
A Dynamic Swarm for Visual Location Tracking

Marcel Kronfeld, Christian Weiss, and Andreas Zell

Computer Science Dept., University of Tübingen, Tübingen, Germany
{marcel.kronfeld|c.weiss|andreas.zell}@uni-tuebingen.de

Abstract. The visual localization problem in robotics poses a dynami-
cally changing environment due to the movement of the robot compared
to a static image set serving as environmental map. We develop a particle
swarm method adapted to this task and apply elements from dynamic
optimization research. We show that our algorithm is able to outperform
a Particle Filter, which is a standard localization approach in robotics,
in a scenario of two visual outdoor datasets, being computationally more
effective and delivering a better localization result.

1 Introduction

Environments with uncertainty like noise or dynamic changes are especially chal-
lenging for optimization [1]. A possible application for dynamic optimization is
self-localization of mobile robots (Fig. 1), which need to know their position to
interact with their environment in any useful way. Visual localization is based on
an image database and therefore computationally expensive [2]. Moreover, the
robot may move between any two iterations of the localization method, making
the problem highly dynamic.

An up-to-date approach for local-

Fig. 1. RWI outdoor robot Arthur.

ization in robotics is the so-called Par-
ticle Filter (PF), introduced in Sec. 3.
A Particle Swarm Optimization me-
thod (PSO, [3]) for visual robot lo-
calization was described in [4] from
the robotics point of view. This work
goes into details of the PSO variant
and analyzes parameter settings em-
pirically. Closely related is the work
of Vahdat et al. [5], who employed DE
and PSO for global robot localization using laser sensors in an indoor environ-
ment. Their case treats a larger search space, where standard DE and PSO
approaches showed to be superior to a Particle Filter. They did not, however, go
into dynamics and thus handled only an initial phase of localization. From the
robotics view, there have been several approaches extending Particle Filters with
evolutionary concepts, e.g., [6]. Particle swarm algorithms have been extended
to dynamic problems, e.g., by boosting diversity or creating sub-swarms to track
optima [7].

2 Particle Swarm Optimization

The PSO technique takes as basic idea the flocking behavior of animals. It
searches the solution space by assigning velocities v and a neighborhood re-
lationship to the individuals x. An individual is in each generation attracted
to the best location in its history (ph) and to the best location found by its
neighborhood (pn). The classical formulation is given in Eqs. 1 and 2.

vi(t + 1) = ωvi(t) + φ1r1(p
h
i − xi) + φ2r2(p

n
i − xi) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

The neighborhood type may range between small (local), randomized, and large
(global), differing especially in the rate of information distribution. The param-
eters φ1/2 control the impact of the attractors, while r1/2 are uniform random
samples in [0, 1] used as stochastic components. The inertness factor ω control-
ling the influence of former velocities is usually set < 1 for convergence.

The PSO concept seems to match problems with dynamically changing target
functions, and dynamic adaptations of PSO have proven to be successful in this
domain [8, 7]. Yet, most work in the direction considers problems where the
time between environmental changes is rather long, whereas, for mobile location
tracking, the frequency of change is usually very high. When exploiting the rich
visual data, the PSO method still offers a promising approach.

3 Visual Localization and SIFT

Visual localization addresses the question of how a mobile system, which has
access to a visual representation of its environment (map), can find its position
relative to this map and keep track of it during motion. As internal odometry,
e.g., sensors measuring the speed of the wheels, is prone to errors, external
information is necessary to obtain an initial position estimation and to achieve
robust location tracking over time. Vision is a major source of information for
humans, so it is appealing to use it for robot localization as well.

Visual localization may be divided into two stages. Firstly, for training, im-
ages are collected with position information, e.g. GPS tags, and stored in a
database - the map. For later localization, a mobile robot moves through the
same environment, takes pictures online, and relates them to the map. Visual
data is very sensitive to changes, e.g. in light conditions, so localization requires
a robust method for image comparison, which is apt to be time-consuming.

If the size of the reference image set is small, localization is possible by just
comparing a new image to every image in the database and choose the best
match as position estimation. This gets, of course, infeasible in larger scenarios.
Using a probabilistic approach such as a Particle Filter, the set of tested images
is reduced to the most probable ones.

A Particle Filter (PF, [9]) is a sequential Monte-Carlo-method for hidden
state estimation, which approximates a probability density function p using a

finite set of weighted “particles” x
i (not originally related to the particles in

PSO). A particle can be seen as a hypothesis on the state of the system at a
time, and the particle weights wi express the importance of particles. The PF
seeks to deduce from the collected sensor readings s1:t a belief in the current
state xt of the robot: p(xt|s1:t) ≈

∑n
i=1

wi
tδ(x1:t − x

i
1:t) (with Dirac δ).

