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Summary. In this paper, we present a method of learning a probabilistic RFID
reader model with a mobile robot in a semi-automatic fashion. RFID and posi-
tion data, recorded during an exploration phase, are used to learn the probability
of detecting an RFID tag, for which we investigate two non-parametric probability
density estimation techniques. The trained model is finally used to localize the robot
via a particle filter-based approach and optimized with respect to the resulting local-
ization error. Experiments have shown that the learned models perform comparably
well as a grid-based model learned from measurements in a stationary setup, but
can be obtained easier.

1 Introduction

Radio frequency identification (RFID) is nowadays not only used for identifica-
tion purposes in the industry, but also for navigation tasks in mobile robotics.
The technology allows for the contactless identification of objects and land-
marks which are marked with RFID tags (also called labels or transponders)
by a reader device and its antennas via radio waves. Passive tags obtain the
energy for operation and response from the radio field of the RFID reader,
which makes them inexpensive and easily maintainable. In case of passive
UHF technology as in this work, however, factors such as the relative posi-
tion of a tag and nearby materials affect the readability of a tag. Hence, in
practice detection rates can be poor and noisy, and whatever application is
regarded, it will benefit from an accurate model of tag detection probabilities.
For example, the modeled detection field may lead to an improvement in the
placement of RFID readers in a plant. Moreover, such a model is the basis of
probabilistic localization algorithms. If it is easy to derive, it can be adapted
or rebuilt quickly if the setup of the RFID system changes.
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In this paper, we present a method of learning a probabilistic RFID reader
model with a mobile robot in a semi-automatic fashion. We have chosen a non-
parametric approach, which means that we do not claim any specific functional
form of the tag detection probability density. The approach should thus be
applicable to other tasks, RFID standards, and hardware. A question which
arises is how the quality of the learned model can be measured. We decided to
plug it into the target application – the localization of the mobile robot in our
case – and measure the resulting error there. Using RFID for self-localization
is motivated by the idea that, as more and more goods are being labeled with
RFID tags and RFID hardware is getting cheaper, mobile robots operated
e.g. in trade scenarios will be able to exploit RFID as a lower-cost sensor for
self-localization and navigation in general.

We proceed as follows: First, the robot explores its environment and
records RFID and position measurements. Then, a probabilistic model of tag
detection frequencies is built from the logged data by estimating the prob-
ability density for detecting a transponder, conditioned on its relative po-
sition to an RFID antenna. For this, we compare two techniques: a simple
grid-based method and a k-nearest neighbors search. The estimation step is
repeated with different parameter values in order to search systematically for
the model which minimizes the localization error of the mobile robot. Each
learning technique only depends on one parameter.

This procedure is new insofar as related approaches do not learn the RFID
reader model during the navigation of the mobile robot. Moreover, we do not
only present a method of learning the model with the robot, but also of
validating and optimizing it. The only assumptions that we make are firstly
that the robot is equipped with a quite accurate reference localization module
(e.g. laser- or vision-based) and secondly that we provide the robot with a
list of some tags and their positions in the global frame of reference. The
preparation of this list is the reason why our method is only semi -automatic.

With regard to related work, Hähnel et al. were one of the first to gain a
probabilistic RFID sensor model and use it for Monte Carlo localization [1].
They measured tag detection rates for a single passive UHF tag on a grid of
fixed distances and angles. We detail their approach in the subsequent sec-
tions, since we follow their method of particle filter-based self-localization. Ba-
jcsy et al. obtained an RFID reader model in a similar fashion, but for several
tags spread on the floor and with the possibility to tilt the RFID antenna [2].
Kloos et al. learned a sensor model for RF-based localization via a parametric
approach modeling signal strength and distances for active (battery-powered)
sensor nodes [3]. In [4], Kantor and Singh presented localization and mapping
with RF beacons which provided distance information. They determined prob-
ability densities over actual ranges for a discrete number of measured ranges.
Djugash et al. also used RF beacons for self-localization [5]. Their likelihood
function was explicitly represented by a 2D Gaussian with standard deviation
estimated from the variance in range measurements. By contrast, a sensor
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model-free approach to RFID-based self-localization is described in [6], but
its mapping phase can be time-consuming.

