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Abstract. In this paper we focus on solving a path following problem and keeping

a geometrical formation. The problem of formation control is divided into a leader

agent subproblem and a follower agent subproblem such that a leader agent follows

a given path, while each follower agent tracks a trajectory, estimated by using the

leader’s information. In this paper, we exploit nonlinear model predictive control

(NMPC) as a local control law due to its advantages of taking the robot constraints

and future information into account. For the leader agent, we propose to explicitly

integrate the rate of progression of a virtual vehicle into the local cost function of

NMPC. This strategy can overcome stringent initial constraints in a path following

problem. Our approach was validated by experiments using three omnidirectional

mobile robots.
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Introduction

The main objective of formation control is that every mobile robot in the group follows a

given path (or in case of a given trajectory, tracks a time parameterized reference trajec-

tory) and all mobile robots keep a desired spatial formation at any time [1,2]. Solutions

of formation control can be applied in a wide range of applications, such as security pa-

trols, search and rescue in hazardous environments, area coverage and reconnaissance in

military missions.

Various strategies have been investigated for solving the formation control problem.

These approaches can be roughly categorized as the leader-following approach [3], the

virtual structure approach [4], and the behavior-based approach [5]. In this paper, we

want to steer a group of omnidirectional mobile robots along a reference path while keep-

ing a desired flexible formation pattern. We use the leader-following strategy because

the main advantage of the leader-following approach is its simplicity in that formation

maneuvers can be completely specified in terms of the leader’s path or trajectory, and the

leader-following problem can be reduced to a tracking problem. Consequently, the task

of keeping formation pattern can be divided into two subtasks: the leader agent follows
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a given reference path and each follower agent tracks its estimated trajectory. To control

the leader agent, we employ nonlinear model predictive control (NMPC) to solve the

path following problems by integrating the rate of progression of a virtual vehicle, ṡ, into

the local cost function. This local controller not only controls the leader agent’s motions,

but also produces an optimal predicted trajectory. This information is broadcasted to all

follower agents.

This paper is organized in the following way: Section 1 describes how to combine

the formation configuration with the path following problem. In Section 2, the omnidi-

rectional mobile robots, which have been used in our experiments, are modeled. Then

NMPC is presented in Section 3. Section 4 shows the experimental results. Finally, our

conclusions and future work are given in Section 5.

1. Formation Configuration

Let the path be parameterized by the path-length s. As proposed in [6], when the for-

mation is turning, the coordinates in a curvilinear coordinate system instead of a rec-

tilinear coordinate system are applied, since this allows us to slightly modify the for-

mation’s shape (see Figure 1). In our method, only the path that the leader follows is

generated, while each individual follower agent, Fi, in the group has a pre-specified off-

set (pi(s), qi(s)) in curvilinear coordinates relative to the reference point C, which the

leader agent follows, as shown in Figure 1.

In some situations, the collision-free path does not always guarantee the safety for

the whole formation. For example, the width of the path could be too narrow to allow for

more than one robot. Thus, the formation must be changed to a column (see Figure 2(b)).

However, as stated in [6], the width of the formation (q-offset) can only be changed

if the second derivative d2q/ds2 exists, i.e., offset qi must be adequately smooth with

respect to the corresponding progenitor path during the transient from one configuration

to another. To solve this problem, we propose to use a fifth-order (quintic) polynomial to

join two path segments with different offset as follows2:

q(s) = qstart + (qend − qstart)(6s
5
d − 15s4

d + 10s3
d), (1)

where (s, q) is the position on the offset curve at the path length s, sd = s−sstart

send−sstart
,

(sstart, qstart) and (send, qend) are the starting and end points of the quintic curve, re-

spectively.

