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Abstract— To reduce production costs of current engines, car
manufacturers strive to replace built-in sensors by software
solutions. However, the limitations of current micro controllers
require time and memory efficient algorithms. In this paper, we
propose a real-time framework for the detection of engine valve
states based on wavelet analysis of in-cylinder pressure curves.
Extracted wavelet features are then filtered out using mutual
information such that only the most relevant wavelet coefficients
become the input of the chosen support vector regressor. A
further speedup is achieved by an approximation of the support
vector solution which comprises less support vectors. We show
that the combination of relevant feature selection and the
regressor model simplification results in a significant decrease of
the recall phase complexity while retaining good generalization
performance.

I. I NTRODUCTION

In automotive engines, the system state can actively be
changed via engine actuators. For example, valves that are
part of the exhaust gas recirculation (EGR) scheme directly
influence the redirection of emissions by establishing a
pressure gradient. To this date, the state of these valves can
only be determined using sensors, resulting in an increase of
production costs. Thus, a software solution is preferred which
predicts valve states using data of already existing sensors.
Recently, the pressure sensor glow plug was introduced al-
lowing for cylinder pressure onboard monitoring with regard
to combustion control [1]. In this paper, we employ in-
cylinder pressure curves acquired by this pressure sensor to
detect the state of engine valves.
Several authors have addressed the usability of in-cylinder
pressure in the domain of engine control. At first, research
focused on establishing a model for in-cylinder pressure
curves in various fields of applications [2], [3], [4]. As
pointed out by Sellnau et al. [5], it does not only result in
primary system benefits like an increased fuel economy or
reduced NOx emmisions, but also in secondary effects like
air-fuel balancing or calibration assistance.
With the advent of inexpensive cylinder pressure sensors
[6], [7] new opportunities for precise engine control and
fault detection have emerged. Park et al. [8] developed a
spark advance control strategy based on the cylinder pressure
signal in spark ignition engines. Therefore, they predicted
the position of the peak pressure along with the hook-back
at late burn-conditions using neural networks and employed
this information to alter the spark advance. A fault diagnosis
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system for a diesel engine adapted from cylinder pressure
was introduced by Yang [9]. In his work, he adopted a hybrid
genetic algorithm and kernel principle component analysis
technique for distinguishing engine valve errors from other
machine faults.
In this paper, in-cylinder pressure curves are employed to
predict the state of engine valves. Since all computations are
performed on a micro controller of low clock rate, we do
not only focus on the raw prediction performance, but also
on the efficiency of the selected techniques. Here, efficiency
is related to both run-time complexity and memory usage.
In our approach, the reduction of the prediction complexity
is based on two different strategies: first, we represent the
signal by its most relevant features only, and second, the
regression function is approximated to give a model of
reduced complexity. As shown in Section V, this novel
combined approach allows for real-time predictions of valve
states on current micro controllers while maintaining good
generalization performance.
The rest of this paper is organized as follows: after presenting
our proposed method in Section II, we briefly introduce
all employed preprocessing and regression techniques in
Section III. Section IV comprises a detailed description
of how these methods can be applied to the problem of
valve state detection. Experimental results are presentedand
discussed in Section V and summarized in the last section.

II. M ETHOD OVERVIEW

The task of our proposed method is to estimate the state
of two engine valves: the exhaust gas recirculation (EGR)
valve embedded in the EGR system described in [10] and
the variable turbine geometry (VTG) valve of a Garrett VTG
system. While the former valve regulates the exhaust gas flow
in the exhaust gas recirculation path, the latter valve effects
the exhaust gas flow through the turbine. The term VTG
valve comprises the VTG system consisting of the actuator,
the mechanical drive component and the VTG vanes which
are regulated rotatorily. Valve state changes are induced by
modifying the control pulse which is represented by the duty
cycle. The duty cycle is defined as the ratio between the
pulse duration and the cycle duration. It is a dimensionless
parameter measured in percent and ranges from 0% to 100%.
Due to the more involved measurability of valve states in
comparison with the duty cycle, we rather predict the latter.
Note that for VTG valve prediction this approach introduces
a potential error source since a well-defined relationship
between the valve state and the exerted control pulse is not
provided. For example, the exhaust pressure for a given duty