This paper is structured as follows: In Sect. 2 we clarify the background of
our work and show how a mobile robot is able self-localize with RFID. There-
after, we present our approach to learning an RFID reader model in Sect. 3.
Numerical evidence for the quality of the different techniques is provided in
Sect. 4, before we finally summarize and discuss our work in Sect. 5.

2 Monte Carlo Localization with RFID Sensors

For localizing the mobile robot via RFID, we pursue the particle filter-based
approach by Hähnel et al. [1], which is Monte Carlo localization [7] with an
observation model adapted to RFID sensors. In Monte Carlo localization, the
robot pose rt is represented by an arbitrary probability density function (pdf)
over the space of locations. This pdf is approximated by a set of n particles.
Each particle consists of a pose hypothesis (xi, yi, θi) and a weighting factor
wi, where (xi, yi) are the coordinates in a global frame of reference, θi is the
global heading of the robot, and wi states the importance of the i-th particle.
The filtering algorithm itself iteratively performs three steps:

1. Prediction: The robot pose at time t is predicted by propagating all parti-
cle positions according to the latest odometry readings ot−1 and a motion
model. Formally, one samples from the distribution p(rt|ot−1, rt−1).

2. Correction: Sensor data zt are incorporated into the set of particles by cor-
recting the particle weights according to some likelihood function p(zt|rt):

wi
t = η · p(zt|rt)

Here, η is a normalizing constant which ensures that
∑n

i=1 wi
t = 1.

3. Resampling: A new set of n particles with equal weights 1/n is obtained
from the old one by drawing n samples from the old set of particles,
where the probability of choosing particle i corresponds to its weight wi

t.
An option is to resample only if the estimate n̂eff ≈ 1/

(∑n
i=1(w

i
t)

2
)

of
the so-called effective sample size falls below some threshold, e.g. n/2.

Particle filtering has turned out to be a robust and versatile method for self-
localization, even in presence of non-Gaussian noise and highly imprecise mea-
surements, as it is the case also for self-localization with RFID.

To learn a sensor model of the RFID reader means in this paper to learn the
likelihood function p(zt|rt) required by step 2 of the algorithm. This function
should represent the likelihood that the observed RFID measurements provide
evidence for the current robot pose. More specifically, the measurements zt at
time t consist of two lists of detected RFID tags, dl

t and dr
t , one for the left

and one for the right RFID antenna of our robot (see Fig. 1 (a)). Assuming
that both measurements are independent, we set p(zt|rt) := p(dl

t|rt)p(dr
t |rt).

The two dt can be regarded as sequences dt = (d1
t , d

2
t , . . .), where di

t ∈ {0, 1}
states whether (di

t = 1) or not (di
t = 0) transponder i was detected.
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3 Learning an RFID Sensor Model

Gaining a model of an RFID reader means in our case to estimate the prob-
ability at which RFID tags can be detected from the perspective of a single
antenna, conditioned on a number of parameters of the system. Hence, we
first have to choose the types of parameters of the model and then decide on
how the probabilities can be computed from the raw binary data. Recall that
the information given by an RFID reader is only which transponders have
been detected, not their direction or distance.

In this paper, we restrict the set of model parameters to the relative po-
sition x = (x, y) of an RFID tag to the antenna. As indicated in the in-
troduction, this is a vast simplification, but works surprisingly well. Besides,
parameters such as the materials in the vicinity of RFID tags are difficult to
be taken into consideration. So, formally we wish to estimate the detection
probability ql(xl) := p(dl|xl) for some tag l, given its relative position xl to
an antenna. We further assume that q does not depend on the specific tag l,
so we will simply write q(x).

