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Abstract— Outdoor robots are faced with a variety of terrain
types each possessing different characteristics. To ensure a
safe traversal a robot has to infer the current ground surface
from sensor readings. Recent techniques generate a model
which predicts the terrain class from single vibration signals
disregarding the temporal coherence between consecutive mea-
surements. In this paper, we present a novel approach in which
the final classification relies on the analysis of not only one,
but several recent observations. Therefore, the probabilistic
framework of the Bayes filter is adopted to the problem of
terrain classification. We propose an adaptive approach which
automatically adjusts its parameters according to the history of
observations. To demonstrate the performance of our method
we further describe and compare another technique based on
temporal coherence. The evaluation using data collected from
our RWI ATRV-Jr robot shows that our approach is both
reactive and stable enough to detect fast terrain transitions
and selective misclassifications.

I. INTRODUCTION

Recently, a growing number of outdoor applications for
mobile robots, like rescue missions or agricultural assign-
ments, has emerged. For mobile robots this implies an in-
creasing demand regarding their driving behavior. In outdoor
environments, robots are exposed to a variety of different ter-
rain types. To enable a safe traversal of unknown terrain, the
robot should adapt its driving style according to the presence
of ground surface hazards like slippery or bumpy surfaces.
These hazards are known as non-geometric hazards [1].
The characteristics of the ground surface can be inferred by
at least two different approaches. One technique involves
a direct estimation of terrain parameters like cohesion or
slippage without knowing the exact terrain type the robot is
driving on. In the second approach, different terrain types are
grouped into classes, each representing a ground surface of a
certain degree of hazardousness. Using sensor measurements,
a model is generated which predicts the present class from
the set of available classes.
Most approaches employ vision [2], [3] or ladar sensors
[4], [5] for terrain characterization. However, the primary
objective of ladar-based methods is to differentiate between
the ground surface and obstacles instead of identifying non-
geometric hazards.
Other techniques rely on the interaction between the robot
and the terrain. Thereby, the robot ”senses” internal and
external variations like wheel sinkage or wheel slippage.
More commonly, algorithms focus on vehicle vibrations as
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1, D-72076 Tübingen, Germany {philippe.komma, c.weiss,
andreas.zell}@uni-tuebingen.de

originally proposed in [6]. They showed that vibration sig-
natures provide enough information to distinguish between
different terrain classes. Usually, accelerometers are used to
record vibration data during the robot traversal. The sensors
can be attached at the wheels, the axes or the body of the
robot.
Several researchers considered terrain classification based on
vibration data as an instance of a signal processing task.
The methods are usually divided into an offline training
and an online test or recall phase. In the training phase a
model learns to recognize distinct terrain types from labeled
vibration patterns. In the recall phase vibration signals of
unknown terrain type can be quickly classified using the
generated model.
In the terrain classification approach of [7] and [8], the
model was represented by probabilistic neural networks.
While the former approach focused on terrain classifica-
tion for electric powered wheelchairs at speeds of 1 and
2 m/s, the latter approach considered both a slowly moving
autonomous ground vehicle driving at 0.5 and 1 m/s and
an experimental unmanned vehicle at speeds between 5
and 20 mph. Another classification technique was presented
by [9]. They used principle component analysis for both
feature extraction and dimensionality reduction. In a second
step, the PCA transformation coefficients were adopted to
establish a manifold curve representing the terrain behavior
at varying speeds. In a previous paper, we experimentally
investigated the performance of several feature extraction
schemes [10]. These techniques were applied to vibration
data recorded at driving speeds between 0.2 and 1.0 m/s.
The extracted features constituted the inputs for the terrain
classification model represented by a support vector machine
(SVM). Further research involved the comparison between
different classification techniques like the Naı̈ve Bayes or
the k-Nearest Neighbor classifier [11]. It turned out that
the SVM outperformed all other techniques with respect to
classification performance.
In this paper, we propose an extension of the work presented
in [10]. To motivate our research, we first note that none of
the previously mentioned approaches makes use of temporal
coherence. Each terrain classification step only considers the
current observation. It is very likely, however, that the robot
traverses the same terrain type for several measurements.
Hence, not only current sensor readings should influence
the classification, but also past ones. The model which
considers temporal coherence must have the characteristics
to be responsive to terrain changes at high frequency. As
we will see later, basic approaches fulfill these requirements



