positions xd
k ∈ R

2, k = 1, ...,M , assuming

that all robots have knowledge of the target formation, we

need to find an appropriate mapping p : 1, ..., N → 1, ...,M
that assigns robot i, located at xi to target position xd

k.

Furthermore, we are also interested in how to determine

the rotation angle θf and translation vf ∈ R
2 of the target

formation when the center and the orientation of the target

formation are not predetermined.

A. Assignment Problems

The assignment problem is one of the most famous

problems in combinatorial optimization. It consists of finding

a minimum weight matching in a weighted bipartite graph.

Depending on the form of the cost function, assignment prob-

lems can be classified as linear or quadratic. The Hungarian

algorithm [9] is one of many algorithms that can be used

to solve the linear assignment problem in polynomial time.

However, the quadratic assignment problem is NP-hard and

suboptimal solutions can be obtained by means of various

relaxations.

Let p ∈ PN , where PN is the set of all possible permu-

tations over N elements, be the assignment of the robots to

the targets. As defined in [5], the centralized role assignment

is given as follows:
∑

c(x, xd) : min(vf ,θf ,p)∈R2×[0,2π)×PN
Jc(x, xd, vf , θf , p),

(1)

where Jc(x, xd, vf , θf , p) is the cost

Jc(x, xd, vf , θf , p) =
∑N

i=1 c(xi, R(θf )(x
d
p(i) + vf )),

(2)

and R(θf ) in (2) is the rotation matrix, i.e.,

R(θf ) =

[

cos θf sin θf
− sin θf cos θf

]

, (3)

and c is a performance measure. The interpretation is that

c : R2 × R
2 → R gives the cost of assigning the robot i at

xi to the target located at R(θf )(x
d
p(i) + vf ).

When θf and vf are provided, the optimal assignment

satisfies

p∗ = argmin
p∈PN

Jc(x, xd, vf , θf , p). (4)



Moreover, the problem

minp∈PN
Jc(x, xd, vf , θf , p) (5)

corresponds to the well-known linear assignment problem.

p∗ is easily computed by using the Hungarian method [9].

In [5], [7], the authors are interested in determining the

rotation and translation of the target formation and finding

an appropriate permutation that assigns target positions to

robots. The solution results in a centralized off-line algorithm

in the sense that the computation of the solutions will

require complete information about all robots in the team.

This algorithm has to be done before the team is deployed.

However, when computation and information are distributed

among multiple robots and the number of robots in the

team is unknown, the need for a fully distributed control

framework to solve the role assignment problem becomes

vital. We propose a distributed solution to this problem using

consensus protocols and negotiation algorithms. It has to be

noted that although no global cost is optimized in this work,

robots can always achieve the role assignment task, as shown

in our experimental results.

B. Basic Graph Theory

The solution to the problem mentioned above greatly

depends on notions from graph theory. Given the system of

robots, we can define a dynamic graph G(t) as follows [6]:

Definition 1 (Dynamic Graph): We call G(t) = (V, E(t)) a

dynamic graph consisting of a set of vertices V = {1, ..., N},

indexed by the set of robots and a time varying set of links

E(t) = {(i, j) ∈ V × V| ‖xi − xj‖2 < r}, meaning that

edges are established between robots i and j, if and only if

the robots are within distance r of each other.

Dynamic graphs G(t) such that (i, j) ∈ E(t) if and only if

(j, i) ∈ E(t) are called undirected. Moreover, for any pair of

vertices i and j such that (i, j) ∈ E(t) we say that vertices

i and j are adjacent, or neighbors, at time t and the set of

neighbors of robot i is denoted by Ni ∈ V . A path between

vertices (i, j) is a sequence of distinct vertices such that

consecutive vertices are adjacent. A topological invariant of

graphs that is of particular interest for the purposes of this

work is graph connectivity.