cycle varies depending on whether the current state of the
VTG vanes was reached by an opening or closing movement.
Since the position of the VTG vanes influences the exhaust
pressure this pressure difference indicates differing valve
states for the same duty cycle. Valve state prediction issues
may arise since the difference in the exhaust pressure is
also reflected in the acquired in-cylinder pressure signal.
Hysteresis tests for the EGR valve revealed a more distinct
relationship between the valve state and the duty cycle.
Valve state estimation is based on pressure curves acquired
in a single cylinder within a complete working cycle. We
assume that all devices which are integrated in the air lines
between the engine and the orifices influence the wave
propagation in the gas exchange path. Hence, we expect a
change of the pressure signal progression by modifying the
valve settings. These changes are reflected in characteristic
features contained in the acquired pressure curve. To extract
these features the Haar wavelet transform is applied. Based
on a mutual information filter approach we then choose the
most relevant Haar wavelet coefficients. Wavelet coefficient
selection is necessary to filter out those coefficients which
represent the noise or other interferences contained in the
pressure signal. The remaining coefficients constitute the
inputs for both, the model training and the recall phase.
Note that concentrating on the most important features only,
involves the acceleration of our framework in two different
ways: on the one hand, less wavelet coefficients have to be
determined during the feature extraction step. On the other
hand, valve state prediction complexity is decreased as well,
since the complexity depends on the dimensionality of the
input vector (see Section III-C).
In the model generation phase, the model learns the correct
assignment of known valve states, given a selected set of
Haar wavelet coefficients. In our approach, the model is
represented by support vector machines (SVM). To meet
real-time and memory constraints, we further simplify the
established SVM by reducing the support vector set. In the
recall phase, acquired and preprocessed pressure curves are
applied to the simplified model in order to predict the state
of engine valves.

III. T HEORETICAL BACKGROUND

A. Wavelet Analysis for Feature Extraction

Internal combustion engine acoustic measurements give
information about the engine’s operating parameters and
physical characteristics. However, the acquired signals are
complex and superimposed by backward noise, demanding
accurate processing.
In our approach, we employ the Haar wavelet transform for
feature extraction. As wavelets are localized in both space
(time) and scale (frequency) domains, they can detect local
features in a signal. Furthermore, wavelet analysis has a run-
time complexity ofO(n) making it feasible in our domain.
Mathematically, wavelet decomposition can be regarded as
a multi-level representation of a functionf(t) that consists
of a superposition of an approximation of itself at arbitrary

scale indexm0 and a succession of signal details from scales
m0 down to−∞:

f(t) =

∞∑

n=−∞

am0,n
φm0,n

(t) +

m0∑

m=−∞

∞∑

n=−∞

dm,nψm,n(t)

Approximation coefficientsam,n represent the signal at a
coarser resolution, whereas wavelet coefficientsdm,n de-
scribe the information lost when moving from an approx-
imation of f at scalem to a coarser approximation at scale
m+1. Wavelet functionsψm,n(t) are generated from a single
functionψ by dilations and translations:

ψm,n = |a|− 1

2ψ

(
t− b

a

)

ψ is denoted as the mother wavelet function. By choos-
ing a logarithmic discretization of parametersa and b,
ψm,n =

√
2−mψ ((t− n2m)2−m), a dyadic grid arrange-

ment is established, forming the basis of the discrete wavelet
transform (DWT).φm,n are denoted as scaling functions
smoothing the signal. They have the same form as the
wavelet:

φm,n(t) = 2−m/2φ(2−mt−n).

A fast wavelet decomposition scheme that computes the
DWT using filters has been developed by Mallat [11]. It
transforms a given signals into two sets of coefficients:
approximating coefficientsa1 and detail coefficientsd1 by
convolving s with a low-pass filter and a high-pass filter.
The outputs of both filters are then downsampled by a factor
of two resulting in an output stream of approximation and
detail coefficients that has the same length ass. This scheme
is recursively repeated by applying the approximation coef-
ficients as new inputs to the wavelet decomposition process.

B. Feature Selection using Mutual Information

Feature selection techniques are necessary for reducing
the input dimensionality to avoid unwanted effects like
overfitting. One solution for the feature selection processis
to assign each feature a statistical relevance measure. If the
chosen measure is independent from the employed regression
model this technique is referred to as the filter or feature
ranking approach [12].
Mutual information (MI) is a non-parametric measure of
relevance which can be derived from information theory. The
MI of two random variablesx and y is a measure of how
x and y depend on each other. It can be defined from the
entropyH(.):

MI(x, y) = H(x) +H(y) −H(x, y) = H(y) −H(y|x),

whereH(y|x) is the conditional entropy ofy given x. It
measures the loss of uncertainty ofy when x is known. If
x and y are independent, thenH(x, y) = H(x) + H(y),
H(y|x) = H(y) and as a consequence MI(x, y) = 0.
For a continuous random variablex, mutual information



corresponds to the Kullback-Leibler distance between the
joint distribution and the product of the marginals:

MI(x, y) = KL(p(x, y)||p(x)p(y))

=

∫ ∫
p(x, y) ln

(
p(x)p(y)

p(x, y)

)
dxdy

In our work, we use the Kraskov MI estimatorI(2) [13]
which is based on entropy estimation usingk-nearest neigh-
bor statistics.