only to a limited extent. Instead, we use a Bayes filter,
which has been applied in several other domains like object
tracking [12] and robot localization [13]. Both problems
can be solved using a particle filter which is an instance
of the Bayes filter presented in this work. The Bayes filter
allows for an effective combination of probabilities for con-
secutive individual measurements. The combined probability
estimates are then used for predicting the current terrain type.

The remainder of this paper is organized as follows:
Sect. II focuses on the concept of Bayes filtering which
provides the basis of our algorithm. The terrain classification
model is introduced in Sect. III. Experimental results are
presented and discussed in Sect. IV. Finally, Sect. V gives
conclusions.

II. BAYES FILTERING

In our approach, we adopt a Bayes filter which allows
for the estimation of a dynamic system’s state from noisy
observations. This section summarizes the key elements of
Bayes filtering. A detailed description is provided in [14].
Using Bayes filters, the state of a dynamic system at a time
t is represented by a random variable xt. Its uncertainty is
denoted by a probability distribution over the state space.
Given t + 1 sensor readings u0:t = {u0, u1, . . . , ut}, the
estimated target distribution is determined by p(xt|u0:t).
Applying Bayes filtering, p(xt|u0:t) can be decomposed in
the following way:

p(xt|u0:t) = αtp(ut|xt)p(xt|u0:t−1), (1)

where αt is a normalizing constant. The derivation of (1)
is based on the assumption that given the current state,
past observations are independent of present ones. p(ut|xt)
denotes the likelihood function (or measurement probability)
and p(xt|u0:t−1) denotes the predictive distribution repre-
senting the current state given past observations. Equation (1)
quantifies the correction applied to xt due to current sensor
data.
We obtain the predictive distribution by marginalizing over
the previous state:

p(xt|u0:t−1) =
∫

p(xt|xt−1)p(xt−1|u0:t−1)dxt−1. (2)

Here, p(xt−1|u0:t−1) is the posterior distribution from the
previous time step. The transition probability describing the
system dynamics is denoted by p(xt|xt−1). Bayes filters
model the dynamic system by a first-order Markov process.
That is, the next state xt only depends on the immediately
preceding state xt−1 assuming that the information provided
by the state xt−1 suffices to predict future states without
considering earlier observations.
Equations (1) and (2) yield a recursive formulation of the
posterior state distribution given previous and current obser-
vations. To determine the posterior probability recursively,
an initial probability distribution p(x0) ≡ p(x0|u0) has to
be defined. p(x0) is either initialized with prior knowledge
about the initial state or uniformly distributed if no prior
knowledge exists.

III. TERRAIN CLASSIFICATION MODEL

In this section, we first describe how the ground surface
can be predicted from a single observation using SVMs.
Then, we give a detailed description of our Bayes filter
approach that combines several successive observations into
the final prediction. We also describe another prediction
technique which considers the history of observations.