Definition 2 (Graph Connectivity): We say that a dynamic

graph G(t) is connected at time t if there exists a path

between any two vertices in G(t).
Given any collection of m distinct instances of G(t), i.e.,

G(t1), ...,G(tm), we say that the collection G(t1), ...,G(tm)
is jointly connected if the union of its members is a connected

graph [10]. All graphs considered in this paper are undirected

and a connectivity on the underlying communication network

is assumed. In this case, the Laplacian matrix L, constructed

from L = D − A, where A = (aij) is the adjacency

matrix and D is the diagonal degree matrix, is symmetric

and positive semi-definite. It has a simple zero eigenvalue

and all the other eigenvalues are positive if and only if the

graph is connected [11]. This matrix forms the basis for

distributed consensus dynamics and captures many properties

of the graph.

C. Mobile Robots

The mobile robots shown in Fig. 1 are used in real-

world experiments in this paper. The robot controller is an

ATMEGA644 microprocessor with 64 KB flash program

memory, 16 MHz clock frequency and 4 KB SRAM. The

robot orientation is measured by a Devantech CMPS03

compass and it is identified by a colored circle placed on

the top of its platform. Using images from a camera looking

down upon the robot’s workplace, the robot position can be

estimated through color segmentation and a Kalman filter. A

desktop PC is used to compute the control inputs. The inputs

are then sent to the robot via WLAN. Each mobile robot has

the following kinematic equations

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (6)

where [x, y, θ]T denotes the state vector in the world frame

of the robot. v and ω are the linear and angular velocities,

respectively.

III. DISTRIBUTED ROLE ASSIGNMENT

We borrow the notations from [6] as follows. Let I0 =
1, ...,M denote the index set of all available positions in a

formation. We say that a position k ∈ I0 is being “taken”

if there is at least one robot i such that p(i) = k. Let Ia(t)
denote the index set of all positions that are “available”, i.e.,

not “taken” at time t and It(t) = I0 \ Ia(t) denote the

index set of all “taken” positions. Similarly, let Ia
i and It

i

denote the index sets of available and taken positions from

the perspective of robot i, respectively.

At first, robot i exchanges the position information with

its neighbor j, where (i, j) ∈ E(t) and then each robot

starts locally the Hungarian algorithm to obtain its favorite

position. However, in case that N > M , the robot may not

get any favorite position from the Hungarian algorithm. In

this situation, we assign the nearest position to this robot in

order to ensure that every robot gets one assigned position.

At each time step, every robot exchanges the information

with its neighbors in order to update Ia
i and It

i . If two robots

realize that they are assigned to the same position, each robot

adds the index of the other into its queue. Then, the robot

with the higher index starts the pairwise negotiation strategy,

given in Algorithm 1, to resolve the conflict. Note that di of

robot i is the Euclidean norm of the difference between xi
and its target position.

Correctness of the proposed algorithm depends on the

assumption that every robot requesting to be assigned to a

Fig. 1. The mobile robots (12 cm diameter) used in experiments.



Algorithm 1 Negotiation strategies for robot i

1. Input: Ia
i , It

i , p(i), the descending index set of robots assigned
to the same position, i.e., Ai = j ∈ Ni | p(j) = p(i)

2. Exchange lists with neighbors, i.e., Ia
i = Ia

i \ (∪j∈Ni
It
j) and

It
i = It

i ∪ (∪j∈Ni
It
j)

3. while Ai 6= NULL
4. k = Ai.dequeue

5. if di <= dk then
6. Robot i wins and robot k chooses a position from Ia

k
7. Update Ia

i , It
i , Ia

k
, It

k
8. Dequeue robot k from Ai and empty Ak

9. Robot k starts moving to the new assigned position
10. else if di > dk then
11. Robot k wins and robot i chooses a position from Ia

i
12. Update Ia

i , It
i , Ia

k
, It

k
13. Dequeue robot i from Ak and empty Ai

14. Robot i starts moving to the new assigned position
15. end if
16. end while

formation role will eventually be able to communicate and

negotiate with all other robots requesting to be assigned to

the same role. Only one robot will take the role when that

conflict is resolved. The robots that do not get that position

will choose the new position from Ia(t) in such a way that

it is the nearest position and connectivity is still maintained.