Let uc be the translational velocity of point C, which the leader agent follows. In

other words, uc is the rate of progression of a virtual vehicle. Once the (pi(s), qi(s))
coordinates of a follower agent i have been determined, the path length of a follower

agent, si, can be obtained by si = sc + pi, where sc is the path length at point C. Then

its velocity profiles can be obtained by2

ui = Hup, ωi = kiui, (2)

where ki = sign(b)
√

a2+b2

H2 , H =
√

(1 − kpq)2 + (dq
ds

)2,

a = −2kp
dq
ds

− q
dkp

ds
− (1 − kpq)

G
H2 , b = kp − k2

pq + d2q
ds2 −

dq
ds

G
H2 ,

2The derivations can be found at: http://www.ra.cs.uni-tuebingen.de/mitarb/kanjana/IASderiv.pdf.



Figure 1. Graphical depiction of a mobile robot

path and accompanying offset quantities [6] when

the formation is turning. L denotes a leader agent

and F1 - F4 denote follower agents.

(a) (b)

Figure 2. Graphical description of formation

configurations: (a) a triangle and (b) a column.

L, F1, and F2 denote the leader agent, the fol-

lower agent 1 and the follower agent 2, respec-

tively. Units are given in meter.

G = (1 − kpq)(−kp
dq
ds

− q
dkp

ds
) + dq

ds
d2q
ds2 ,

ui, ωi and ki are the translational velocity, the rotational velocity and the curvature of

the follower agent i, respectively, up is the translational velocity at si, which is usually

equal to uc. kp is the curvature at si on the reference path, and qi(s) is the offset at si.

2. Omnidirectional Mobile Robot Model

Omnidirectional mobile robots have simultaneously and independently controlled rota-

tional and translational motion capabilities. The annual RoboCup competition is an ex-

ample of a highly dynamic environment where omnidirectional mobile robots have been

exploited highly successfully (see RoboCup Official Site: http://www.robocup.org).

There are two coordinate frames used in the modeling: the body frame (Xm, Ym)
and the world frame (Xw, Yw). The body frame is fixed on the moving robot with the

origin at the center of the robot, whereas the world frame is fixed on the ground, as shown

in Figure 3. The kinematic model of an omnidirectional mobile robot is given by

ẋ(t) = f(x(t), u(t)), x(0) = x0,




ẋ
ẏ

θ̇


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, (3)

where x(t) = [x, y, θ]T is the state vector in the world frame and u(t) = [u, v, ω]T is the

vector of robot velocities observed in the body frame. θ denotes the robot orientation,

Figure 3. Coordinate frames of an omnidirectional mobile robot.



which is the angle of the axis Xm in the world coordinate system. u and v are the robot

translational velocities and ω is the robot rotational velocity. The velocity control inputs

are subject to input constraints: umin ≤ u ≤ umax, with constant vectors umin, umax.

Motion control of omnidirectional robot has been well studied. However, the lin-

earized model in [7,8] cannot fully handle the nonlinear properties of the original sys-

tem. Liu et al. [7] implemented trajectory linearization control (TLC), which is based on

linearization along the desired trajectory and inversion of the dynamics. Watanabe [8] in-

troduced the PID control, self-tuning PID control, and fuzzy control of omni-directional

mobile robot. In our proposed approach, NMPC combined with path following has been

carried out for the leader agent, and is explained in details in the next section. NMPC is

an attractive approach, because it can explicitly account for system constraints and eas-

ily handle nonlinear and time-varying systems, since the controller is a function of the

model that can be modified in real-time.

3. Nonlinear Model Predictive Control

Nonlinear model predictive control (NMPC) is based on a finite-horizon continuous time

minimization of nonlinear predicted tracking errors with constraints on the control inputs

and the state variables. It predicts system outputs based on current states and the system

model, finds an open loop control profile by numerical optimization, and applies the first

control signal in the optimized control profile to the system [9]. However, due to the use

of a finite predictive control horizon, control stability becomes one of the main problems.

To guarantee control stability, many approaches have been investigated, e.g., using so

called terminal region constraints and/or a terminal penalty term [10]. More explanations

regarding NMPC can be found in [9,10].