A. Basic Terrain Model Composition

The objective of our approach is to establish a model
which estimates the terrain type the robot is currently travers-
ing. The estimation is based on acceleration data collected by
an accelerometer mounted on the body of our RWI ATRV-Jr
outdoor robot. The acceleration data sampled at a frequency
of 100 Hz can be regarded as the vibration which the terrain
induces to the robot’s body.
In the training phase, the model learns the correct assignment
of terrain classes, given a set of n consecutive vibration
samples. We therefore split the training data into segments
consisting of n = 128 samples. In this way, each subset
corresponds to 1.28 s of robot travel. Then, we label each
segment according to the terrain class it belongs to.
To extract characteristic features from the input signal, each
vibration segment is transformed from the time into the
Fourier domain by applying the Fast Fourier Transform
(FFT). With the determined set of FFT coefficients we then
calculate the FFT amplitude spectrum resulting in a 64-
dimensional output vector. Given the matrix of all trans-
formed vibration segments, where each row represents a
single observation, the columns are scaled to have a mean
of zero and a standard deviation of 1. The scaled amplitude
spectrum vectors represent the final feature vectors and
constitute the inputs for the terrain classification model.
The classification model is represented by a support vector
machine. As kernel function we chose the radial basis func-
tion (RBF). We determined optimal values for the standard
deviation σ of the RBF kernel as well as for the soft margin
parameter C by a grid search. Each candidate parameter
vector on the grid (σ;C) was evaluated by 5-fold cross-
validation. As SVM implementation we used LIBSVM [15].
In the recall phase, the robot navigates over unknown terrain
acquiring vibration data. It predicts the current terrain type
using the terrain classification model generated during train-
ing. Therefore, 128 samples are recorded over a period of
1.28 s. For two consecutive segments we permit an overlap
of 28 samples to achieve a prediction frequency of 1 Hz.
We employ the same preprocessing scheme as in the training
phase. First, the FFT amplitude spectrum is determined for
each vibration segment. Then we scale the resulting feature
components using the parameters obtained during training.
Using the technique of [16] the application of the final fea-
ture vector to the SVM does not only provide a class predic-
tion, but also an approximation of the posterior p(xt = i|ut).
This probability distribution denotes the probability that a
preprocessed vibration segment ut belongs to terrain class i.
p(xt|ut) is embedded into the Bayes filtering framework as
presented in the following section.



B. Bayes Filtering Applied to Terrain Classification
In our context, the state vector comprises the class number

i = 1, . . . , k, where k is the number of terrain classes to
discriminate. By this coding scheme we obtain a discrete
set of k different states describing the dynamic system.
The random variable xt representing the state vector re-
veals the uncertainty with which the robot navigates on a
certain terrain type. Preprocessed vibration data recorded by
accelerometer sensors provide the observations.
To apply Bayes filtering to the problem of vibration-based
terrain classification, three probability distributions have to
be specified: an initial probability distribution p(x0) which
denotes the probability at which the robot resides on a
certain terrain type at time t = 0, the measurement proba-
bility p(ut|xt) defining the likelihood that the vibration data
measurement ut can be observed navigating over a certain
terrain type xt, and the state transition probability p(xt|xt−1)
denoting the probability that the robot moves from terrain
type xt−1 = j to terrain type xt = i.

1) The initial probability distribution p(x0): For the def-
inition of p(x0) we make no assumptions that the robot is
placed on a specific terrain type at time t = 0. Hence, p(x0)
is assumed to be uniformly distributed.

2) The measurement probability p(ut|xt): The distribu-
tion p(ut|xt) can be learned from training examples using
parametric or non-parametric density estimators [17]. Note,
however, that the extracted feature vector generated from
sensor readings has 64 dimensions. This poses a problem
since density function estimation of a high-dimensional ran-
dom variable is a non-trivial task suffering from the curse of
dimensionality. For this reason, we adopt another approach to
represent the likelihood function. The key idea is to express
the measurement probability in terms of the (estimated)
posterior probability, p(xt = i|ut), provided by machine
learning classifiers. Note that in contrast to the probability
density function of ut, estimates for p(xt|ut) are provided
by certain classifiers like neural networks and support vector
machines with only little additional costs.
Applying Bayes’ rule to p(ut|xt), we have:

p(ut|xt) = p(xt|ut)
p(ut)
p(xt)

. (3)

The term on the right hand side of (3) now depends on the
classifier posterior probability and the marginal probability
of random variables xt and ut, respectively. Given no prior
knowledge about the marginal probability of a certain terrain
instance, we model p(xt) as a uniform distribution, i.e., it is
assigned the value of c1 = 1/k for all terrain classes. For
p(ut), we consider the complete Bayes filtering formulation
that assigns a probability value to a certain terrain class i,
given sensor measurements u0:t:

p(xt = i|u0:t) = αtp(xt = i|ut)
p(ut)
c1

ppr(xt = i), (4)

where ppr(xt) is the predictive distribution:

ppr(xt = i) =
∑

j

p(xt = i|xt−1 = j)p(xt−1 = j|u0:t−1).

