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Abstract— In this paper we present a novel approach to esti-
mating the trajectory of a robot by means of inexpensive passive
RFID tags and odometry in unknown environments. We show
how trajectory estimation, a prerequisite of mapping RFID
transponder positions without a reference positioning system,
can be achieved using a particle filter. The presented technique
is based on a non-parametric model of spatial relationships
between RFID measurements. It overcomes the noisy nature of
RFID measurements and the absence of distance and bearing
information. The accuracy of our method is investigated in a
series of experiments with a mobile service robot.

I. INTRODUCTION
Over the last decade, considerable progress has been

achieved in enabling robots to autonomously map unknown
environments. Usually, a solution involves simultaneous lo-
calization and mapping (SLAM), where map building and
estimating the trajectory of the robot are performed concur-
rently. A crucial point for the generation of consistent maps
is data association, that is, the association of observations
to previously seen landmarks. Radio frequency identification
(RFID) solves this issue trivially by the contactless identifi-
cation of objects via radio waves. Still, there is little literature
on RFID-based SLAM, and the mapping of transponder
positions usually requires a reference localization system.
One reason for this is that the SLAM-inherent issue of
loop detection is easy with RFID, but closing the loop
accurately is not trivial: Long-range RFID detections reveal
large position uncertainty while distance and bearing to
a transponder are unknown. Passive ultra-high frequency
(UHF, 433-950 MHz) RFID, the prevailing technology for
product tagging, has a read range of up to 7 m and is
characterized by a lot of false-negative detections.

In this paper, we show how to tackle these difficulties: We
decouple the task of estimating the trajectory of the robot
from the task of mapping transponder positions. Our algo-
rithm addresses the first task such that – given the tracked
path of the robot – tag positions can be estimated efficiently
afterwards by means of well-known related approaches. The
technique is motivated by the observation that in warehouses,
logistic centers, and supermarkets, more and more products
are being labeled with inexpensive RFID tags. Robots with
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RFID readers will be able to perform inventory, detect and
transport goods, or serve as shopping guides. As a side
effect, RFID can be used cost-efficiently also for localization;
thousands of transponders which are attached to objects
stored in shelves can be utilized as navigation landmarks.
Compared to laser range finders, which are commonly used
for localization and mapping, RFID readers are expected to
be cheaper in the long run. Moreover, in contrast to vision-
based SLAM, computationally expensive image processing
is not required when RFID is used. Additionally, RFID does
not depend on line of sight and is independent of lighting
conditions.

Our method works as follows: We exploit the fact that the
degree of similarity of two RFID measurements taken at two
positions indicates how close the two positions are. Based
on training data, we learn non-parametric models of the
likelihoods of different degrees of similarities, conditioned
on the distance between two measurement positions. The
learned likelihood models are used to reweight the samples of
a particle filter that tracks the pose of the robot. As the result,
our method returns the most likely trajectory of the robot. In
conjunction with the RFID measurements, it can be used to
estimate the positions of RFID tags, or to localize the robot
with a fingerprinting-based positioning technique. In general,
the learned RFID observation model could also be used to
augment particle filter-based SLAM approaches using laser
range finders or cameras. Our choice to use particle filtering
is motivated by the seamless integration of the proposed
observation model as well as reported good accuracy in the
context of SLAM (e.g., [1], [2]).

This paper is structured as follows. In Sect. II, we present
a survey of related approaches, and in Sect. III we examine
how RFID can be used for trajectory estimation. Thereafter,
we clarify the background of particle filter-based trajectory
estimation in Sect. IV. Section V treats the derivation and
utilization of RFID fingerprint models, before we present
experimental results with a mobile robot in Sect. VI. Finally,
we draw conclusions in Sect. VII.

