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Abstract— In more and more commercial scenarios, radio
frequency identification (RFID) is used to tag assets on a
large scale. These given tag infrastructures offer themselves for
the navigation of autonomous transport vehicles and service
robots. In this paper we investigate loop closure for graph-
based simultaneous localization and mapping (SLAM) and
trajectory estimation in environments with such dense RFID
infrastructures: We compare different methods of inferring that
a place has been revisited, examine their robustness, and show
how the trajectory of the robot can be reconstructed. Given
this trajectory, a robot is able to map transponder positions or
to localize itself with RFID and odometry alone and without a
reference localization system. The accuracy of our approach is
shown through a series of experiments with a mobile robot.

I. INTRODUCTION
In the near future, radio frequency identification (RFID)

will be used for labeling products and assets in many
commercial applications. Then, in supermarkets, warehouses,
logistics centers, and production plants, RFID transponders
will be deployed in considerable densities. Such transponders
have unique identifiers and can be read by an RFID reader via
electromagnetic waves. In the depicted applications, mobile
robots can be employed for continuous inventory, transporta-
tion of goods, or customer assistance, for instance. By means
of RFID readers and odometry for self-localization, enhanced
by ultrasonic sensors for collision avoidance, robots will be
able to navigate autonomously with low-cost sensors only.

In order to localize itself, a robot should be able to map
its environment beforehand. In this paper, we show how the
trajectory of the robot can be estimated without a prior map,
using recent graph-based approaches to the simultaneous
localization and mapping (SLAM) problem. Given the recon-
structed trajectory, the robot is able to both map the positions
of RFID tags (i.e., also the positions of tagged goods) [1],
[2] and to keep a database of location fingerprints which can
be used for RFID-based self-localization [3]. Our method is
based on different models for loop closure with long-range
passive RFID, which we compare. These models can be
utilized in an arbitrary graph-based SLAM framework which
represents observations as rigid body transformations with
uncertainty estimates. Note that long-range RFID features
read ranges of up to 10 m (short-range RFID: 1 m) and lacks
distance information, contrary to active (battery-powered)
RFID. Thus, although data association is trivial due to
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the unique identifiers of RFID tags, loop closure is not
straightforward because of the large position uncertainty.

This paper is organized as follows. In the next section, we
describe related approaches. Then, in Sect. III, we briefly
review graph-based SLAM and loop closure in general. In
Sect. IV, we present how long-range RFID can be used for
closing loops. Our models are experimentally investigated in
Sect. V, and in Sect. VI we finally draw conclusions.

II. RELATED WORK

Loop closure with cameras or laser range finders is a
well-studied topic. Because there are numerous publications,
our subsequent survey only lists exemplary contributions. By
means of 2-D and 3-D laser range finders, loops are closed
by matching the latest scan with single scans [4] or a series of
scans which have been assembled to a prior map estimate [5],
[6]. Our approach is related insofar as we also perform a
matching of measurements. This is similar to scan matching
in some sense, although geometric information is missing
almost entirely. In hybrid metric-topological approaches such
as Atlas [7], local maps are matched against each other on a
higher level to close large loops. Clemente et al. [8] mapped
larger-scale outdoor scenes with a monocular camera. The
geometric compatibility of correlating features in local maps
indicated closed loops in their approach. Rybski et al. in-
vestigated graph-based SLAM in a setup with limited visual
sensing capabilities [9]. It is similar to our approach, but the
uncertainty of constraints was estimated from the number of
competitive measurements which voted for a closed loop.

While all aforementioned methods explicitly perform
loop-closure detection, it may be worth mentioning that
in other approaches cycles are detected only implicitly. In
particle filter-based SLAM, inconsistent maps are ruled out
over time [10]. (Extended) Kalman filters, as also often used
for SLAM, propagate back the uncertainty revealed by a
closed loop over correlated landmark position estimates [11].

Regarding RFID-based works, Kleiner et al. performed
graph-based SLAM and inferred a sparse network of short-
range transponder positions [12]. Our approach differs in that
we assume an environment with a high density of long-range
RFID tags. Tanaka’s approach [13] is between the one by
Kleiner et al. and ours: It is based on stochastic gradient
descent for inferring a network of transponder positions from
short series of measurements, but his RFID tags are active
and only sparsely distributed. Djugash et al. also researched
into (range-only) SLAM with active RFID tags [14], but
employed an extended Kalman filter.