Note that the integral of (2) has become a sum since we have
a discrete set of possible states.
From (4) we see that p(ut) is constant for all i and can thus
be merged with the constant α to give a new normalizing
constant. Introducing α∗t = αt

c2
c1

with c2 = p(ut) yields the
final Bayes filter formulation:

p(xt = i|u0:t) = α∗t p(xt = i|ut)ppr(xt = i). (5)

3) The state transition probability p(xt|xt−1): The transi-
tion probability p(xt = i|xt−1 = j) describes the probability
of moving from state xt−1 = j into state xt = i. Given k
states, k2 individual probabilities have to be defined. These
values are stored in a square matrix which is denoted as the
transition matrix with elements mij ≡ p(xt = i|xt−1 = j).
The matrix diagonal elements mii represent the probabilities
that the system remains in its current state.
Our approach is based on the heuristic that the terrain class
most likely does not change from one measurement to the
next. This is realized by assigning relatively large values to
the diagonal elements of the transition matrix.
Transition matrix elements mij with i 6= j are derived
from the following two heuristics. First, the probability
p(xt = i|xt−1 = j) should increase with the probability
to confuse class i with class j. The latter probability can
be directly derived from the confusion matrix after training
the classifier. The confusion matrix is a square matrix with
elements pconf(i, j). Here, pconf(i, j) represents the prob-
ability that at a given time step t the robot is placed on
terrain class i, but the terrain class j 6= i was erroneously
predicted by the classifier. Second, a transition from state
xt−1 = j to state xt = i should be based on the probability
that this transition is detected. In our context, the detection of
a ground surface change primarily depends on the probability
of classifying the terrain type correctly. This probability can
be estimated from the the confusion matrix as well. Formally,
our estimate for p(xt = i|xt−1 = j), i 6= j, becomes:

p(xt = i|xt−1 = j) = µ
(
pconf(i, j) + pconf(i, i)

)
,

where µ is a normalizing constant.
In our implementation, we assign a constant value v to each
diagonal element of the transition matrix. Given transition
matrix column j, the remaining elements are assigned
values proportional to p(xt = i|xt−1 = j) such that∑

i,i 6=j p(xt = i|xt−1 = j) = 1− v.

When applying the Bayes filter, two operations increase
the run-time complexity: the evaluation of (5) and the
determination of the posterior probability using the pairwise
coupling method of [16]. Note, however, that the evaluation
of (5) only involves an operation count of order O(k2) for
both multiplications and additions. Since k, the number
of classes to discriminate, is typically small, real-time
requirements are maintained. Further tests revealed that
the determination of the posterior probability influences
the terrain class prediction complexity only insignificantly.
Hence, we obtain a real-time approach allowing for online
terrain classification on a real robot.



C. Adaptive Bayes Filtering

The results presented in Sect. IV indicate that choosing
a constant value for the parameter v in our Bayes filter
approach is unsuitable if the distances between varying
terrain types differ significantly. Instead, we propose an
adaptive scheme that selects the parameter v dynamically
according to the history of observations. The longer it is
assumed that the robot navigates on the same terrain, the
larger the value assigned to v should be.
Let w = 1 − v be the probability of a system state change,
that is, a change in the estimate of the current terrain class.
During robot traversal, w is either increased or decreased by
a constant factor λ > 1, depending on the previous system
state (prevState) from time t−1 and the current and previous
predictions performed by the SVM classifier, denoted by
currPred and prevPred. Thereby, we distinguish between the
following four cases:

1) currPred = prevPred and currPred 6= prevState :
Here, the history of the last two predictions indicates that
the robot navigates on a terrain type which differs from the
one represented by the Bayes model. Thus, w is enlarged
to increase the probability of switching into another system
state.