II. RELATED WORK
The approach presented in this paper is closely related

to SLAM solutions, although transponder positions are not
simultaneously mapped: The consistent reconstruction of the
robot trajectory involves its correction via sensor readings
and loop closure, as with SLAM. Especially, our work relates
to SLAM with (Rao-Blackwellized) particle filters such as



FastSLAM, which was introduced by Montemerlo et al. [1].
They presented how to generate consistent maps compu-
tationally efficiently with laser range finders (or cameras).
Laser-based FastSLAM was also employed by Hähnel et
al. [3] to estimate the trajectory of their robot and the
positions of passive UHF RFID tags in an office environment.
A probabilistic sensor model formed the basis to reweight
the samples in particle filter-based mapping. Given the map
of transponders, the robot was finally able to localize itself
with RFID and odometry alone. Our approach enables a
robot to do the same, but eliminates the potentially expensive
reference positioning system. Kleiner et al. [4] showed
how trajectory correction and graph-based SLAM can be
performed with sparsely spread, passive transponders. Their
approach relies on the direct proximity to a short-range tag
(and thus high certainty in the relative position between the
robot and the tag), and it can be pursued by multi-robot
teams in a distributed fashion. Tanaka’s work [5] is based on
a similar setup, but he used a more recent stochastic gradient
descent framework to optimize the constraints given by ego-
motion and RFID measurements [6], [7]. In [8], we also
investigated a graph-based SLAM framework for trajectory
estimation. The setup was very similar to the one in the
work at hand, i.e., long-range passive RFID and quite high
tag densities. Graph-based SLAM has the advantage that
potentially large and nested loops can be closed, which is
tricky when using particle filters. Moreover, the trajectory
estimate can be revised upon arrival of new observations;
past poses in a standard particle filter are never revised.
However, we found that the graph-based SLAM approach
can be sensitive to erroneous loop closures. That is the reason
why in this paper we examine the suitability of particle
filtering for trajectory estimation as an alternative.

With regard to active RFID tags, Kantor et al. [9] and
Djugash et al. [10] utilized an extended Kalman filter for
localization, mapping, and SLAM. Their methods exploit
measured signal strength between the transponders, which
is not a standardized feature in passive RFID systems. Fin-
gerprinting has already been successfully applied to RFID-
based localization [11], [12], [13] and is based on the
observation that the position of a robot can be inferred
from the comparison of the currently detected tags with a
database of measurements obtained during training. The area
of appearance-based SLAM (e.g., see [14], [15], [16]) is
technically similar to fingerprinting-based trajectory estima-
tion: Similarities to the visual signatures of previously visited
places are found in order to close loops. This is done without
the reconstruction of feature positions in world coordinates.
By contrast, a trajectory reconstruction approach which relies
on the fusion of forward and backward odometry only was
presented by ten Hagen et al. [17].

III. RFID AND FINGERPRINTS
Radio frequency identification (RFID) is a technique for

the identification of objects via electromagnetic waves. An
RFID system consists of an RFID reader with antennas and
a number of small transponders (also called tags or labels)

attached to objects. The reader is frequently called to perform
an inquiry, that is, all transponders within read range are
requested to send back their unique IDs. Passive tags obtain
their energy for the reply only from the electromagnetic field
of the reader. Yet, they feature a read range of up to 7 m.

With RFID systems of this kind, only the detection of
a transponder is possible, but its exact location inside the
reader field cannot be determined. So, neither bearing nor
distance to a tag are known. This is a great difference
as compared to active RFID tags, where commonly signal
strength measurements can be used to estimate distances.

Read attempts of passive tags may fail even if the tags are
within read range, because detections depend on a number of
parameters. Some factors are hard to include in predictions,
for example absorption and the reflexion of the transmitted
electromagnetic waves. They are accepted as undisclosed
noise. But most importantly, the chance of successfully
detecting a tag correlates with the tag’s relative position and
orientation with respect to the reader antenna (Fig. 1). This
property is one of the fundamentals of this work.
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Fig. 1. Dependence of tag detection rates on the relative displacement (x,y
coordinates only) of a tag with respect to the antenna of the RFID reader.
The latter is located in the origin and points to the right.

Our method makes use of RFID fingerprints, which follow
the usual notion of fingerprinting: Sensor measurements
are associated with the positions where they are recorded.
The idea behind this technique is that raw sensor data
are considered to characterize the locations in which they
are recorded. Consequently, if the lists of detected RFID
tags in two fingerprints are similar, we will conclude that
the fingerprints are likely to stem from similar positions.
We focus on fingerprinting-based sensor models because
they yielded good accuracy in self-localization [12], [13].
The snapshot approach by Schneegans [12] can be used,
for instance, for localizing the robot against pose-corrected
observations obtained with the method of the work at hand.