C. Support Vector Regression

In this section, we follow the results for support vector
regression given by Smola and Schölkopf [14]. Given a
training setT = (xi, yi), i ∈ [1; l], where xi ∈ R

d, and
yi ∈ R, we establish a linear regression function of the form:

f(x) = wTφ(x) + b (1)

on a feature spaceF . Here,w denotes a vector inF and
φ(x) maps the inputx to a vector inF . w andb are obtained
solving the following optimization problem:

min
w,b

P =
1

2
wTw + C

l∑

i=1

(ξi + ξ∗i )

s.t. yi − (wTφ(x+ b)) ≤ ǫ+ ξi,

(x+ b) − yi ≤ ǫ+ ξ∗i ,

ξi, ξ
∗

i ≥ 0, i = 1, . . . , l.

The optimization criterion is chosen such that it penalizes
data points for which|y − f(x)| > ǫ. The slack variables,ξ
andξ∗, correspond to the lower and upper bounds in which
the functionf(x) = wTφ(x)+b is allowed to deviate from a
predefined errorǫ and costC, whereǫ, C > 0. The function
φ(x) maps featuresx into a higher dimensional space.
By introducing Lagrange multipliers and formulating the
corresponding Lagrangian the following dual optimization
problem can be stated:

min
α,α∗

D =
1

2

l∑

i=1

l∑

j=1

Qij(αi − α∗

i )(αi − α∗

i ) +

ǫ

l∑

i=1

(αi − α∗

i ) −
l∑

i=1

yi(αi − α∗

i )

s.t. 0 ≤ αi, α
∗

i ≤ C, i = 1, . . . , l,
l∑

i=1

(αi − α∗

i ) = 0,

whereQij = φ(xi)
Tφ(xj) = K(xi, xj) andK denotes the

kernel function. Given the solution of the dual optimization
problem, the regression function of (1) can be written as:

f(x) =
l∑

i=1

βiK(x, xi) + b, (2)

where βi = αi − α∗

i . It turns out that for a fraction of
training pointsxi, αi and α∗

i equal 0. This results in a

sparse solution since these training points can then be left
out from (2) without altering the prediction result. The
remainingn training points establish the predictive model
and are denoted as support vectors. The simplified regression
function becomes:

f(x) =
n∑

j=1

β̂jK(x, x̂j) + b. (3)

Here, each support vector̂xj with weight β̂j correspond to
a certain training pointxi for which eitherαi or α∗

i 6= 0.
As shown in Section V, the evaluation of (3) forms the
limiting factor of the proposed valve state detection scheme.
Since the prediction complexity is a function of support
vector countn, the dimensionalityd of xi and the costs as-
sociated with the employed kernel functionK, an increase in
run-time performance involves the minimization of all three
parameters. Whereas the theory of mutual information was
introduced to optimize parameterd, the following section is
aimed at reducing the number of support vectors.

D. Support Vector Reduction

Equation (3) reveals that a reduction of the support vector
count results in both a decrease of run-time complexity in the
recall phase as well as a decrease of memory requirements.
The choice has to be made carefully since the rejection
of even a small number of support vectors can result in a
significant decrease in generalization performance as shown
by Syed et al. [15]. In [16], Burges et al. reduced model
complexity by introducing areduced set of vectors. These
vectors are generally not support vectors. In a later approach,
Burges et al. [17] refined the method by determining the
reduced set from the original vector set. Although promising,
their method sometimes results in a convergence towards a
local minimum as pointed out by Kwok and Tsang [18],
rendering it necessary to restart the process with many initial
guesses.
In our framework, we adopt the technique of Downs et
al. [19]. In their work, they remove those support vectors
that can be expressed as a linear combination of other ones
in feature space. By modifying the SVM weightŝβi, the
generalization performance is preserved while the complexity
of the regressor is decreased.
Let x̂i, i ∈ [1;n], be the set of support vectors. In the
following, we assume that this set consists ofr linear
independent support vectors and(n− r) support vectors that
depend linearly on the other ones. Given that the ordering
of the support vectors is chosen such that the firstr support
vectors are linearly independent, the regression functionf of
(3) can be formulated as:

f(x) =
r∑

i=1

β̂iK(x, x̂i) +
n∑

j=r+1

β̂j

r∑

i=1

cijK(x, x̂i) + b, (4)

whereK denotes the kernel function andM is the support
vector matrix,M ∈ R

l×n, given byM = K(x̂i, xj). Here,
x̂i andxj represent the set ofn support vectors and the set
of l training samples, respectively. The coefficient matrixC



describes how the linear dependent columns of the kernel
matrix can be expressed using linear independent ones. It
can be shown [19] that (4) is equivalent to:

f(x) =

r∑

i=1

β̃iK(x, x̂i) + b, (5)

where

β̃i = β̂i +

n∑

j=r+1

β̂jcij .

The application of the introduced support vector reduction
scheme requires both, the determination of linear dependent
vectors and the coefficient matrixC = cij ,∀i, j. Adopting
the technique of [20] we therefore use QR factorization
with column pivoting. It allows for the decomposition of
a matrix M into an orthogonal matrixQ and an upper
triangular matrixR, MΠ = QR. Π is a permutation matrix,
that sorts the columns of the matrixM according to the
degree of their relative linear independence in decreasing
order. Given that the rank of the kernel matrixM is r, the
permuted kernel matrixMΠ can be decomposed into a set of
r linear independent columns,M1, and into another set,M2,
whose elements can be expressed as a linear combination
of columns ofM1. Reformulating the QR factorization, we
have:

[
M1 M2

]
=

[
Q1 Q2

] [
R11 R12

0 R22

]

The coefficient matrixC is then determined using the results
of the QR decomposition:

M1C = M2 (6)

M1 = Q1R11 (7)

Solving (6) forC and inserting (7) into the resulting equation
yields:

C = R−1
11 Q

T
1 M2.

The simplified regression function is an exact representation
of (3) as long as the size of the reduced support vector set
does not fall below the rankr of the support vector matrixM .
In our experiments, the support vector count of the simplified
models proved to be still too large to be applicable on a real
engine controller, both in terms of run-time complexity and
memory requirements. Hence, we did not consider the firstr
columns of the permuted support vector matrixMΠ, but the
first u columns instead. The reason of choosing this subset
is to select those columns of the support vector matrixM
which have the highest degree of linear independence and
thus are most difficult to express by other columns. In this
manner, (5) turns into an approximation of the exact solution
as the value ofu decreases. Note, however, that the rejected
support vectors still influence the result of the approximated
regression function as their weightŝβi, u < i ≤ n are used
to modify the weights̃βi, 1 ≤ i ≤ u of the remaining support
vectors.

IV. EXPERIMENTAL SETUP

A. Data Acquisition

Although the state of engine valves is to be estimated
from pressure curves, we performed data acquisition the
reverse way. That is, given a set of operating points and
valve positions the corresponding pressure curve taken from
a single cylinder was sampled. Here, an operating point is
determined by the number of revolutions per minute and
the brake mean effective pressure value. The chosen set
of operation points constituted an adequate representation
of the complete engine map. Further, we considered three
valve positions: a basis position that represented the standard
position of an actuator and two positions that deviated from
the standard one by 30% up and down. By varying both
the valve setting and the operation point, we obtained a
data set containing 500 observations. Given a fixed operating
point and valve setting, the pressure curve of 100 working
cycles was recorded after the engine reached its steady state.
The sampling rate of the in-cylinder pressure sensor was set
to two samples per degree crank angle. The value of the
sampling rate was chosen to fulfill the Nyquist Theorem,
i.e. not to lose any information due to undersampling. The
sampling of a complete engine working cycle consisting of
720 degrees crank angle yielded 1440 samples representing
the pressure progression.
Along with the pressure curve we measured three other en-
gine parameters: the engine speed, the air flow value, and the
amount of fuel added during the combustion process. Note
that all three parameters were excluded from the following
feature extraction and selection process, but directly used as
inputs for the regressor.