2) currPred = prevPred and currPred = prevState:
The terrain class represented by the previous system state
equals the classes predicted by the SVM classifier in the
last two steps. Hence, it is likely that no terrain transition
has occurred and the system resides in the correct state. We
therefore reduce the probability of moving into another state
by decreasing w.

3) currPred 6= prevPred and currPred 6= prevState:
The last two consecutive predictions indicate a transition
from one terrain type to another one. Since the system
previously resided in a state that differs from the current
prediction the probability of a system state change should
be increased. This is achieved by increasing w.

4) currPred 6= prevPred and currPred = prevState:
The last case is concerned with situations where short-term
misclassifications occurred, the system, however, did not
move into the false state. Here, it is assumed that the
system still resides in the correct state. Hence, we scale
down w to decrease the probability of a system state change.

Note that these rules are only heuristics which can
influence the classification performance in a negative way if
the abovementioned assumptions do not hold. However, the
effect of false assumptions is reduced since these rules do
not alter the system state directly, but the probability that
such a transition will occur.

D. A Summed Posterior Probability Approach

Besides our adaptive Bayes filtering approach we also
implemented another technique which considers probability
estimates of several individual predictions for the final clas-
sification. Let xt be the predicted terrain class at time step t.
We consider c observations collected within a fixed period
of time tn−c+1 to tn. Using probability outputs of the SVM

model, we obtain an estimate for the posterior distribution
p(xt|ut). Given posterior probabilities between time step
tn−c+1 to tn, a weighted summed posterior probability
approach (WSPP) can formally be defined as:

predicted class = arg maxi

∑
t

f(tn − t)p(xt = i|ut). (6)

In other words, the predicted class becomes the one with the
largest posterior probability summed over a distinct period
of time. Thereby, each probability estimate is weighted
according to the recentness of the associated prediction.
The weighting accounts for the time when a measurement
was acquired (relative to the actual time tn) and improves
the prediction results if the terrain changes frequently. The
weighting coefficients are determined using the weighting
function f chosen as f(x) = exp

(
−x

τ

)
. Here, τ regulates

the decline of the function f subject to an increase in x.
The greater τ , the greater is the decline in g, the less is
the importance of prior observations. In our experiments,
τ = c/2 provided the best experimental results.

E. Terrain Classification Model Evaluation

To investigate the reactivity of our methods based on
temporal coherence, the evaluation procedure presented in
Sect. III-A has to be modified: We assemble consecutive vi-
bration segments representing the same terrain type to give a
travel distance of constant length. Then, assembled segments
of varying terrain types are grouped together yielding the
final test set. In different experiments, we vary the travel
distance covered by a robot before it reaches a new terrain
class. Given that the modifications are large enough, we
can infer the reactivity of our techniques from the resulting
classification performance.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In our experiments, an Xsens MTi altitude and heading
reference system was mounted on an aluminum plate on
top of the robot to measure vibration signals in left-right
direction at 100 Hz. We collected data in the middle of July
and in the beginning of December. During data acquisition,
the robot navigated over six different terrains (Fig. 1): indoor
PVC floor, asphalt, gravel, grass, paving, and clay (the
surface of a boule court). We introduced a seventh artificial
terrain type that represents idleness. In the recall phase, this
class yields useful information if the robot is not provided
with odometry sensors. To not constrain the model to work at
a certain driving speed, we varied the speed between 0.2, 0.4,
and 0.6 m/s. In total, the dataset consists of 10633 patterns
corresponding to approximately 3 hours of robot navigation.
The Bayes filter approach and the weighted SPP approach
require the definition of a single parameter each. Using
the Bayes filter technique, the value v, which corresponds
to the diagonal elements of the transition matrix, has to
be specified. Assigning a large value to v is equivalent
to increasing the probability that the system state does
not change from one measurement to the next, that is,