Formally, we represent an RFID fingerprint F by a pair
F = (f ,x). f = (fant1 , . . . , fantA) is the result of an inquiry
that was carried out for all A antennas connected to the
RFID reader, and x = (x, y, θ) is the position where f was
recorded. fantj = (f

(1)
antj , . . . , f

(L)
antj ) is a binary vector in



which f
(l)
antj states whether antenna j detected tag l (1) or

not (0). L is the total number of different tags observed.
A very important property of such fingerprints is that they

are implicitly orientation-dependent. If the robot is equipped
with more than one antenna and these antennas are mounted
in different directions, measuring the same tags with the
same antennas in two fingerprints means that the orientation
of their recording positions must be similar. Consequently,
without knowing the true orientation of the robot, there
is a correlation between the difference in heading and the
similarity of two fingerprints if they are compared in an
antenna-wise manner.

In this work, we assume densely tagged environments,
that is, the robot is able to detect several tags at a time
from most positions. This assumption guarantees that RFID
measurements are spatially expressive. In supermarkets filled
with tagged products, this assumption is naturally satisfied.

IV. TRAJECTORY ESTIMATION WITH
PARTICLE FILTERS

Trajectory estimation means to incrementally localize a
robot traversing an unknown environment while maintaining
consistency of the pose estimates based on the current and
previous observations. In other words, the position of the
robot is tracked without an a-priori map. This task resembles
simultaneous localization and mapping (SLAM), where the
goal is to incrementally build a map of an unknown environ-
ment while the robot is localizing itself against the created
map. The challenge lies in the uncertainty of sensor readings
and especially in noisy odometry; building a map when the
trajectory of the robot is known is an easier subproblem.
The SLAM problem itself is well-studied, has brought up a
variety of approaches and can be regarded as solved from a
theoretical perspective. A good overview is presented in [2],
from which we have adopted some of the notations in the
following section.

Trajectory estimation concerns the posterior density

p(X0:t|Z0:t,U0:t,x0), (1)

of the trajectory X0:t = {x0, . . . ,xt} (the history of robot
poses xi) at each discrete time step t, given the histories
of sensor measurements Z0:t and robot movements U0:t as
well as the initial pose x0 (typically zero). In the 2D case
(as in our case), the robot pose xt = (xt, yt, θt) contains the
2D coordinates of the robot as well as a global heading θt.
Z0:t = {z1, . . . , zt} comprises all sensor readings and
U0:t = {u1, . . . ,ut} all odometry measurements.

A particle filter approximates (1) at time t by a set of
N particles, where each particle is associated a trajectory
X

(i)
0:t and a weight w(i)

t . (In a full SLAM approach such as
FastSLAM [1], each particle would also feature a density
p(m|X(i)

0:t,Z0:t) representing the map.) Note that particle
filters are generally suited for estimating the state of a
dynamic system with non-linear dynamics and non-Gaussian
noise, as in the task at hand. The particle filtering algorithm
takes the following steps in a recursive fashion:

1) Prediction: A new sample is drawn from the proposal
distribution, which is the motion model in our work:

x
(i)
t ∼ p(xt|x(i)

t−1,ut) (2)

The model probabilistically describes the transition of
the system from the old state for a given odometry
measurement ut.

2) Correction: Samples are reweighted according to the
latest sensor readings:

w
(i)
t = ηtw

(i)
t−1p(zt|X

(i)
0:t,Z0:t−1) (3)

p(zt|X0:t,Z0:t−1) is the observation model and com-
pensates for the discrepancy between the proposal and
the true distribution. In Sect. V we dedicate to the
derivation of an observation model p(zt|X0:t,Z0:t−1)

for RFID fingerprints. ηt ensures that
∑N
i=1 w

(i)
t = 1.

3) Resampling: Samples are drawn with replacement,
where the probability of choosing a particle corre-
sponds to its weight. By this step, samples repre-
senting inconsistent trajectories are removed. All new
samples are given equal weights 1/N . An option
is to resample not always, but only if the estimate
N̂eff = 1/

(∑N
i=1(w

(i)
t )2

)
of the effective sample

size falls below some threshold, e.g., N/2. Generally,
resampling should be performed as rarely as possible
in order to maintain particle diversity.