In case that the number of robots is more than the number of

roles, i.e., N > M , the unassigned robots have to perform

the task of maintaining connectivity, e.g., [12] in order to

keep the connectivity assumption satisfied, and also they

have to move away from the “taken” positions. In this work,

we simply apply artificial attractive and repulsive forces to

meet these requirements. However, connectivity may be lost

in case that N < M . This issue, solved by simultaneously

maintaining connectivity and performing role assignment, is

left to the future.

IV. FORMATION SWITCHING

The goal of this section is to develop a distributed control

framework able to drive the robots to the target formation

transformed through the common translation vector vf and

rotation matrix R(θf ), while the permutation P is determined

dynamically by means of distributed negotiation strategies,

using only local information. In some applications, in which

the center and the orientation of the target formation are not

given, we employ consensus protocols to obtain vf and θf
that are agreed by all robots in the team, as shown in Section

IV-A. To drive the robots to the target positions safely,

we integrate the navigating control law with the artificial

potential field, as described in Section IV-B.

A. Consensus on the Rotation and Translation

In the consensus problem, a variety of algorithms have

been proposed such that a group of robots can agree upon

certain quantities of interest, such as direction, position, etc.

with only local information (see [11], [13] and see [14]

for implementing consensus protocols over an asynchronous

communication network).

To minimize the displacement of the whole group from the

initial positions to the target positions, we extract the first

PCA (principal components analysis) axis from the robot

locations and use it as a rotation variable. This line goes

through the centroid and also minimizes the square of the

distance of each point to that line. We estimate the largest

eigenvector of the covariance matrix of distributed positions

in a decentralized fashion, assuming that the positions are

measured by the localization module and the communication

links are locally connected. The idea proposed in [15] is

based on the decomposition of the so-called power method

into a decentralized iterative protocol. The eigenvectors of

the covariance matrix Ĉ can be derived by using a power

method as follows

q(n+ 1) = Ĉq(n)

‖Ĉq(n)‖
, (7)

with Ĉ = (xi− x̄)(xi− x̄)T , i = 1, ..., N , where x̄ is the cen-

troid. This method converges to the maximum eigenvector of

Ĉ as long as the maximum eigenvalue of Ĉ is strictly greater

than the other eigenvalues and the vector q(0), an initial

random vector, has a non-zero component in the direction of

the eigenvector associated to the largest eigenvalue [15]. For

simplicity, let us assume that x̄ = 0. The recursive equation

(7) can be expanded as follows:

q1(n+ 1) =
Ĉq1(n)

‖Ĉq1(n)‖

=

∑N

i=1 xi(xi · q1(n))

‖
∑N

i=1 xi(xi · q1(n))‖

=
x(x · q1(n))

‖x(x · q1(n))‖

. (8)

Subscript 1 of q1(n) denotes the first eigenvector. Unlike

[15], we perform the average consensus protocols for xi(xi ·
q1(n)), i = 1, ..., N , instead of only the inner products

and, in our algorithm, each robot does not need to know

the number of robots in the team. Finally, we can obtain the

estimate of q1.

B. Navigating Control with Collision Avoidance

In fact, any controller with the capability to avoid inter-

robot collisions and to navigate through waypoints can be

used. In this work, we employ the controller from [16].

The control architecture combines two feedback loops: a

motion control loop and a new-target control loop. The latter

loop provides a modification of the target position when

an obstacle appears on the path of the mobile robot. By

representing the robot position in polar coordinates, and

considering the error vector e, as well as by letting α = φ−θ
be the angle measured between the distance vector e and the

main robot axis, the above kinematic equations (6) can be

rewritten

ė = −v cosα, α̇ = −ω + v
sinα

e
. (9)

Then, the control laws for v and ω are given by

v = γ tanh e cosα

ω = kcα+ γ
tanh e

e
sinα cosα with kc > 0

, (10)



where γ = |vmax| and |ωmax| = kcπ + γ/2. Since we do

not have the prescribing orientation of the target position,

these control laws can drive the distance vector e and α to

zero asymptotically and θ becomes constant when t → ∞.

To avoid obstacles, the concept of attractive and repulsive

forces to avoid obstacles, as proposed in [17], is applied to

modify the target position when an obstacle suddenly appears

on the path during navigating towards a target position.