Fig. 1. The terrain types we used in our experiments: 1: indoor floor, 2:
asphalt, 3: gravel, 4: grass, 5: paving, 6: boule court.

that two filtered predictions performed at two consecutive
time steps yield the same terrain class. c denotes the
parameter for the weighted SPP approach representing
the number of observations on which each terrain class
prediction relies. The larger c, the longer is the history of
considered predictions, the larger is the probability that
selective misclassifications can be filtered out due to the
increased influence of earlier predictions. On the other
hand, the approach becomes less reactive to terrain changes
as c increases since the enlarged history of considered
observations delays the correct state transition to the new
terrain class. In our experiments, we chose v from the
interval [0.2; 0.975] with step size 0.025 and c ∈ {3; 5; 7; 9}.
The adaptive Bayes filter approach automatically chooses an
appropriate value for v according to the heuristics presented
in Sect. III-C. For the parameter λ which regulates the
increase and decline of the complementary probability
w = 1 − v, we experimentally obtained best true positive
rates using λ = 1.8. We further mapped and bounded the
values of v to the interval [1/k; 0.89], where k denotes the
number of terrain classes to discriminate. The predefined
upper and lower bounds, 1/k and 0.89, ensure that the
probability of moving into another state neither becomes
too large nor too small. At time t = 0, w was initialized
with w = 1.
We also varied the distance the robot had to navigate from
one terrain class to the next. This distance is denoted
as the travel distance d (measured in meters) in the
following. In each experiment, d was chosen from the set
d ∈ {0; 0.6; 1.2; 2.4; 4; 6; 8; 12; 16}. The 0 m experiment
describes the worst case scenario for approaches based on
temporal filtering. Here, single segments of varying terrain
classes are concatenated each representing data acquired
during 1 s of robot travel. Since the robot speed varies
between 0.2, 0.4, and 0.6 m/s, this experiment includes
travel distances of 0.2, 0.4, and 0.6 m. Note that according
to the confusion matrix, certain terrain transitions are easier
to detect than other ones. Hence, the results depend on the
order in which assembled terrain segments of varying terrain
type are presented. We minimized this effect by randomly
permuting this order and averaging the classification results
determined after 20 reruns of a particular experiment.

To quantify the performance of the classification results, we
applied the evaluation procedure introduced in Sect. III-E.
As quality measure we used the true positive rate (TPR). It
is the ratio (measured in per cent) between the number of
correct predictions for which the predicted class xt equals
the actual class x̂t and the number of instances contained in
the test set.

B. Results and Discussion

Table I shows the classification results for the proposed
approaches based on single observations (SO), adaptive
Bayes filtering (ABAY), Bayes filtering (BAY) using a
constant parameter v for all experiments, and weighted
summed posterior probabilities (WSPP). The results were
determined by averaging the true positive rate over the
complete set of classes. For the Bayes approach and
the weighted SPP approach, we chose two conservative
parameter settings. The first one, v = 0.4 and c = 3,
yields reasonable classification results in situations of
frequent terrain changes. The selection of the second
parameter set, v = 0.85 and c = 5, results in an improved
generalization performance when terrain transitions are less
likely. Additional prediction results for further settings of
parameters v and c are summarized in Table I.
Note that the true positive rate for the single observation
based approach differs between varying experiments.
This is due to the model evaluation procedure introduced
in Sect. III-E. Vibration segments are concatenated to
give a travel distance of constant length. If after several
concatenation steps the number of remaining segments does
not satisfy this criterion these segments are rejected and
thus are not considered when determining the generalization
error. An increase in classification performance for travel
distances 12 and 16 m indicates that those segments have
been left out which decreased the true positive rate.