In a PF iteration, a new proposal distribution is first predicted by advancing
the particles using a transition model, e.g., from odometry readings. Then, the
particles are reweighed incorporating new external information, judging how
probable each hypothesis is. By resampling the particles using the updated
weights, the PF concentrates on more promising areas of the state space. For
an application using visual data, the weighing may be traced back to an image
similarity measure. If the state-space is large, a PF requires many particles, e.g.
n = 300 in [2], and much more for less distinctive sensory such as laser scanners
[9, 5]. PSO is, by contrast, known to be effective with relatively small swarms.

3.1 Interpretation in an Optimization Context

The aim of the PF method is, in terms of optimization: From a given sample set,
produce a new set which contains samples of same or higher fitness with respect
to the image similarity measure. As the system is mobile, beyond finding an
optimum, we need to track it over time. Assuming that position xt is typically
close to xt−1 and associating particle velocities with the robot’s speed, we argue
that PSO together with a distinctive image similarity measure is effective for
localization. For such a distinctive function of two images, m : S × S → R, we
formulate a target fitness function for the map M :

fM (x, t) = m(imgM (x), s(t)) · pen(d(x, pM (imgM (x)))), (3)

where imgM : X → M ⊂ S returns the associated training image of a
position x, i.e., the training image closest to x. s(t) is the test image at iteration
t, pM : M → X delivers the known position for an image in the map. The penalty
function pen : R → R reduces the fitness for particles far away from the training
data, because localization is feasible only where there is training information.
This is done similarly to [2] in terms of a Gaussian function. The problem of
tracking a position now corresponds to a dynamic optimization problem: find
the optimum x̂ of fM at a time and follow it ensuring a plausible path.

A popular method to find and describe image features is Lowe’s Scale Invari-
ant Feature Transform (SIFT) [10]. By using an image’s scale-space and assign-
ing oriented features to the SIFT key points, they can be found relatively robust
under changing views. The SIFT-match function mSIFT delivers a value in [0, 1]
indicating image similarity by calculating the ratio of single feature matches to
all possible matches and is used in the function fM stated above.

4 A Dynamic PSO for Localization

We base the our algorithm on the original PSO formulation [3] using the in-
ertness parameter ω and a maximum velocity v0. Due to the dynamic tracking

requirement, the swarm is not to converge below a certain scale defined by the
map. The fitness of an individual at time t is calculated using the SIFT similarity
between the current test image and the training image closest to the individual’s
position (Eq. 3). As SIFT is relatively distinctive, we expect one strong main
attractor most of the time and use the global neighborhood as swarm topology.

vi(t + 1) = ωvi(t) + φ0r0δiv0 + φ2r2(p
n
i (t) − xi(t)), (4)

xi(t + 1) = xi(t) + vi(t + 1), (5)

xq
i (t + 1) = pn

i (t) + δiN(0, q̂d). (6)

In Eq. 4, we replaced the p
h-component by a random term, because we

expect a continuously changing environment where historically good positions
lose relevance quickly. φ0 is the weight of the random perturbation, while δi

normalizes to the range of axis i. As the random perturbation is undirected, r0

is sampled uniformly from [−1, 1].
A fraction of q̂r = 10% of particles x

q are treated as quantum particles [7]
to ease the dynamic tracking, cf. Eq. 6. They are distributed around p

n with
standard deviation q̂d = 0.15. The inertia is usually below 1 to allow for con-
vergence, yet it needs to be high to stress the correlation of robot motion, so
we set it to 0.99. The trade-off between the φ-values remains important, bal-
ancing between exploration and exploitation. Random perturbation is necessary
for diversity, but reduces accuracy if too dominant. For scenarios with constant
velocity, preliminary tests show robustness towards settings of φ0 ∈ (0, 2]. We
suggest φ0 = 1 as a default, while φ2 is set to 0.6 where not stated otherwise.

A fraction of ĥr = 10% of particles are allowed a velocity v̂0 = 3v0 for quick
optimum recovery. The best individual at every iteration is taken as position
estimation.

4.1 Self-adaptive Parameters

We introduce two self-adaptive mechanisms. By calculating the speed vsw of the
swarm’s center, we dynamically hold the relation v0 ≈ 2vsw. This enables the
method to react to speed changes while providing robust tracking at any speed.
Also, vsw gives a good estimate of the robot’s speed.

SIFT features offer robust image similarity information in outdoor areas, yet
situations may still be ambiguous and the real position may get lost. To handle
this, we include a mechanism to adapt the swarm diversity: If the SIFT match
of the best position guess is still bad, e.g., matching less than 5% of the features,
it may be an ambiguous position or the swarm lost track of the position. If this
happens several times in a row, we start a recovery phase and boost particle
diversity by increasing v0, q̂r and decreasing φ2 towards limit values. As soon as
the particles’ quality increases again, the initial values are gradually restored.
Experiments show that the adaptive speed improves tracking and the recovery
phase improves robustness, cf. Sec. 6.1. With increasing v0 the method becomes
more sensitive to the setting of φ0. Therefore, we tested several values for φ0 in
a setting where recovery phases were important (Sec. 6).