C. Task Sequencing

Since the mission of this section is that a team of robots

can reconfigure themselves from one formation to another,

the whole formation-switching task can be controlled by

passing from one to the next as each formation task is

completed. When global communication is not available, the

robots must measure the degree of consensus in their team.

Once the consensus reaches a preset threshold, meaning

that some proportion of the team members agree that the

current task is completed, they should induce their system to

abandon the current task and start the next one. This thresh-

old highly depends on task requirements. If it is too high,

the probability of a robot making an error and prematurely

activating the switch to the next task may increase. To attain

this goal, we introduce a new state, zi(t) for robot i, to

measure the degree of task completion of the current task.

It becomes zero when all robots agree that the current task

is completed. The following proportional-integral consensus

estimator, based on [18], is used in this work:

ż = −Lz + kz(w − z) + Lη

η̇ = −Lz
, (11)

where L is the Laplacian matrix and η is an integrator

variable. wi(t) is a dynamic input. It becomes 0, if robot

i detects the completion of its current task, and 1, otherwise.

kz is the forgetting factor. Large values of kz mean that

we get rid of old information quickly. We initialize zi(0) =
wi(0) for each robot. Unlike static consensus, in which all

robots must converge to the average of their initial states, i.e,
1
N

∑N

i zi, wi(t) can be seen as a dynamic input in dynamic

consensus. All robots must track the time-varying average

of the wi terms, i.e., they have to reach w̄ = 1
N

∑N

i wi.

Therefore, zi can be considered a time-varying estimate of

the instantaneous average value w̄. We use zi to measure

the degree of task completion. When zi reaches a preset

threshold, this implies that robot i should abandon the current

task and start the next one.

D. Experimental Results

Real-world experiments of the distributed role assignment

as established in this section are carried out to evaluate the

performance of our framework. We consider a navigation

task in R
2, where N = 6 robots shown in Fig. 1, starting

from randomly chosen initial configurations but satisfying

the connectivity assumption, are required to reach the desired

formation configurations. We evaluate our algorithms with

three different formations as shown in Fig. 2. The robots

have to switch from one formation to another in sequence.

The communication range r is 1.2 m. In consensus-based

task sequencing, the threshold of the state z is 0.1 and the

forgetting factor is set to 0.5.

As shown in Fig. 3, all robots can successfully complete

the formation switching task, in which the center and the

orientation of the target formation are not given. They use

the average consensus protocol to obtain an agreement on

the translation as well as the rotation, and then they start

negotiation to get the role, if a conflict arises. Each robot can

move to the target position without any collision by using

the controller described in Section IV-B. The translation and

rotation may be changed from one formation to another if

there are some unassigned robots.

V. COORDINATED PATH FOLLOWING

A control strategy for coordinated path following of mul-

tiple mobile robots is presented in this section. A virtual

vehicle concept (see [19]) is combined with a path following

approach to achieve formation tasks (the pioneering work in

path following control can be found in [20]). Our formation

controller is designed in such a way that the path derivative

is employed as an additional control input to synchronize the

robot’s motion with neighboring robots. A second-order con-

sensus algorithm with a reference velocity under undirected

information exchange is introduced to derive the control law

for synchronization.

A. Controller Design

The error dynamics of robot i with respect to the robot

frame are

ẋei = yeiωi − vi + ṡi cos θei

ẏei = −xeiωi + ṡi sin θei

θ̇ei = κiṡi − ωi

(12)

where [xei, yei, θei]
T denotes the error state vector, κi is

the path curvature, and ṡi is the velocity of a virtual vehicle.