Fig. 2(a) depicts the results when varying the parameters
for the proposed approaches. All values denote the increase
of the generalization performance in respect of the single
observation approach. In the 0 and 0.6 m experiments,
the adaptive Bayes approach yields true positive rates
similar to those obtained when using the single observation
approach. These results indicate that the adaptive Bayes
approach chooses small values for the parameter v. Since
the probability of changing the system state rises with
decreasing v, we obtain a reactive classification system
which is able to detect and process high frequent terrain
transitions. The assumption that the adaptive Bayes approach
prefers small values for v is confirmed by our experiments.
They revealed that in 96.0% ± 2.0% of all cases, v was
assigned the value of 1/k in the 0 m experiment. In the
0.6 m experiment, this parameter value was employed less
frequently (78.3% ± 1.4%), yet more often than the other
ones.
Models based on the Bayes approach and the weighted SPP
approach are less reactive in situations of high frequent



TABLE I
TRUE POSITIVE RATES USING DIFFERENT APPROACHES IN RELATION TO THE TRAVEL DISTANCE (DIST.) AVERAGED OVER ALL CLASSES.

Dist. (m) 0 0.6 1.2 2.4 4 6 8 12 16
SO 86.8 86.9 87.0 87.0 86.9 87.5 86.9 89.1 89.0
ABAY 86.6 86.8 87.1 88.2 90.6 92.0 92.5 94.7 95.0
BAY0.4 84.8 85.7 87.8 89.2 89.8 90.4 90.1 92.2 92.3
BAY0.7 81.1 82.3 86.2 89.1 90.7 91.7 91.9 93.9 94.3
BAY0.85 77.4 78.8 84.2 88.3 90.9 92.2 92.6 94.6 95.0
BAY0.9 75.3 76.9 83.0 87.7 91.0 92.3 93.0 95.0 95.4
WSPP3 85.3 86.0 87.3 88.7 89.0 89.8 89.3 91.4 91.4
WSPP5 80.2 78.9 72.5 79.1 84.9 87.7 88.8 91.6 92.3
WSPP7 74.4 72.7 61.7 72.8 81.3 86.0 87.8 91.0 92.2
WSPP9 71.3 69.2 55.3 65.7 75.6 82.0 85.4 89.3 91.1

(a) (b)

Fig. 2. (a) Comparison of classification results between the proposed methods using varying model parameters related to the single observation approach
and (b) true positive rates for individual classes using the single observation, weighted SSP and (adaptive) Bayes approaches for a travel distance of 12 m.

terrain transitions. In the weighted SPP approach, inertance
is caused by previous predictions which influence the
final prediction significantly. Even if the current prediction
is correct, misclassifications can occur if the posterior
probability of the current prediction is low. The reduced
reactivity in the Bayes approach can be explained using the
chosen model parameter v. For the 0 and 0.6 m experiments
the parameter value v = 0.4 is not optimal since, in some
cases, the system erroneously decides to remain in the
current state although a terrain transition has occurred.
Here, a smaller value for v is preferable in order to increase
the probability of a system state change.
For travel distances 1.2 and 2.4 m, the true positive rate of
the adaptive Bayes approach is increasing. This indicates an
appropriate choice of the parameter v. However, the choice
is not optimal since the true positive rate is larger for the
Bayes approach with a constant parameter of v = 0.4.
In comparison with the Bayes approach and the weighted
SPP approach the adaptive Bayes technique yields increased
true positive rates for travel distances larger than 2.4 m.
Fig. 2(a) suggests that the adaptive Bayes approach
automatically chooses a large value for v, which results
in an increased model inertance. This desired inertance is
larger than the one caused by the other two approaches,
enabling the adaptive model to filter out classification errors
occurring in an enlarged time frame. Experiments reveal a
general trend of choosing large values for v. Already at a

travel distance of 6 m, v took values greater than 0.86 in
84.4% of all cases.