3.1 Fixed-Setup Recordings

In order to estimate q(x), the approaches presented in related papers usually
choose different fixed positions of the robot, equipped with RFID antennas,
and some tag. For each such position x on a discrete grid, the numbers n+(x)
and n−(x) of successful and failing detection attempts are counted in order to
derive q(x) = n+(x)/(n+(x)+n−(x)). Hähnel et al., for instance, attached an
RFID tag to a cardboard box and rotated the robot in front of it [1]. By re-
peating these measurements for various distances, they gained a mapping from
a discrete number of relative distances and angles to the detection frequen-
cies of a tag. We also recorded the detection frequencies on a grid of relative
positions, depicted in Fig. 1 (c). There, the measurements were averaged over
different heights and relative orientations of a single tag with respect to the
RFID antenna.

The advantage of supervised grid-based measurements is that they are
taken at precisely known positions of the grid, and the detection probability
on a grid point is simply the rate of successful detection attempts measured
there. If only one tag is taken into account, however, recording the RFID
inquiries takes a lot of time. Even worse, the ideal case is investigated, claiming
that the detection frequencies for one tag are independent of the presence of
other tags.

In this paper, we pursue a slightly different approach. The idea is to exploit
the fact that our ultimate goal is to localize a mobile robot. That is, provided
that the robot is equipped with another, fairly accurate self-localization mech-
anism and that the robot knows at which positions RFID tags are fixed, it can
explore its environment and continuously record tag detections. This proce-
dure has a number of advantages: Firstly, much information is retrieved with
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Fig. 1. (a) The RWI B21 robot used in our experiments, with its RFID antennas
(white) and the front-mounted laser scanner (blue). (b) The type of tag (”squig-
gle”/”higgs” tag, by Alien Technology, approx. 10 cm × 1 cm) that we used for our
studies. (c) The model obtained from fixed-setup measurements of a single tag. The
x axis points to the opening direction of the RFID antenna, the y axis orthogonally,
both parallel to the ground. The model was taken on 195 grid points and over 4
different heights and orientations with 100 measurements per configuration. Values
between grid points are linearly interpolated. The recording took approx. 50 hours.

every RFID inquiry (each known tag i contributes a response value di = 1 or
di = 0 at a time), which makes the recording phase fast. Secondly, one does
not have to worry about which grid points to choose. Of course, this comes at
the expense that computations get slightly more complicated. But the learned
models are supposed to be more realistic in presence of more than one tag.

3.2 Overview of the Learning Steps

In order to learn the RFID reader model in a semi-autonomous fashion, our
solution comprises three phases: the exploration phase (during which RFID
and position measurements are recorded), the offline learning phase (during
which the RFID sensor model is actually computed and optimized), and the
localization and validation phase (in which the robot is able to localize itself
only via RFID and validates the accuracy of the resulting pose estimates).

Exploration phase In the exploration phase, the robot logs RFID mea-
surements and the poses where it takes these RFID measurements while
traversing the environment. Note that therefore an additional positioning
system (e.g. laser- or vision-based) is required which provides quite accu-
rate position estimates. On the one hand, this seems to be a limitation of
our approach. On the other hand, the models learned with our technique
can later be used on other robots without the extra localization system.
Moreover, the reference pose estimate enables us to assess the quality of
the model with respect to self-localization during the last phase. And it
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is possible to combine the resulting RFID-based and the reference self-
localization system, which has proven to be useful [1].

Offline learning phase In this phase, the sensor model function is actually
learned from the logged data of the previous phase. As additional input, it
requires a map of RFID tags and their positions in the global coordinate
frame. Note that we found that establishing a short list of RFID tag
numbers and their positions can be done faster than the supervision of
RFID measurements for a fixed-setup model. In the following, we detail
the steps of the offline training phase.
1. Given a map of transponder positions in the environment, the robot

transforms the global tag positions into coordinates relative to the
RFID antennas for each time step t when an RFID inquiry was per-
formed. In this, each tag l contributes a sample position xl

t in relative
coordinates and a response value dl

t ∈ {0, 1}, which states whether or
not tag l was detected. From now on, we ignore the identity l of the
tag and the time index t of the measurement. The result of this trans-
formation is a set of samples S := {(xi, di)} as depicted in Fig. 2 (a).

2. The raw samples are used to compute the conditional probability den-
sity p(d|x) = q(x) of detecting one tag, given its relative position to
the antenna. Note that this function fully represents the target sensor
model and is used as likelihood function in the correction step of the
particle filter. For this step, we investigated two different techniques
which are elaborated below.