In the centralized system of formation control, the complete system is modeled and

all the control inputs are computed in one optimization problem. Using this strategy, the

size of the state variables depends typically on the number of mobile robots. When the

control horizon becomes larger, the number of variables, of which the agent has to find

the value, increases rapidly. Thus, our research has been directed at extending the single-

agent MPC framework to multiple agents by means of decomposing the centralized sys-

tem into smaller subsystems. This can be achieved by using distributed/decentralized

control or hierarchical design (see [11,12,13]). The main difference of these control ap-

proaches is the kind of interaction between two subsystems via state variables, con-

straints or objectives. In this paper, we divide a group of robot agents into a leader agent

as a downstream stage and a set of follower agents as an upstream stage. Each agent

computes a solution to its local problem. The leader agent communicates the most re-

cent variables to its followers, each of which re-solves its optimization problem with the

updated values.

Each omnidirectional mobile robot can be described by a nonlinear differential equa-

tion as given in Eq. (3). In NMPC, the input applied to the system is usually given by

the solution of the following finite horizon open-loop optimal control problem, which is

solved at every sampling instant:

min
u(·)

∫ t+Tp

t

F (x(τ), u(τ)) dτ, (4)



subject to: ẋ(τ) = f(x(τ), u(τ)),

x(τ) ∈ X , u(τ) ∈ U , (τ ∈ [t, t + Tp]),
(5)

where Tp is the prediction horizon, F (x(τ), u(τ)) is the cost function, and U and X

denote the set of feasible input values and the set of feasible states, respectively.

Furthermore, a simple delay compensation approach is applied in order to overcome

the computational delay problem. The optimal control problem at time tk is solved for

the predicted state at x(tk + δr), where δr is the computational delay. At initial time the

internal clock of each agent has to be synchronized using clock synchronization, and in

our implementation, the sampling time is calculated based on the average past results

[14]. Thus sampling time is varying. This leads us to work with asynchronous agents

with different sampling time. This strategy allows agents to proceed in parallel, each one

at its own speed.

The main tasks for the leader agent are to steer itself to the reference path, to produce

an optimal predicted trajectory of itself at each time instant, and to send out its informa-

tion to all follower agents via broadcast communication. In this paper, we propose to add

ṡ into the cost function in order to overcome stringent initial condition constraints that

are present in a number of path following control strategies described in the literature as

suggested in [15]. The local cost function becomes:

Fleader(x, u) = (x − xs)
T Ql(x − xs) + (u − us)

T Rl(u − us) + (ṡ − uo)
2pl , (6)

where xs = [xr, yr, θr]
T is the vector of the desired pose in the world frame, us =

[ur, vr, ωr]
T is the vector of the desired velocity in the body frame. θr denotes the desired

robot orientation, which is the angle of the axis Xm in the world coordinate system. uo is

the desired translational velocity along the reference path and ṡ is the rate of progression.

The deviation from the desired values is weighted by the positive definite matrices Ql,

Rl, and the positive constant pl.

After the optimization problem at time tk is solved, the current reference state (sl,k),

the optimal predicted reference trajectory (sl,k+1|k, ..., sl,k+Tp|k), and the sampling time

(δl) are transmitted to all follower agents. Each data packet is time-stamped, so that the

age of the information can be extracted at a follower controller.

Then each follower agent has to track it own reference trajectory, estimated by using

the leader agent’s optimal predicted trajectory and the predefined formation configura-

tion. In practice, some problems may arise, for example, the information time delay is

not zero, the sampling time of the follower agent can be different (asynchronous timing

conditions) from that of the leader agent or the data packet can be lost. To overcome these

problems, we calculate the estimated reference trajectory based on the leader agent’s

most recent information, where the time stamp is taken into account and the missing in-

formation is filled if packet loss happens. For example, at time ti,k, follower agent Fi re-

ceives an optimal predicted trajectory of its leader, which is generated at time tl,k < ti,k.

Over the interval [ti,k, tl,k + Tp], follower agent Fi has the optimal predicted trajectory

of its leader agent. For the rest of the time interval, i.e., [tl,k + Tp, ti,k + Tp], follower

agent i has to estimate the optimal predicted trajectory of its leader agent.