Considering the results of the second parameter set
(Fig. 2(a)), the Bayes approach yields larger prediction
errors in comparison with the single observation approach up
to a travel distance of 1.2 m. Only for travel distances larger
than 1.2 m the classification model benefits from exploiting
temporal coherence. This behavior meets our expectations
since we chose a large parameter value for v (0.85). As
the probability of a system state change decreases with
increasing v, the model becomes less reactive. However, in
situations of high-frequent terrain transitions (as they appear
in the 0, 0.6, and 1.2 m experiments) this is an unwanted
property which results in a decrease of the true positive rate.
With increasing travel distance terrain transitions become
less likely. Thus, remaining in the current state is preferable,
filtering out selective misclassifications. Now, the chosen
value for v is more adequate since it reduces the probability
of a system state change.
Considering the weighted SPP approach, the true positive
rate is decreasing first, reaching its minimum at a travel
distance of 1.2 m (72.5%), and is finally increasing with
increasing travel distance. However, the classification errors
occur more frequently as compared to the (adaptive) Bayes
approach in all test cases. One reason for the decline in the
true positive rate is the reduced reactivity in situations where



terrain transitions occur. In the worst case, the previous
four classification steps correctly predict the previous
terrain type, yet the most recent observation belongs
to another surface ground. Not until several additional
observations are recorded, enough data is available to
extenuate the influence of previous predictions. Note that
this effect is reduced as the travel distance increases due to
the advantages arising from the filtering of misclassifications.

To evaluate whether the differences in the true positive
rate are statistically significant, we performed two-tailed
paired t-tests. Thereby, we compared the true positive rates
of the 20 reruns of a single experiment using a certain
travel distance d and the adaptive Bayes approach to those
of another experiment employing another approach but
the same travel distance. For the comparison we used
all techniques and model parameter settings presented in
Sect. IV-B. We performed a t-test of the null hypothesis that
the 20 true positive rates are independent random samples
from normal distributions with equal means and equal but
unknown variances, against the alternative that the means
are not equal. Thereby, we used a significance level of 5%.
It turned out, that all differences of the true positive rate are
statistically significant except for the ones when comparing
the adaptive Bayes approach to the Bayes approach with
parameter v = 0.85 for travel distances 12 and 16 m. Since
the adaptive Bayes approach prefers similar values for
v in comparison with the Bayes approach during model
evaluation, these results follow our expectations.

Fig. 2(b) depicts the true positive rate for each individual
terrain class. It shows that the decrease in erroneous
predictions of the (adaptive) Bayes approach and the
weighted SSP approach is based on an improved
classification for all classes. Thereby, classification
performance rises with the distance a robot navigates over
the same terrain type. Comparing the adaptive Bayes and
the single observation approaches in the 12 m experiment,
we achieve an improvement of approximately 6.7% (indoor
PVC floor), 5.6% (asphalt), 8.6% (gravel), 3.2% (grass),
11.0% (paving), and 9.8% (clay).

V. CONCLUSION

In this paper, we experimentally investigated the use of
temporal coherence in the context of vibration-based terrain
classification. We applied a Bayes filter which allowed for
an effective inclusion of the classification history. However,
only an adaptive approach which automatically adjusts its
parameters was reactive enough to detect both, high-frequent
and low-frequent terrain class changes. In comparison with
previous SVM-based terrain classification approaches, which
were based on single observations only, our adaptive Bayes
filter approach yields an improvement in prediction perfor-
mance of 1.3%, 4.2%, 6.3%, and 6.7%. These results denote
the increase of classification performance when averaged
over the complete set of terrain classes at travel distances
of 2.4, 4, 8, and 16 m. We also compared our approach to

another technique which considered several observations for
the final classification. The results showed the benefit of our
Bayes approach which became more distinct as the distance
between varying terrain classes increased.
Future research will focus on alternative classifiers to be em-
bedded into our Bayes filter approach. Since the performance
of our vibration-based terrain classification framework does
not only depend on correct terrain classifications but also on
the classification confidence we will address the choice of
an appropriate classifier which provides reliable estimates of
the posterior probability.
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