III. BRIEF REVIEW OF GRAPH-BASED SLAM
AND LOOP CLOSURE

Among the main paradigms of solving the problem of
simultaneous localization and mapping (SLAM), graph-
based SLAM makes use of nonlinear sparse optimization.
The environment is considered to consist of a number of
landmarks whose positions, along with past locations of the
robot, are to be estimated. In order to do so, a graph is built
whose nodes represent the landmark and robot locations, and
edges are given by geometric constraints between the nodes.
There are two types of constraints: measured displacements
between consecutive robot poses (odometry), and observed
displacements between nodes. The latter type of constraints
may consist of coordinates of observed features in the
environment, relative to a robot location, or displacements
between not directly consecutive robot locations, which are
estimated from observations. Since odometry and sensor
readings are error-prone, each constraint is associated an
error estimate. Solving graph-based SLAM consequently
turns into finding a configuration of node locations which
minimizes the overall error of the network. Its original
solution dates back to Lu and Milios [4], but far more
efficient approaches have been presented recently [15], [16],
[17], the latter two based on stochastic gradient descent.
Typically, the entire graph is batch-processed in an offline
fashion, involving a series of nonlinear optimization steps.

Formally, let X0:T = (x0, . . . ,xT ) denote the path of
the robot (to be estimated) up to time step T , with xt =
(xt, yt, θt) the global 2-D coordinates and heading of the
robot at time t. Let Z0:T = (z1, . . . , zT ) be the sequence
of observations and U0:T = (u1, . . . ,uT ) be the series
of movements. And let m be the map, i.e., a vector of
landmark locations to be estimated. Then, computing the
SLAM solution equals [18] maximizing the log-posterior

log p(X0:T ,m |Z0:T ,U0:T ) (1)
=
∑

t

log p(xt |xt−1,ut) +
∑

t

log p(zt |xt,m) + const,

where p(xt |xt−1,ut) represents the motion model and
p(zt |xt,m) the sensor model. A uniform treatment of con-
straints is possible if X is the overall configuration of node
locations (robot poses, optionally plus landmark locations)
and constraints are regarded as rigid-body transformations
with expected values δ and associated error covariance
matrices Σ, as in [16], [17]. Then, maximizing (1) turns into
minimizing

− log p(X) ∝ (f(X)− δ))TΣ−1(f(X)− δ)) (2)

where f(X) generates zero-noise observations according to
the current configuration X. It often suffices to recover only
the trajectory of the robot, X0:T , since given the trajectory,
a map of the environment can be built in a second offline
batch-processing step.

One key feature of SLAM algorithms is the closing of
loops, that is, the ability to treat the situation that the
robot has revisited the same place. This must be possible

even if the uncertainty in the pose of the robot is large.
Loop closure is important because it enables the robot to
correct odometric errors that were accumulated along its
path. In graph-based SLAM, loop closure is done by adding
a constraint which relates two (nonconsecutive) poses of
the robot. Thus, first it requires the identification of two
similar or equal positions by means of sensor measurements.
Second, a metric transformation between the positions with
corresponding error estimate must be provided. With RFID
sensors, the former part is trivial, since tag IDs are unique
and indicate that the robot has re-entered the read range of
some transponder. The second step, however, is not that easy,
because – due to a read range of up to 10 m – the position
uncertainty of RFID measurements can be even larger than
accumulated odometric errors.