B. Feature Extraction

For data preprocessing we implemented the DWT using
the Haar basis, given by:

ψ(t) =





1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 elsewhere

and

φ(t) =

{
1 0 ≤ t < 1
0 elsewhere

Besides the three engine parameters mentioned above the
feature vector representing a specific pressure curve consists
of the concatenation of the approximation coefficient at
scalem = ⌈log2 1440⌉ and wavelet coefficients of scales
m ∈ [1; ⌈log2 1440⌉]. Note that this is only the preliminary
feature vector since irrelevant coefficients are removed in
the succeeding step. The removal of irrelevant features also
contributes to the real-time applicability of the Haar wavelet
transform (HWT). By formulating a modified version of
the HWT which only determines the remaining coefficients
we obtain a preprocessing scheme of low computational
complexity. In comparison with the costs associated with
valve state prediction the HWT run-time complexity proved
to be insignificant, rendering it unnecessary to include the
Haar wavelet transform in further complexity considerations.



C. Feature Selection

The aim of feature selection is twofold. At first, it partially
solves the curse of dimensionality [21] by reducing the
length of feature vectors significantly. Secondly, with regard
to (3) the complexity of target value prediction is also a
function of the feature vector length. This means, that by
the sole selection of relevant feature components we do not
only increase the possibility of obtaining a regressor model
with a better generalization behavior, but we also increase
the possibility of determining the results of the prediction
faster. This is particularly important in this domain sincethe
transformed input signal consists of 2048 features.
The easiest way of feature selection would be to perform an
exhaustive search over all possible feature subsets. However,
there are22048 subsets for this problem and therefore a
brute force search is computationally infeasible. Hence, we
used a filtering approach based on mutual information as
described in Section III-B. Wavelet coefficients were ranked
according to their mutual information with the target value
in decreasing order. Based on this ranking the bestd features
were selected during the following model selection. In the
next section, we compare this method against a low energy
selection approach, wheren components are selected, repre-
senting coefficients with lowest energy (largest scale). This
choice is based on the assumption that the most relevant
information is concentrated in the low energy content of the
signal, whereas high energy coefficients only represent the
signal’s noise components.

D. Data Normalization

Given the matrix of all transformed pressure curves where
each row represents a single observation, the columns were
scaled to have a mean of zero and a standard deviation
of 1. This avoids numerical problems during calculations
and prevents wavelet coefficients of large magnitudes from
dominating the training.

E. Model Selection

Model selection describes the process of determining the
free parameters for the selected regressor. For the support
vector machine this includes the specification of the kernel
functionK along with its parametersσ, the dimensionalityd
of the input space, the predefined errorǫ, and the cost value
C. In our experiments, we used a Radial Basis Function
Kernel K(x, y) = exp(−‖x− y‖2

/2σ), where x and y
denote two feature vectors. Parametersσ, d, ǫ, andC were
tuned to minimize the generalization error by a grid search.
Each candidate parameter vector on the grid(σ; d;C; ǫ) was
evaluated by a 10-fold cross-validation.
To accelerate the model selection phase, model training
was performed using a reduced data set. We achieved data
reduction by averaging the 100 pressure curves acquired for
a fixed operating point and valve setting. This significantly
reduced the time spent on model training whilst retaining
good prediction results.

TABLE I

GENERALIZATION ERROR (MEAN ABSOLUTE ERROR, Emab) OF (a) THE

UNMODIFIED LOW ENERGY APPROACH AND(b) THE UNMODIFIED

MUTUAL INFORMATION APPROACH. FOR EACH APPROACH THE

RESPECTIVE SUPPORT VECTOR COUNT(#SVs), THE DIMENSIONALITY OF

THE FEATURE VECTOR(feat), THE ESTIMATED NUMBER OF CLOCK

CYCLES (cycles), AND MEMORY REQUIREMENTS(mem) ARE PRESENTED.

(a) unmodified low energy approach

valve Emab feat #SVs cycles mem (kB)

etvm 2.64 20 395 970269 32.4
vtg 5.60 24 357 932127 34.9

(b) unmodified mutual information approach

valve Emab feat #SVs cycles mem (kB)

etvm 1.70 52 375 1747022 77.6
vtg 4.92 32 343 1095246 44.2

F. Support Vector Reduction

For each feature set sizem ∈ [0; 64] with step size
4, we chose a support vector machine that provided a
trade-off between generalization performance and run-time
complexity. Therefore, we did not simply use the SVM with
the best generalization performance, but the one with the
smallest run-time complexity during valve state prediction
which resulted in a decrease of generalization performance
of less than 1%. In our investigations, the generalization
performance is expressed in terms of the mean absolute error
(Emab). It is the absolute difference between the real and
predicted target value, averaged over all test patterns and
cross-validation folds. The estimation of the computational
complexity is based on operation counting and assigning a
certain cost factor to each operation. Since cost factors were
not provided for the present automotive micro controllers
we chose an alternative which resembled the reference most.
In our experiments, run-time complexity analysis was per-
formed on the basis of an Intel 386/87SX micro processor
working at 25 MHz.
Finally, we applied the support vector reduction scheme (see
Section III-D) to the selected support vector machines. By
systematically reducing the support vector count given inputs
of a certain dimensionality, we obtained an error function
which yielded an estimate for the generalization performance
depending on the chosen support vector count and feature set
size. In a further step, we then chose the support vector ma-
chine which met defined accuracy or complexity constraints.