SLAM particle filters would also require a forth step, the
map update, in which landmark positions are updated, given
the estimated robot pose. Our approach does not require
landmark updates, because the likelihood p(zt|X0:t,Z0:t−1)
used in (3) directly operates on X0:t and Z0:t. On the one
hand, this means that computation time with respect to map
updates is saved. On the other hand, the time complexity
for correcting the particle weights in step 2 becomes time-
dependent: FastSLAM, for instance, has reweighting costs of
O(N ·L) for N particles and L landmarks; the costs in our
approach are O(t ·L′+N ·smax), where t is the current time
index and smax is a constant which determines how many
previous fingerprints are used for reweighting the samples.
Consequently, the computation time will theoretically grow
over time. However, L′ � L is a nearly constant value
which reflects that, due to technical reasons, each RFID
inquiry only concerns a bounded number of landmarks.
Moreover, not all t measurements have to be considered in
likelihood computation. In Sect. VI we actually show that the
asymptotic behavior seems irrelevant in practice, although
further studies on this issue may be subject to future research.

If desired, the locations of RFID tags can be estimated
later, following the particle filter-based mapping method by
Hähnel et al. [3] or similar approaches using a fuzzy sensor
model [18] or a multi-path propagation model including
specified antenna characteristics [19]. As can be seen in
Fig. 1, the observation model for the detection of a single
RFID tag is neither Gaussian nor sharply peaked. This is the
reason why one cannot simply use EKFs as in FastSLAM,



estimate the positions of the landmarks (RFID tags), and
localize against them simultaneously.

V. OBSERVATION MODEL FOR FINGERPRINTS
In this section, we design a likelihood function

p(zt|X0:t,Z0:t−1) that relies on statistics of the similarity
of RFID measurements and their spatial distribution. For
this purpose, we elaborated a non-parametric model which
is based on fingerprints recorded during a training phase.
We first depict how training data are acquired, and then we
explain the derivation of the likelihood function used in the
particle filter.

A. Acquisition of Training Data
The acquisition of training data is performed as follows:

RFID tags are placed in the environment – arbitrarily, but
similar in density to the arrangement in the application en-
vironment in which trajectory estimation is to be performed.
That is, for instance, the tags should be attached to walls
at different heights if the target environment will later also
comprise transponders at varying heights, e.g., on products
in shelves. Then, the robot should be located at various
known positions, i.e., at different distances and with different
relative orientations to the tags. RFID measurements are
recorded and annotated with their true recording positions.
The outcome of this training phase is a set {Fi}i=1,2,... of
fingerprints as defined in Sect. III.

B. Derivation of an Observation Model for Fingerprints
In order to estimate the robot’s trajectory from RFID and

odometry data only, any kind of observation model must
exploit the fact that the detection rates of RFID tags strongly
depend on the distance and relative orientation between the
tags and the reader antenna. In prior experiments, we investi-
gated different similarity measures for comparing two RFID
fingerprints. In particular, we examined the relationship be-
tween the measured similarity on the one hand and the mean
distance between the positions at which they were taken on
the other hand. We observed that the number of equal tag IDs
in two measurements, summed up over all antennas, yielded
one of the highest values of (absolute) Pearson correlation
and also mutual information, as also compared to cosine
similarity (cf. [8]) and histogram intersection. Due to this
result, the simple parameterizability of the model, and the
very efficient computability, we decided to use the number
of equal identifiers as a measure for our algorithm.

The number of equal tags in two fingerprints fi and fj
is computed as the sum of detections of tags l that were
detected (with the same reader antenna a) both at times i
and j:

EQU(fi, fj) =
A∑

a=1

∣∣∣
{
l | f (l)

i,anta
= 1 ∧ f (l)

j,anta
= 1
}∣∣∣ (4)

Let Z be the random variable which represents the number of
equal tags in two inquiries. Furthermore, let d be the random
variable which denotes the Euclidean distance ‖xi − xj‖
between the positions where two fingerprints were taken.
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Fig. 2. Learned likelihood functions p(Z = k|d) depending on the distance
d and for different numbers (1-7) of equal tags in two compared RFID
fingerprints. Please note the logarithmic scale of the vertical axis.