IV. LOOP CLOSURE WITH RFID
A. RFID Fingerprints

In our approach, we utilize the fact that radio frequency
identification (RFID) allows for the unique identification of
small transponders (also called tags) via radio waves. That
is, an on-board RFID reader frequently emits electromagnetic
waves, which power nearby RFID tags and enable them to
send back their IDs. Passive UHF (∼900 MHz band) RFID
tags, as used in our study and also for commercial labeling
of pallets and products, have a read range of several meters.
The chance of detecting an RFID tag largely depends on its
distance and relative angle to the antenna of the RFID reader.
Tag detections are further dependant on a number of physical
phenomena such as reflection and absorption by nearby
objects (especially those made of metal or containing water)
and multi-path effects. It is almost impossible to model such
factors, because it would require detailed knowledge of the
structure and composition of the environment. Models of
RFID detection rates would accept those factors as noise,
which results in less accurate navigation performance. Quite
the contrary, in our approach, we make use of all influenc-
ing factors, but do not model them explicitly: We regard
local RFID measurements as fingerprints of their recording
position. These fingerprints are highly location-specific [19]
in terms of expressiveness, especially if the tag density is
high [3]. RFID fingerprints are similar to appearance-based
methods used for SLAM or self-localization, where features
extracted from images characterize the position where the
images were taken. Analogously, the detection of an RFID
tag resembles the presence of a single image feature.

B. Establishing Loop Closures
With regard to Sect. III, we aim at performing loop

closure by detecting that some place is revisited. So, a
closed loop must be inferred from the comparison of the
current RFID measurements to previously recorded finger-
prints. Consequently, we would like to determine the degree
of similarity of measurements, and if the similarity exceeds
some threshold ϑS , we will add a loop-closure constraint to
the SLAM graph. So, two issues have to be solved: How
to compute similarities of RFID measurements, and how to
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Fig. 1. Left: The mobile robot (B21) used for the experiments, with its
UHF RFID antennas (white), spanning an angle of approx. 90◦. Right:
Standard deviations of distances and angles between the recording positions
of two fingerprint sequences (sequence length was ϑD = 3.0m), learned
from training data. The plot shows the uncertainties depending on different
similarity values Sseq with histogram resolution 0.1. As can be seen, for
instance, two sequences of high similarity 0.9 can be expected to be recorded
in very similar poses (distance 0.14 m, angular difference 0.15 rad).

parameterize the constraint. We will dedicate to the first
issue in the next section, where we present measures of
RFID fingerprint similarity. The second issue, the param-
eterization of the constraint, has to overcome one central
problem of passive long-range RFID: RFID measurements
neither disclose distances nor bearings to a tag. Hence, it
is virtually impossible to estimate displacements between
the recording positions of distinct measurements. This is an
inherent difference to laser range finder-based navigation,
for example, where scan matching yields transformations
between the recording positions of two or several scans.

That is why we propose a different solution: We assume
that we can detect sufficiently accurately if the robot revisits
some position, based on the similarity measures presented
below. If two RFID measurements at times t and t′ match
well, we will infer that their recording positions are identical.
That is, we will add a constraint δt,t′ = (0, . . . , 0), with
all components zero, to the graph. As an estimate of the
corresponding uncertainty, Σt,t′ , one can choose a diagonal
matrix with small values on its main diagonal, expressing
that the transformation is only induced if places are very
similar. Our suggestion is to take a step ahead and calibrate
the loop closure model in a training phase beforehand. This
calibration is treated in Sect. IV-D, based on the similarity
measures that we present in the next section.

C. Measures of RFID Fingerprint Similarity
We formally represent a fingerprint Ft at time t by a pair

Ft = (ft,xt). xt = (xt, yt, θt) is the recording position and
heading of the robot. (During trajectory estimation, this pose
is unknown.) ft = (ft,l, ft,r), with ft,a = (f

(1)
t,a , . . . , f

(K)
t,a )

(antenna a ∈ {l, r}), is the result of an inquiry that was
carried out for all antennas connected to the RFID reader. In
our case, the robot possesses two pairs of antennas (Fig. 1),
pointing to the left (l) and to the right (r). f (k)

t,a counts how
often antenna pair a has detected tag k. K is the total number

of tags that are observable in the environment.
In the following, we introduce three similarity measures

for two fingerprints. As a requirement, similarity values
should lie in [0.0; 1.0], as usual. Moreover, we would like to
exploit the directionality of RFID fingerprints that are taken
with antennas pointing towards different directions.