G. Target Value Prediction

Whereas the SVM training was performed using averaged
pressure curves of 100 cycles, the prediction of target values
was based on all recorded cycles. This gives rise to a
more realistic testing procedure taking cyclic combustion
variability, outliers, and noise into account. For measuring
model quality the predicted target values were renormalized
and the mean absolute error was determined over all training
patterns.



TABLE II

ESTIMATED RUN-TIME COMPLEXITY MEASURED IN CLOCK CYCLES(CYLCES) RELATED TO THE GENERALIZATION ERROR(MEAN ABSOLUTE ERROR,

Emab) FOR THE ENGINE VALVE EGR USING THE LOW ENERGY(le) AND THE MUTUAL INFORMATION APPROACH (mi). FOR EACH GENERALIZATION

ERROR BOUND THE PARAMETERS OF THE MINIMUM SUPPORT VECTOR MACHINE COMPRISING OF#SVs SUPPORT VECTORS OF DIMENSIONALITYfeat

ARE PRESENTED. ALL RELATIVE VALUES REFER TO THE RESULTS OF THE UNMODIFIED LOWENERGY APPROACH(PRESENTED IN THE THIRD ROW)

AND DENOTE THE PERCENTAGE OF REMOVED SUPPORT VECTORS AND CLOCK CYCLES, RESPECTIVELY.

Emab inc EGR (le) EGR (mi)

abs rel cycles % rem feat #SVs % rem cycles % rem feat #SVs % rem
2.64 0 970269 0 20 395 0 970269 0 20 395 0
2.64 0 522900 46.1 20 249 40.5 86676 91.1 4 93 73.9
2.70 2.5 310780 68.0 12 205 51.0 82948 91.5 4 89 75.1
2.77 5 262268 73.0 12 173 58.7 82948 91.5 4 89 75.1
2.90 10 206856 78.7 8 169 59.6 75492 92.2 4 81 77.3
3.15 20 153000 84.2 8 125 70.1 68036 93.0 4 73 79.6
3.96 50 89352 90.8 8 73 82.6 45668 95.3 4 49 86.3

TABLE III

ESTIMATED RUN-TIME COMPLEXITY MEASURED IN CLOCK CYCLES(CYLCES) RELATED TO THE GENERALIZATION ERROREmab FOR THE ENGINE

VALVE VTG USING THE LOW ENERGY (le) AND THE MUTUAL INFORMATION APPROACH (mi). FOR AN EXPLANATION OF THE EMPLOYED

ABBREVIATIONS SEETABLE II.

Emab inc VTG (le) VTG (mi)

abs rel cycles % rem feat #SVs % rem cycles % rem feat #SVs % rem
5.60 0 932127 0 24 357 0 932127 0 24 357 0
5.60 0 547768 41.2 24 229 35.9 327248 64.9 16 181 49.3
5.74 2.5 286524 69.3 12 189 47.1 177372 81.0 12 117 67.2
5.88 5 256204 72.5 12 169 52.7 153116 83.6 12 101 71.7
6.16 10 167688 82.0 8 137 61.6 140988 84.9 12 93 73.9
6.69 20 123624 86.7 8 101 71.7 116732 87.5 12 77 78.4
8.40 50 41940 95.5 4 45 87.4 59976 93.6 8 49 86.3

V. RESULTS AND DISCUSSION

A. Valve State Prediction Performance

We begin our discussion by comparing the best results
obtained after applying the proposed feature and model selec-
tion schemes without further simplification of the generated
SVM models. The approach which employs mutual informa-
tion filtered wavelet coefficients as input is denoted as the
unmodified mutual information approach in the following.
Using the low energy wavelet coefficients only, this approach
is referred to as the unmodified low energy approach. Table I
shows that support vector machines are capable of predicting
the state of engine valves. Thereby, the mutual information
feature selection approach results in an increase of prediction
performance as compared to the low energy approach (55.3%
for the EGR valve and 13% for the VTG valve). Note,
however, that both feature selection approaches generate
models of high computational costs rendering it impossible
to achieve the required prediction frequency of 50 Hz.
This statement particularly holds for the mutual information
approach where more features are necessary to establish the
model with the largest generalization performance.