Then p(Z = k|d) stands for the likelihood of having k equal
tags in two fingerprints recorded at a given distance d. In
order to compute this likelihood, we apply Bayes’ formula:

p(Z = k|d) = p(d|Z = k)
p(Z = k)

p(d)
(5)

The term p(Z = k) can directly be estimated from the
training data by simple counting how often which number of
equal tags in any pair of training measurements is observed.
The terms p(d) and p(d|Z = k), however, require density
estimation, i.e., the estimation of probability densities, based
on the discrete number of sample distances. In our imple-
mentation, we employ kernel density estimation, which is a
non-parametric means of estimating the (arbitrarily shaped)
probability density function of a random variable (e.g., [20]).
For a Gaussian kernel, as in our implementation, the optimal
kernel bandwidth can be determined via the normal reference
rule h = 1.06σn−1/5, where n is the number of input
distances and σ is the standard deviation among them. While
p(d) is estimated from all pairs of training fingerprints, the
estimation of p(d|Z = k) for a fixed k only involves pairs
of training fingerprints which have exactly k tag identifiers
in common. Fig. 2 shows the likelihood functions which
we estimated from our experiments for different numbers
of equal tags.

In the recall phase, p(Z = k|d) can then be used to
compute p(Z = EQU(fi, fj) | ‖xi − xj‖) for a single pair
of fingerprints, Fi and Fj . In the particle reweighting step
at time t, we first compare zt := ft to all zj := fj , 0 ≤ j < t,
by computing etj := EQU(ft, fj). We claim that etj ≥ emin
for some threshold emin, because only if sufficiently many
tags are re-detected, sufficient evidence of revisiting the
same place is provided. So, if etj ≥ emin, measurement
j is a candidate to be used for reweighting. Since it may
happen that in some areas of the environment there are
many similarity candidates whereas in others there are only
few, it is reasonable to bound the number of candidates
in order to enforce homogeneity in assigned likelihoods.
This is achieved by first computing a set of candidates
S(zt,Z0:t−1) as described before and then choosing the best
smax measurements of highest similarity to zt. The algorithm



Input: Current and recent RFID measurements zt, Z0:t

Output: The set S(zt,Z0:t−1) of similarity candidates
S ← {}
for j ← 0 to t− 1 do

etj ← EQU(zt, zj) // number of equ. tags in zt, zj
if etj ≥ emin then

S ← S ∪ {(etj , j)} // similarity candidate
end

end
if |S| > smax then

sort S descending w.r.t. to first tuple component
trim S to first (i.e., best) smax elements

end
return S

Fig. 3. Computation of S(zt,Z0:t−1), which contains indices of RFID
measurements similar to zt and the number of equal tag IDs.

in Fig. 3 summarizes these steps. Finally, all particles are
reweighted according to the chosen similar measurements
and based on the trajectories X

(i)
0:t that the particles embody.

Here, we assume that the likelihoods of all similarities are
independent and compute the product of single likelihoods:

p(zt|X(i)
0:t,Z0:t−1) =

∏

(k,j)∈
S(zt,Z0:t−1)

p(Z = k | ‖x(i)
j − x

(i)
t ‖)

Let us conclude this section with the remark that our
model could also be easily extended to orientations, rather
than distances only. Yet, although we do not weight a particle
based on its current orientation, its orientation is implicitly
assessed: Two particles with identical locations but with
different orientations will end up in distinct positions if the
robot travels some distance. On the other hand, if a pair of
fingerprints along the robot’s path has actually been taken in
same place, but with different orientations of the robot, the
RFID measurements will be likely to differ entirely. This will
prevent the fingerprint pair from being selected as a similarity
candidate and hence prevent a particle representing the same
position from erroneously being assigned a low weight.

VI. EXPERIMENTS
We conducted several experiments with a B21 robot. The

robot is equipped with a laser range finder (240◦ field of
view), an Alien Technology ALR-8780 UHF RFID reader
(EPC Class 1 Gen. 2, 2 W EIRP transmitting power), and two
pairs of RFID antennas, which point at angles of approx. 45◦
to either side of the robot (Fig. 4).