1) Comparing pairs of single measurements: Let ft,a and
ft′,a denote two tag lists, taken at time t and t′, respectively.
Each tag list contains the observations for the same antenna
a, but at different recording positions. In order to compare
them, we employ the cosine similarity:

cos(ft,a, ft′,a) =

∑K
k=1 f

(k)
t,a f

(k)
t′,a√

∑K
k=1

(
f

(k)
t,a

)2

·
√
∑K
k=1

(
f

(k)
t′,a

)2
(3)

This gives a similarity in [0.0; 1.0] for a single antenna,
because detection counts are nonnegative. Visually, the com-
puted value is the cosine of the angle spanned by the vectors
ft and ft′ . The similarity Ssingle of two entire fingerprints at
different recording positions can then be computed by

Ssingle(Ft,Ft′) =
∏

a∈{l,r}
cos(ft,a, ft′,a) (4)

That is, we multiply the pairwise similarities of the measure-
ments of both sides, yielding a similarity value in [0.0; 1.0].

2) Comparing pairs of sequences of measurements: A
single RFID inquiry is prone to noise and can either detect
or not detect a transponder. It is therefore reasonable to
combine several measurements to a more robust, graded local
estimate of detection rates. Prior experiments showed that
mean detection rates are reproducible if the robot moves
short distances only. Consequently, at each time step t, a
new combined fingerprint is created by averaging over the
most recent raw measurements while the robot is moving.
Hence, the combined fingerprint f t,a, a ∈ {l, r}, averages
over nt recent measurements ft−i,a, i = 0, 1, . . ., for which√

(xt − xt−i)2 + (yt − yt−i)2 ≤ ϑD holds for some dis-
tance threshold ϑD. The average detection rate of some tag
k for antenna a then is:

f
(k)

t,a =
1

nt

nt−1∑

i=0

f
(k)
t−i,a (5)

For comparing the measurement sequences, we again employ
the cosine similarity and obtain as the similarity Sseq of two
entire combined fingerprints Ft and Ft′ :

Sseq(Ft,Ft′) =
∏

a∈{l,r}
cos(f t,a, f t′,a) (6)

3) Comparing pairs of measurement sequences with local
adaptation: The previous technique of matching sequences
of measurements is supposed to be more robust to noisy
detection events. Yet, we can still improve robustness by
distinguishing the importances of detected tags. Our goal
is to identify locally dominant transponders and to achieve
some further robustness to local variations in the number
of observable tags: Even in densely tagged environments,



one does not expect perfect homogeneity with respect to tag
density.

In order to achieve this, we adapt a technique that is known
from the field of document retrieval: We compute a score for
matching two RFID fingerprints, based on term frequency.
First, we count the detection frequency of a tag k detected by
antenna a among the closest, most recent nt measurements:

d
(k)
t,a =

nt−1∑

i=0

f
(k)
t−i,a (7)

The weight of tag k is then defined by

w
(k)
t,a =

d
(k)
t,a∑K

j=1 d
(j)
t,a

(8)

In analogy to document retrieval, this weight equals the term
frequency of tag k among the tag detections in all recent
fingerprints. It is important to note that these weights are
also used for the measurement sequence to be compared
with. This weighting achieves the adaptation to location-
specific tag density. Now, the score of the measurement with
antenna a for one recent fingerprint ft−i,a is determined by

st−i,a =

K∑

k=1

f
(k)
t−i,a w

(k)
t−i,a, i = 0, . . . , nt − 1 (9)

Again, we multiply the scores of both antennas to obtain the
score of the entire fingerprint:

st−i =
∏

a∈{l,r}
st−i,a (10)

Regarding the sequence of all previous nt measurements, the
average score st is

st =
1

nt

nt∑

i=0

st−i (11)

The final step is to compute a similarity value Sterm ∈
[0.0; 1.0] from the scores of two measurement sequences:

Sterm(Ft,Ft′) =
min (st, st′)

max (st, st′)
(12)

For both Sseq and Sterm, it is benefial to enforce a minimum
number of fingerprints over which is averaged (e.g., three per
meter). This increases robustness to noisy RFID data.
D. Model Calibration

All constraints in the SLAM graph require uncertainty
estimates. For odometry-based edges, an estimate is derived
from the robot’s motion model. Its parameters are usually
determined in prior experiments. Analogously, we can obtain
a model of uncertainty for the employed similarity measure
of RFID fingerprints. We therefor collect a number of finger-
prints in a training phase and annotate them with their true
positions. For each pair of measurements, we compute the
degree of similarity and the displacement of their recording
positions. Then, for small intervals of similarity values,
the covariance of displacements can be computed. As an
example, Fig. 1 illustrates the standard deviations obtained
for different values of Sseq .
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Fig. 2. Left: The environment in which we conducted our experiments.
RFID tags were situated in the hatched areas. Right: An example of an
estimated trajectory, obtained with measure Sterm, ϑS = 0.7, ϑD = 1.0.
ODO is the path given by pure odometry, GT is laser-based ground truth,
and EST is the trajectory corrected with our method.