B. Prediction under Complexity Constraints

Tables II and III show the results when establishing a
trade-off between generalization performance and predic-
tion complexity. Given a reference mean absolute error we
searched for the reduced SVM model of lowest complexity
that deviated from the reference by a predefined percentage
(Emab inc,rel). As reference we chose the mean absolute
error of the unmodified low energy approach. The prediction
complexity was estimated using the procedure introduced in
Section IV-F taking both the number of features and the num-
ber of support vectors into account. Beside presenting the
absolute values for the estimated cycle count and the support
vector count, the relative decrease of both values is given
(% rem). The decrease denotes the percentage of removed
support vectors and clock cycles, respectively. Again, we
use the results of the low energy approach as reference. We
further differentiate between the reduced low energy (le) and
the reduced mutual information (mi) approach representing
support vector machines of reduced support vector set size.
For the reduced low energy feature selection approach, the
applied support vector reduction technique already removes
46.1% of all support vectors without losing any general-
ization performance. Yet, the number of employed features
is still large resulting in a significant prediction complexity



TABLE IV

THE ABSOLUTE GENERALIZATION ERROR(MEAN ABSOLUTE ERROR, Emab) AND THE RELATIVE INCREASE IN GENERALIZATION ERROR(inc)

RELATED TO CALCULATION CAPACITY (usage) WHICH IS AVAILABLE FOR EGR VALVE STATE PREDICTION (left) AND VTG VALVE STATE PREDICTION

(right). ALL RELATIVE VALUES REFER TO THE RESPECTIVE MEAN ABSOLUTE ERROR OF THE UNMODIFIED LOW ENERGY APPROACH(PRESENTED IN

THE THIRD ROW). NEGATIVE VALUES INDICATE AN INCREASE IN GENERALIZATION PERFORMANCE.

EGR (le) EGR (mi)

usage (%) Emab (%) inc (%) Emab (%) inc (%)
194 2.64 0 2.64 0
100 2.66 0.87 1.80 -31.85
50 2.81 6.62 1.90 -27.98
30 3.18 20.47 1.97 -25.15
20 3.80 43.93 2.33 -11.58

VTG (le) VTG (mi)

usage (%) Emab (%) inc (%) Emab (%) inc (%)
186 5.60 0 5.60 0
100 5.67 1.18 5.32 -5.10
50 5.91 5.57 5.61 0.22
30 6.27 12.00 5.89 5.16
20 6.72 19.99 7.11 26.87

TABLE V

THE ABSOLUTE GENERALIZATION ERROR(Emab) AND THE RELATIVE INCREASE IN GENERALIZATION ERROR(inc) RELATED TO THE MEMORY (mem)

REQUIRED FOR STORING THE SVM MODEL WHEN PREDICTING EGR VALVESTATES (left) AND VTG VALVE STATES (right). ALL RELATIVE VALUES

REFER TO THE RESPECTIVE MEAN ABSOLUTE ERROR OF THE UNMODIFIED LOW ENERGY APPROACH(PRESENTED IN THE THIRD ROW).

EGR (le) EGR (mi)

mem (kB) Emab (%) inc (%) Emab (%) inc (%)
32.4 2.64 0 2.64 0

32 2.65 0.38 1.70 -35.54
16 2.70 2.22 1.82 -30.89
8 2.80 6.32 1.90 -27.99
4 3.21 21.69 1.91 -27.52
2 4.28 62.43 2.36 -10.43

VTG (le) VTG (mi)

mem (kB) Emab (%) inc (%) Emab (%) inc (%)
34.9 5.60 0 5.60 0

32 5.65 0.83 4.92 -12.18
16 5.67 1.18 5.44 -2.92
8 5.91 5.44 5.61 0.22
4 6.14 9.66 6.32 12.75
2 6.72 19.99 7.38 31.68