In the training phase, we collected RFID data and laser-
based reference positions as described in Sect. V-A. The
training environment was a corridor (28 m×3 m) in which
we attached 240 UHF RFID tags to the walls at distances of
0.25 m on average, roughly at the height of the upper anten-
nas. We steered the robot manually on arbitrary paths along
the corridor. On a trajectory length of 1210 m corresponding
to a duration of 68 minutes, 8123 fingerprints were taken in
total. The recorded data were used to compute the fingerprint
model shown in Fig. 2, which took a few seconds only.

In order to investigate the quality of trajectory estimation,
we attached more than 400 tags to walls and furniture at

different heights in a different environment (Fig. 4). The
traversable area was approx. 195 m2. We recorded laser-
based reference positions (only for ground truth), odometry,
and RFID data on 13 trajectories. To be able to test the
loop closing capability of our approach, all paths contained
loops and ended in the same position where they had
started. In this, the deviation between the initial and final
positions of the robot is a good measure of accuracy, since
odometric errors sum up and typically lead to a large final
position deviation. The mean and maximal deviations over
all test trajectories dead-reckoned by pure odometry were
3.40 m and 7.63 m, respectively. As a better measure of
the consistency of the estimated trajectory, we computed
the mean residual Cartesian error between the estimated
positions associated with the most likely particle and the
actual positions along the entire path after an alignment at
each other. The alignment minimizes errors, but is useful
to measure the consistency of the generated trajectory: The
coordinate frame of the reference positions is different from
the initial frame of the particles, and a particle’s trajectory
can be quite consistent even if it is initially distorted. The
mean residual Cartesian error with odometry alone was
1.23 m. Finally, we always used a very low resampling
threshold of 5 % of the effective sample size in order to
avoid particle impoverishment.

A. Parameter Choice for Similarity Candidates
In a first series of experiments, we investigated the influ-

ence of the choice of the parameters emin (minimal number
of equal tags) and smax (number of similarity candidates
used for reweighting). The particle filter was run ten times
with each configuration and a fixed number of N = 1000
particles. The results are visualized in Fig. 5. The first
observation is that the larger emin (the minimal number
of equal tags of two fingerprints related to each other)
the better the accuracy. This can be explained by the fact
that only similarity candidates are selected which strongly
indicate that a place is revisited. Furthermore, the number of
similarity candidates, smax, should be chosen carefully. That
is, a smaller number seems to be beneficial. An explanation

Fig. 4. Left: Our robot with its UHF RFID antennas (white), spanning an
angle of approx. 90◦. Right: The environment in which we conducted our
experiments. RFID tags were situated in the hatched areas.
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TABLE I
IMPACT OF THE NUMBER OF PARTICLES (N ) ON THE MEAN RESIDUAL

CARTESIAN ERROR AND THE FINAL POSITION DEVIATION OF THE ROBOT

ALONG THE ESTIMATED TRAJECTORY (IN M)

N
Residual Cartesian error Final deviation

Mean ± std. dev. Maximum Mean ± std. dev.
(in m) (in m) (in m)

30 0.7662 ± 0.2650 1.4089 1.7016 ± 0.9211
100 0.5987 ± 0.1717 0.9952 1.0555 ± 0.6130
300 0.5189 ± 0.1430 0.9896 0.7995 ± 0.4429

1000 0.4706 ± 0.1492 0.8362 0.5455 ± 0.3599
3000 0.4242 ± 0.1430 0.8089 0.4192 ± 0.2635

for this is that for larger smax, the likelihood function
p(zt|X(i)

0:t,Z0:t−1) separates particle weights too drastically.
The smallest mean deviation in this experiment was 0.54 m
for emin = 5 and smax = 1. Thus, compared to the mean
residual error of 1.23 m for odometry only, the estimated
trajectories are significantly improved.