V. EXPERIMENTS
A. Setup

We conducted several experiments with a mobile robot
in two different indoor environments. The mobile platform
was an RWI B21 with a laser range finder (for ground
truth only), an Alien Technology ALR-8780 UHF RFID
reader (EPC Cl. 1 Gen. 2, 2 W EIRP transmitting power).
Two pairs of RFID antennas are connected to the reader,
which point at angles of approx. 45◦ to either side of the
robot (Fig. 1, left). Their scan areas overlap only slightly, and
RFID fingerprints feature a high level of directionality. The
first experimental environment is shown in Fig. 2 (left). It has
a size of approx. 195 m2 and contains several loops and short
corridors, similarly to a supermarket. Along those passages,
we attached more than 400 tags in total at different heights
and orientations. We recorded RFID data and odometry for
ten different trajectories containing loops, each of which
had a length of 68-295 m, corresponding to durations of 4-
14 minutes and 313-1213 RFID measurements. These data
were used for the experiments described below. The second
environment was similar in size and shape, but it contained
fewer tags. There, we recorded a dataset with six trajectories
containing loops.

In the training phase, we collected RFID data and laser-
based reference positions for the model calibration as de-
scribed in Sect. IV-D. The training environment was a
corridor (28 m×3 m) in which we spread 240 UHF RFID
tags. We steered the robot manually on arbitrary paths along
the corridor. On a trajectory length of 727 m corresponding to
a duration of 41 minutes, 10613 fingerprints were taken. The
recorded data were used to learn the constraint uncertainties.

B. Consistency of Estimated Trajectories
We measured the consistency of the trajectories that are

obtained by closing loops with our approach. For optimizing
the graph of constraints, we used the tree-based network
optimizer TORO by Grisetti et al. [17]. As a measure of
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Fig. 3. Residual Cartesian errors and standard deviations, depending on the choice of the similarity threshold ϑS , for the different similarity measures
and distances ϑD over which measurements are averaged. (The results for ϑD = 2.0 are not shown for the sake of clarity, but are between the other ones.)

accuracy, we aligned the obtained trajectory at the ground
truth trajectory and computed the mean Cartesian residual
error on a per-node basis. Ground truth, with an average
error of less than 0.1 m, was derived by laser-based Monte
Carlo localization against a grid map learned beforehand.
The residual Cartesian error of odometry alone was 1.23 m.

The results for the first dataset are shown in Fig. 3, in
which we varied the combination distance threshold, ϑD
(see IV-C.2), and the similarity threshold, ϑS (see IV-B).
Further, we relaxed motion constraints by increasing their
covariances. The Cartesian error for the best combinations of
similarity measure and its parameters is approx. 0.47 m (Sseq
with ϑS = 0.3, ϑD = 1). Similar values are achieved in a sta-
ble fashion over a large interval of ϑS , especially for Sterm.
This is important because in practice, the optimal choice of
ϑS may vary for environments with different tag densities.
Additionally, combining consecutive measurements improves
the results w.r.t. to mean error and variance: The results of the
similarity measure Sseq are better than the ones of Ssingle.
Moreover, for the same measure, a larger distance ϑD ap-
pears to improve the stability of trajectory estimation w.r.t. to
variance. This could be expected, because the larger ϑD, the
more information is encoded in a combined measurement.
Of course, the combination of long measurement sequences
restricts the approach to environments with truly corridor-
alike structures. A sample estimated trajectory in the first
environment is visualized in Fig. 2 (right).