in the recall phase. As for the reduced mutual information
approach, we obtain a reduction of the estimated cycle count
by more than 91% while maintaining the same generalization
performance as compared to the unmodified low energy
approach. The decrease in complexity arises from the decline
of both the number of employed features and the number of
support vectors. Already a set size of4 features suffices to
adequately predict the EGR valve state. Further improve-
ments of the computational complexity at the expense of a
slight increase of the generalization error are achieved by
the reduction of the support vector count. A reduced support
vector machine which is composed of more than 95% less
support vectors as compared to the unmodified low energy
feature selection approach yields absolute prediction errors
of approximately 4%.
For the VTG valve we examine a similar behavior of the
computational complexity in relation to a chosen general-
ization error bound if the generalization performance of the
unmodified low energy approach should be maintained. Here,
the reduced mutual information approach requires a smaller
feature set as well as less support vectors as compared to the
reduced low energy approach. This results in a decrease of
computational complexity by 40.3%. If we allow for a larger
generalization error, however, the difference in complexity
becomes smaller and at a relative increase of the mean

absolute error by 50% the reduced low energy approach
is faster than the reduced mutual information approach.
Table III indicates that the reduced complexity of the reduced
low energy approach is attributed to the smaller dimen-
sionality of the feature vector. In the case of VTG valve
state prediction, the mutual information feature selection
scheme identifies relevant features which yield improved
generalization performance when they are applied as a whole,
yet the generalization performance decreases if the chosen
subset of relevant features becomes too small.

C. CPU Load Considerations

We expect that only a fraction of the complete processing
power of the micro controller is available for valve state
prediction. Based on our complexity estimates, Table IV
presents the generalization errors which are obtained for a
given CPU load. In this investigation, we assume a micro
controller working at 25 MHz.
For the EGR valve, the reduced mutual information approach
achieves good generalization performance even at high CPU
loads. At a CPU load of 80% the mean absolute error is
still more than 11% smaller as compared to the unmodified
low energy approach. In this case, the mutual information
approach also outperforms the reduced low energy approach
by more than 63%.



If the available calculating capacity is higher than 20%
VTG valve state prediction benefits from mutual information
feature selection. Only at a CPU load of 80% the reduced low
energy approach outperforms the reduced mutual information
approach. As stated in the previous section the decreased
performance of the reduced mutual information approach is
primarily based on the enlarged feature set size related to the
reduced low energy approach.

D. Memory Requirements

From Table V it can be derived that valve state prediction
based on unmodified support vector machines involves a
memory usage of34.9 kB-77.6 kB per valve. Since micro
controllers are memory bounded to a great extent we now
consider reduced support vector machines of low memory
requirements only. Note that all tests have been performed
using 32 bit floating point numbers. This yields memory
requirements of4(d·n+n+1) bytes in size, whered denotes
the dimensionality of a support vector andn is the support
vector count.
As regards to the EGR valve a reduced support vector ma-
chine occupying2 kB in memory yields best generalization
performance if the mutual feature selection procedure is used.
In comparison with the unmodified low energy approach we
obtain a decrease in memory requirements of more than
94%. For the VTG valve, strict memory constraints result
in a loss of generalization performance. Given a memory
of 4 kB the mean absolute error rises by 9.7% and 12.75%
for the reduced low energy approach and the reduced mutual
information approach, respectively. Again, the generalization
performance of the unmodified low energy approach is
defined as the reference.

VI. CONCLUSION

In this paper, we showed that engine valve states can be
predicted by in-cylinder pressure curves along with three
additional engine parameters. To enable real-time predictions
even on limited micro controllers we adopted a framework
based on an effective preprocessing strategy using acceler-
ated Haar wavelet analysis, a mutual information relevance
measure that filtered out irrelevant wavelet coefficients, and
a simplified support vector solution. In comparison with the
low energy feature selection technique, which only selects
wavelet coefficients of low energy, the mutual information
feature selection yielded the best generalization performance
given no memory and run-time constraints. For the EGR
valve this finding also holds true if memory or the calculating
capacity is limited. As for the VTG valve, the low energy fea-
ture selection approach resulted in a more compact solution
in the case of a considerably constrained setting. In combina-
tion with the presented support vector reduction scheme the
complexity of the recall phase was decreased by an order of
a magnitude without significantly effecting the generalization
performance. The obtained prediction results for both valves
leave us optimistic that our valve state detection framework
using in-cylinder pressure curves can be adopted for control
purposes on automotive micro controllers.

In further work, we will investigate the robustness of our pre-
diction framework with regard to various factors of influence.
In this context, we will address issues arising from engine
transients, production-based vehicle-to-vehicle varieties and
engine aging. Later research will also focus on an enlarged
acceleration of the SVM recall phase. Using optimization
algorithms we will identify the set of support vectors which
allows for a tighter approximation of the support vector
regression function.
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