B. Number of Particles
The impact of the number of particles, N , on the accuracy

of the estimated trajectory was examined in the second series
of experiments. Again, we ran the particle filter ten times
on five selective data sets. We set smax = 1 and emin = 5,
based on the findings of the previous experiments. The results
are listed in Tab. I. Not surprisingly, the largest number of
particles achieves the best accuracy, in this case a residual
error of less than half a meter. On the other hand, the
final error is quite large for 30 particles, resulting in an
inconsistent trajectory. An example of an estimated trajectory
obtained with 1000 particles is shown in Fig. 6.

C. Variation of Motion Noise
In the last series of experiments, we investigated the

stability of the proposed approach under the variation of
rotational noise in the robot’s movements. The motivation
behind this is that SLAM and localization are typically
highly sensitive to rotational errors. We therefore added
zero-mean Gaussian noise with standard deviation λ · ∆θ
to the rotational component ∆θ of odometry measurements
and varied the factor λ. Without the addition of artificial
noise, we assumed Gaussian rotational noise with a standard
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deviation of 0.05 · ∆θ. The results are shown in Fig. 7.
For moderate rotational noise, the residual Cartesian errors
increase only slightly, while for λ ≥ 0.3, the accuracy is
clearly worse. We draw the conclusion that our results can
be generalized to other types of robots with similar or even
slightly larger odometric errors.

D. Run Times
While running the experiments of Sect. VI-B, we mea-

sured the run-times of our algorithm. Table II lists the mean
durations of the last 100 correction steps of the particle filter
on a 3 GHz processor. Although the asymptotic run-time
complexity of the algorithm depends on the trajectory length,
the number of particles obviously has a much larger influence
in practice. All computations can be performed by far in real



TABLE II
MEAN RUN-TIMES OF THE FINAL 100 CORRECTION STEPS OF THE

PARTICLE FILTER, CONDITIONED ON THE NUMBER OF PARTICLES (N )

Number of particles 30 100 300 1000 3000
Mean duration 0.9 ms 1.0 ms 1.1 ms 1.6 ms 3.4 ms

time, and RFID measurements arrive approx. every 0.7 s. The
extrapolation of the measured times indicates that only after
more than 24 hours of continuous autonomous exploration
the robot would not be able to process sensor data in time.
An oblivion mechanism for too old RFID measurements,
however, would be an example of a simple, effective solution.

VII. CONCLUSION

In this paper, we presented a solution to trajectory esti-
mation by incorporating passive UHF RFID measurements
and odometry only. First, a sensor model of relating two
RFID measurements (fingerprints) from different positions is
learned. Transponders are permitted to be spread arbitrarily
over the environment; the given tag infrastructure is utilized.
The only requirement is that the robot should be able to
detect several tags from each position. The learned model
is used in the correction step of a particle filter in order to
estimate the trajectory of the robot, based on the estimated
positions of previous fingerprints.

The presented approach permits a robot to estimate its
trajectory without prior map in an RFID-tagged environment,
using particle filtering. Hence, RFID-based mapping is pos-
sible without an extra reference localization system. This is
promising insofar as in the densely tagged environments of
the future (e.g., supermarkets and storehouses), one will be
able to map the places of labeled products without reference
positioning system. In our experiments, we achieved a mean
accuracy of approx. 0.5 m. This is almost the same as for our
graph-based approach [8]. This result also shows, however,
that RFID-based SLAM is still far from the accuracies known
from laser-based SLAM which allows for highly consistent
maps with few particles only. Due to the low measurement
rate (less than 2 Hz in our experiments), a detection field
radius of up to 7 m as well as missing distance and bearing
information, RFID-based trajectory estimation will probably
always suffer from increased uncertainty. Yet, we think that
it is worth developing more complex observation models in
order to investigate and improve its accuracy. Of course, an
option is to incorporate other (preferably low-cost) sensors
or to augment particle filter-based SLAM based on other
sensors with our method when data association is crucial.

In this work, we did not address moving tags, which is an
issue in the target scenarios. The particle filtering framework
and the observation model already reveal some robustness to
small numbers of tag relocations. As future work, however,
we are going to treat moving tags, too.

Finally, a valuable future extension to our approach is to
incorporate models of different RF power levels in inquiries,

because different levels allow for switching between large-
area inventory scans and short-range measurements with
lower position uncertainty.
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