The second dataset achieved very similar results and
has in common that variances are not always negligible
(cf. Fig. 3). Some estimated trajectories were very accurate,
with errors of approx. 0.2 m, others topologically satisfactory,
but rather inaccurate, with errors of approx. 1.0 m. We found
that inaccurately placed loop-closure constraints did occur
sometimes. Outlier rejection mechanisms for loop closing
(e.g., like in [8], [20]), on which we are working currently,
will help to solve this issue of further improved robustness.

C. Accuracy and Number of Loop-Closure Constraints
In order to explain the above findings, we examined the

consistency of inferred constraints. Clearly, there is a trade-
off in the choice of the threshold ϑS , stating above which

level of similarity a loop-closure constraint will be inferred.
A large value of ϑS will choose constraints with a high
probability of low uncertainty. Then, however, potentially
few similar poses will be recognized, and the odometric error
will only slightly be corrected. Figure 4 shows the mean
numbers of loop-closure constraints obtained at different
similarity thresholds. The term frequency-based similarity
measure, Sterm, yields the largest number of constraints for
most choices of ϑS . Even for a high similarity threshold ϑS ,
closed loops are detected quite reliably, which results in a
larger number of corrective edges in the SLAM graph.
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Fig. 4. Number of loop-closure constraints, depending on the choice
of the similarity threshold ϑS , for the different similarity measures and
distances ϑD over which measurements are averaged. (For the sake of
clarity, values are cut at 70; the value of Ssingle for ϑS = 0.1 was 223,
decreasing monotonically thereafter.)

On the other hand, Fig. 5 shows the mean actual dis-
tances between nodes that are interconnected by loop-closure
constraints. Since we are forced to add zero-edges when
detecting a closed loop, these distances represent the error
introduced right at loop-closure positions. Roughly, the most
accurate trajectory estimates are achieved where small errors
in the produced constraints meet fair numbers of inferred
edges. Ssingle and Sseq yield the most accurate constraints,
but at the expense that loop closures are detected at much
lower rates. Beyond thresholds of 0.6 and 0.8, respectively,
even no more constraints were found. Constraints indicated
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Fig. 5. Errors of loop-closure constraints in terms of actual distance
between linked nodes, depending on the choice of the similarity threshold
ϑS and for the three similarity measures. Here, we only focus on ϑD = 2.0.

by Sterm reveal slightly larger errors, but are detected
more frequently even for larger similarity thresholds ϑS . A
hybrid approach that selects the best similarity measure in a
situation-dependant fashion suggests itself for future work.

VI. CONCLUSION
In this paper, we investigated loop closure with long-

range passive RFID in environments with high tag densities.
By detecting closed loops, a mobile robot was enabled to
consistently estimate its trajectory. The contribution of this
paper is the introduction and comparison of different loop
closure models. We also showed how the underlying simi-
larity measures can be integrated into a graph-based SLAM
framework. An arising issue is the parameterization of the
uncertainty of loop-closure constraints. Our solution to this
is a calibration from training data. In a series of experiments,
all presented models allowed for robust and quite accurate
trajectory estimation on different datasets, where the term
frequency-based measure revealed the best robustness to
variations of the parameter ϑS . The best estimation error
of approx. 0.5 m still differs from previous results in self-
localization with RFID fingerprints [3]. There, however, the
mean error of approx. 0.25 m was based on a prior map with
a higher density of reference fingerprints.

The presented approach requires that places are revisited
with similar orientations. This makes it suitable for envi-
ronments with corridor structures (supermarkets and store-
houses, for instance), which is not a substantial limitation:
Such domains are those in which high tag densities can
be expected in the near future. Although the chosen batch-
processing paradigm is rather an offline approach, trajectory
estimation can be performed in (or in close to) real-time
because of the efficiency of the employed stochastic gradient
descent framework [17]. In each cycle, loop closure detection
lasted less than 10 ms on a 3 GHz CPU.

Usually, one will also be interested in landmark locations,
i.e., the positions of RFID tags. The estimated trajectory can
also be used to map the positions of RFID tags in order to,
for instance, inventory and localize products. This is achieved
by a second pass over the sensor data and the application of

model-based mapping algorithms [1], [2]. Future work will
also take the concurrent estimation of transponder positions
into account, making our technique a full SLAM approach.
Moreover, we are going to examine strategies to determine
the best choice of the similarity threshold ϑS automatically.
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