3. The function q(x) is evaluated at fixed positions of a fine-grained grid
(with a resolution of 0.1m) and stored as a look-up table. By this, q(x)
is only approximated, but the efficiency of evaluating the likelihood
function for a potentially large number of particles is increased.

Online localization and validation phase The robot is finally able to lo-
calize itself, based on the method described in Sect. 2 and supplied with a
map of RFID tags and the stored sensor model from the previous phase.
Given the reference poses, it can validate and optimize the learned model.

3.3 Detection Probability Estimation

Grid-based Estimation One of the simplest approaches to estimating the
tag detection probability q(x) is to divide the detection field (see Fig. 2 (a))
into a uniform grid with square bins of length λ and count the observed
tag detections for the resulting bins. Optimizing a model of this kind then
means to find the λ which minimizes the localization error. Note that this
method resembles the manual recordings with a fixed setup, but samples
are not forced to lie on discrete grid points only.
The advantage of the grid-based approach is that q(x) can be stored as a
look-up table, since it only depends on discrete bin indices. This makes it
very efficient. A problem, however, is that the grid introduces discontinu-
ities in the density function. Moreover, λ is fixed for the entire detection



Semi-Autonomous Learning of an RFID Sensor Model 7

-3

-2

-1

 0

 1

 2

 3
 0  1  2  3  4  5  6

y 
(m

)

x (m)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

x (m)

y 
(m

)

 0  1  2  3  4  5  6

-3

-2

-1

 0

 1

 2

 3

(a) (b)

Fig. 2. (a) The aligned positive (green/gray) and negative (black) samples as ob-
tained from RFID measurements while the robot was moving around. (b) The sensor
model learned via the k-nearest neighbors approach (k = 2000) from 11,429 positive
and 102,950 negative samples which were recorded in about 50 minutes.

field. In parts where there are many samples available, a large value of λ
will lead to over-smoothing, whereas a small value of λ will not be able
to provide good estimates of q(x) in areas for which only few (typically
noisy) RFID measurements have been recorded. So, the optimal choice of
λ may actually depend on the query position x in the detection field.

k-Nearest Neighbors (k-NN) Approach The k-NN approach overcomes
the limitation of the grid-based approach in that it takes the density of
training samples around x into account. In this method we consider the k
samples which are closest to x and compute the probability of detecting a
tag as q(x) = n+(x, k)/k, where n+(x, k) denotes the number of positive
samples around x among the entire set of the k nearest samples in the
vicinity of x. In a sense, this approach is dual to the grid-based estimation
technique: Instead of fixing the size of the bin inside which we count the
response values di, we allow for arbitrary bin sizes and fix the number of
samples from which we estimate the tag detection probability.
Optimizing a model of this kind then again means to find the value of
k which minimizes the localization error. Analogously to the grid-based
estimation technique, a too small value of k will not be robust to noisy
data, but a too large value will lead to over-smoothing.

4 Experiments and Results

In order to evaluate and compare the different techniques of learning an RFID
sensor model, we conducted a series of experiments with a B21 robot depicted
in Fig. 1 (a). The robot is equipped with an Alien ALR-8780 RFID reader,
two pairs of RFID antennas spanning an angle of 90◦, and a laser scanner.
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Fig. 3. Localization errors and standard deviations for the lab (a,b) and corri-
dor (c,d) experiments. Each column represents one outcome of the 2-fold cross-
validation: We first learned and optimized the models (the best choice of λ∗ and k∗)
on the one half of the log files. Thereafter, we measured the localization accuracy
when using the optimized models on the respective other half of the log files.