The local cost function of the follower agent can be given as

Ffollower(x, u) = (x − xs)
T Qf (x − xs) + (u − us)

T Rf (u − us), (7)



where xs = [xr, yr, θr]
T is the vector of the desired pose in the world frame, us =

[ur, vr, ωr]
T is the vector of the desired velocity in the body frame and the deviation

from the desired values is weighted by the positive definite matrices Qf , Rf .

4. Experimental Results

We implemented our algorithm on omnidirectional mobile robots shown in Figure 4.

Each has an omnidirectional camera as sole sensor, which is used for self localization.

Thanks to [16], the self localization applied for the RoboCup field has been employed in

our experiments. This self-localization algorithm is based on probabilistic Monte-Carlo

localization (MCL). We use three omnidirectional mobile robots to make a formation,

one is defined as a leader, following a circular reference path and the others as followers.

The reference path is given by

xo(s) = r cos (s/r), yo(s) = r sin (s/r), r = 1.1m, (8)

where r is the radius of the circle. A formation transition from a triangle (see Figure 2(a))
to a column (see Figure 2(b)) happens between s = 2πr and s = 2.5πr, and the forma-
tion is switched back to the triangle at s = 4πr. The parameters for the leader and for
both followers are selected as follows:

Leader: Ql = 0.05I3, Rl = 0.005I3, pl = 0.001, prediction steps = 3,

Followers: Qf = 0.05I3, Rf = 0.01I3, prediction steps = 3,

where I3 = diag(1, 1, 1).

By our implementation, the average sampling time used by the leader agent and

by the follower agents are approximately 0.1 s and 0.07 s, respectively. A free package

DONLP2 [17] has been used to solve the online optimization problem and PID con-

trollers have been implemented for motor velocity control in our experiments. Figure 5

Figure 4. Omnidirectional mobile robots used in

the formation control experiments.

Figure 5. The snapshots are taken at the follow-

ing time: (a) original configuration at t = 0 s, (b)

triangle configuration at t = 8.0 s, and (c) column

formation obtained at t = 31.8 s. × denotes the

starting position.



shows the superimposed snapshots of three mobile robots keeping and switching the for-

mation, while the leader follows the circular reference path with the translational veloc-

ity, uo, of 0.4 m/s and the rotational velocity, ωo, of kouo, where ko is the curvature

at the reference point. L, F1, and F2 denote the leader, the follower 1, the follower 2,

respectively. The pose errors of the leader, of the follower 1, and of the follower 2 are

shown in Figure 6 and the velocities of the leader, of the follower 1, and of the follower

2, compared with their reference velocities, are shown in Figure 7.

5. Conclusions and Future Work

In this paper, the formation control problem of omnidirectional mobile robots has been

solved by using NMPC as a local control law, in such a way that a leader agent follows

a given reference path and each follower agent tracks an estimated reference trajectory.

NMPC is a promising control method as can be seen in our experimental results. Not

only can it handle control and input constraints, but it also utilizes future information to

generate a trajectory of optimal control inputs at each time step. Two key points, which

are employed to solve the path following problem and formation keeping problem, are

proposed in this paper. First, the rate of progression of a virtual vehicle is integrated into
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Figure 6. Pose errors of (a) the leader, (b) the follower 1, and (c) the follower 2.
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Figure 7. Velocities of (a) the leader, (b) the follower 1, and (c) the follower 2.



the local cost function of the leader agent. An optimal predicted trajectory, generated

when the open-loop optimization problem is solved, is sent out to all follower agents.

Second, with this information and a desired formation configuration, each follower agent

can estimate its own reference trajectory with velocity profiles by taking the time stamps

into account. However, in our problem, the constraint to enforce a degree of consistency

between what the leader agent is actually doing and what the follower agents believe

that the leader agent is doing is required, as suggested in [11]. This issue is currently

under our investigation. Furthermore, in the future, we would like to integrate obstacle

avoidance as coupling constraints and analyze the formation stability.
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