Let us define ˙̃si = ṡi − vdi, where ˙̃si represents the

formation speed tracking error of robot i and vdi is the

desired forward velocity, and then we choose

V =
1

2

N
∑

i=1

(

x2
ei + y2ei +

1

k1
(θei − δi(yei, v))

2
+ ˙̃s2i + k2s̄

2
i

)

(13)

as a candidate Lyapunov function, where k1 and k2 are

positive gains. s̄i =
∑

j∈Ni
(si−sj−sdij) is the coordination

error of robot i and sdij is the desired distance between

two neighbors i and j. The function δi can be interpreted

(a) Triangle (b) X shape (c) Circle

Fig. 2. Illustration of three different formation configurations. Squares
represent the target positions in the formation. These formations must satisfy
the connectivity assumption.
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Fig. 3. The experimental results on formation switching (a) each robot starts at a different random position, (c),(e) and (h) are the snapshots when the
formation task is completed, corresponding to Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively. Note that robot R4 in (e) is an unassigned robot.

as the desired value for the orientation θei during transients

[20]. It is assumed that limt→∞ v(t) 6= 0, δi(0, v) = 0, and

yeiv sin (δi) ≤ 0, ∀yei∀v. The function δi(yei, v) taken from

[19] is δi(yei, v) = −sign(vdi)θa tanh yei with θa = π
4 .

The derivative of V can be computed to give

V̇ =

N
∑

i=1

[

xeiẋei + yeiẏei +
1

k1
(θei − δi)

(

θ̇ei − δ̇i

)

+ ˙̃si ¨̃si + k2s̄i ˙̄si

]

. (14)

Let the control laws for vi, ωi, and s̈i be defined as

vi =k4xei + vdi cos θei (15)

ωi =k5(θei − δi) + ωdi − δ̇i + k1yeivdi

[

sin θei − sin δi
θei − δi

]

(16)

s̈i =v̇di − k6 ˙̃si − xei cos θei − yei sin θei −
κi

k1
(θei − δi)

− 2k2
∑

j∈Ni

(si − sj − sdij)− k3
∑

j∈Ni

(ṡi − ṡj) (17)

where k3, k4, k5, k6 > 0 and ωdi = κivdi. Then we can

achieve

V̇ =
N
∑

i=1

[

−k4x
2
ei −

k5
k1

(θei − δi)
2 − k6 ˙̃s

2
i + yeivdi sin δi

]

− k3ṡ
TLṡ ≤ 0 (18)

where ṡ ∈ R
N is the stack vector of the robots’ path

derivative. We omit the proof due to limited space1.

1The proof can be found at: http://www.ra.cs.uni-
tuebingen.de/mitarb/kanjana/aim2010ext.pdf.

B. Experimental Results

The C2 reference path and the initial positions of three

robots are plotted in Fig. 5(a). The robots have to switch one

formation to another, see Fig. 4. We assume that they have

a mechanism that can make a decision on which formation

they want to select according to the environment. To avoid

collisions, the concept of attractive and repulsive forces is

applied to modify the reference position. As seen in Fig. 5(b)

and Fig. 5(c), the robots maintain a line formation, illustrated

in Fig. 4(a), while following a reference path. Fig.5(d) and

Fig. 5(e) show the snapshots where they switch to a column

formation, shown in Fig. 4(b), and the robots then switch to a

triangular formation, as depicted in Fig.5(i) and Fig. 5(j). At

the steady state, the distance errors and the coordination er-

rors are less than 10 cm, while the orientation errors are less

than 20 degrees. The main sources of disturbances include

sensor distortion, vision-system delays, and communication

delays.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel solution for the

distributed role assignment in formation switching tasks.

Our framework is mainly based on the average consensus

protocols and the negotiation strategies. From the experimen-

tal results of the first scenario, we can conclude that each

(a) Line (b) Column (c) Triangle

Fig. 4. Illustration of three different formation configurations. Squares
represent the target positions in the formation. These formations must satisfy
the connectivity assumption.
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Fig. 5. The experimental results on coordinated path following and formation switching.

robot can reconfigure itself from one formation to another

successfully. It can also detect the completion of each task

and automatically move onto the next task in its queue. In the

second scenario, we can achieve coordinated path following,

i.e., each robot can be steered along a set of given spatial

paths, while it keeps a desired inter-vehicle coordination

pattern and switches formations.

Currently, we are investigating the computational com-

plexity issue and theoretical proof. Future research also in-

cludes the extension of our results to robots in more complex

environments. For example, environmental obstacles may

appear on the robot’s path.
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