All experiments were conducted in a laboratory and an adjacent corridor. We
installed 39 transponders in the corridor and 23 in the laboratory, spread over
75m2 and 50 m2, respectively. The tags were attached to walls and desks at
intervals of 1-2m, roughly at the height of the upper antennas. We recorded
14 log files in the lab and 8 log files in the corridor, containing RFID data
and the corresponding poses at which the robot performed the RFID inquiries.
Ground truth was provided by laser-based Monte Carlo localization, for which
we used the CARMEN toolkit [8]. The localization error can be assumed below
0.1m on average. Within an average duration of 7 minutes the robot traveled
distances of 32-155 m at varying speeds. RFID data arrived at approx. 2 Hz,
resulting in 712 RFID inquiries on average per log file. The offline optimiza-
tions took less than 45 hours on a 3 GHz PC in total. They did not require
human intervention, in opposition to recording the hand-crafted model.

Each of the two sets of log files was randomly split into two halves
for two-fold cross-validation. One half was once used to extract the raw
RFID measurements and to optimize the models learned with the two tech-
niques presented in Sect. 3, the other half was used to validate those mod-
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Table 1. Localization errors of the fixed-setup (manual) model and the two learned
models, averaged over the 700 validation runs in the laboratory and 400 validation
runs in the corridor, respectively.

Laboratory Corridor
Validation 1 Validation 2 Validation 1 Validation 2

Manual model 0.5710 m 0.5101m 0.4890m 0.4803m
Grid approach 0.5687 m 0.5190 m 0.4810m 0.4342m
k-NN approach 0.5641m 0.5191m 0.4864 m 0.4347 m

els, and vice versa. Validation means that we played back the log files and
measured the mean absolute localization error when the particle filter used
the learned model. Because the mean accuracy in RFID-based positioning
strongly depends on a good initialization, we localized with known initial pose
(tracking case). For each probability estimation technique, we systematically
searched over several parameter values (k = 25, 50, 100, 250, 500, 1000, 1500
and λ = 0.1, 0.15, 0.2, 0.4, 0.6, 0.8). Then we committed to the best parame-
ter choices λ∗ and k∗ and investigated the localization error with the opti-
mized model on the validation log files over 100 repeated experiments. The
localization accuracy achieved by the hand-crafted sensor model served as a
benchmark. The outcomes of the experiments are visualized in Fig. 3.

The results show that the learned models yield very similar results as the
hand-crafted model. This is in spite of the small inaccuracies in the reference
positions. On some log files, the learned models outperform the fixed-setup
model, on others they are inferior. In both cases, the difference is in the range
of few centimeters and therefore comparatively low with regard to the typical
mean absolute localization error of approx. 0.5 m. Table 1 also shows that on
average the learned models perform similarly well as or even better than the
fixed-setup model. Moreover, the two employed estimation techniques provide
similar accuracy. The grid-based approach performs surprisingly well, despite
the arguments mentioned in Sect. 3.3. We observed, however, that the k-
NN approach seems to be slightly more robust to changes of its parameter
k. Firstly, it is consequently no contradiction that for the cross-validation
experiments in the lab we obtained rather different best parameters k∗ = 100
and k∗ = 1500 (see Fig. 3). Secondly, we would therefore consider the k-
NN approach the first choice if a preliminary reference sensor model is to be
created quickly or whenever optimizations play a minor role.

5 Conclusion

In this paper, we have shown how to gain a probabilistic model of an RFID
reader semi-automatically with a mobile robot. During an exploration phase
RFID and position data are recorded. The logged data are then aligned and
used to learn tag detection frequencies by means of simple bin-based averaging
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and a k-nearest neighbors search. By repeating the learning step with different
parameter values, one can systematically search for the model which minimizes
the localization error of the mobile robot. Note that the learned reader models
were used to localize a mobile robot and benchmark the quality of the models,
but in general, their utilization need not be restricted to self-localization.

The employed two model learning methods yield similar results in self-
localization as a sensor model which was recorded by hand. None of the two
estimation methods should be preferred to the other one, although the k-
nearest neighbor approach appears to be slightly more robust to changes of
its model parameter. The presented approach eases the creation of an RFID
sensor model, because tedious measurements are replaced by automatic offline
computations and optimization. This enables one to change the setup of an
RFID system and re-learn the model quickly.

For the future, we plan to extend the learning to more model parameters,
e.g. the height of a tag over ground or its orientation. And we strive to further
automate the exploration phase.
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