5 Experimental Setting

In the experiments in [2], an RWI ATRV-JR outdoor robot (Fig. 1) collected
images in a campus environment. One 320×240 pixel gray scale image per second
was taken with a Videre Design SVS camera system at a constant velocity of
about 0.6 m/s. The robot is equipped with a differential GPS (DGPS) system,
from which ground truth data was read. Under ideal conditions, the accuracy of
the DGPS is below 0.5 m. However, due to occlusion by trees and buildings, the
GPS path sometimes significantly deviated from the real position or contained
gaps. As the robot moved on a smooth trajectory, some wrong GPS values were
eliminated as outliers and gaps could be closed by interpolation.

Two different data sets S and C were produced, each consisting of three
rounds around a building. A round is 260 m long and contains about 400 im-
ages. Three were collected under sunny conditions (S), three more on a cloudy
day (C, cf. Fig. 2). The images contain buildings, streets, cars, as well as vegeta-
tion. There are also dynamic objects like cars and people passing by. The SIFT
features of a round with GPS annotations make up the localization map.

Fig. 2. Example images of the data sets, sunny (left) and cloudy (right).

One experimental run is defined by a training and a test round, the training
round constituting the reference map M . At each iteration, an image img(t) of
the test round is presented to the algorithm and interpreted as current view of
the robot. Where not stated otherwise, the images are presented in the order
they where taken in. At each time step, the deviation of the estimated position
x(t) to the real position of the test image img(t) gives the online error, the
average of which makes up the allover error of the run.

For a full experiment on two rounds, we repeat the localization k times with
different starting positions, so k is the number of images in the test round. The
average error over these runs give the performance in the experiment. To examine
some parameter settings, we experiment on two exemplary rounds, while for the
final results, we additionally loop over all the rounds in the data sets.

6 Results

Tab. 1 shows results for different settings of φ0 in a sunny vs. cloudy scenario.
They indicate that a setting of φ0 ≈ 1 is favorable, keeping in mind that the

random perturbation is also proportional to the maximum speed v0 which is
increased in recovery phases. A high φ0-value increases the number of image
comparisons, because the swarm diversity tends to be higher.

φ0 0.005 0.02 0.08 0.32 0.64 0.96 1.28 1.60

Avg.err. (m) 2.64 2.67 2.61 2.50 2.43 2.41 2.44 2.59
Error variance 0.26 0.46 0.28 0.25 0.17 0.09 0.07 0.09

Table 1. Average error (m) varying φ0 with recovery.

Method PSO-30 PSO-60 PSO-80 PSO-100 PF-100 PF-300

Avg.err. (m) 3.34 2.51 2.42 2.39 3.95 3.39
Avg.comp./img. 16.87 23.68 27.36 30.60 40.8 62.4

Table 2. Varying the number of particles for the PSO-localization.

Recovery active / φ0 +/1 −/1 +/0.005 −/0.005

Avg.err. (m) 2.87 3.55 2.91 3.46
Error variance 0.39 3.26 0.54 2.68

Table 3. Comparing localization with and without recovery for sunny vs. cloudy.

When comparing several swarm sizes for φ0 = 1 (Tab. 2), the localization
performance increases with additional particles as expected. At the same time,
the number of comparisons increases, and consequently the computation time.
For comparison, the results for a PF with 100 and 300 particles are also shown (cf.
Sec. 6.2). For robust localization, PSO uses 80 particles in further experiments.

For the sunny vs. cloudy (S vs. C) situation, the advantage of the adaptive
recovery is compared to the performance without recovery in Tab. 3. It shows the
averaged errors for 80 particles and φ0 ∈ {0.005, 1}. For a small φ0, localization
tends to be more exact in simple rounds but is more likely to lose the position.
For robust localization, we favor setting φ0 = 1 and adaptive v0 with recovery.

To demonstrate the effect of the v0-adaptation, we run simulations with dif-
ferent virtual robot velocities. For 1

4
/ 1

2
of the original speed, we present the

same test image 4/2 times in a row, while for 2/3/4 times the original speed,
we present only the 2nd/3rd/4th image of the test round, resulting in the virtual
speed modified by the respective factor. Fig. 3 (right) shows localization results
in the S vs. C case. For the non-adaptive experiment, v0 is set to roughly twice
the original speed, which works for slower speeds but clearly fails for high speeds.

6.1 Kidnapped-Robot Scenario

For localization, a “kidnapping” of the robot, meaning that it is moved by hand
without getting informed, is one of the toughest challenges. The robot’s position
estimate suddenly becomes completely invalid and misleading. In our environ-
ment, we simulate kidnapping by adding k

2
to the test image index modulo k

after k
2

iterations. Thus, the localization method is forced to jump to the oppo-
site side of the round after converging for half of the run. In Fig. 3 (left), the

simulated kidnapping causes an abrupt error of about 68m averaged. Yet, the
adaptive method quickly finds and retracks the position.

 2

 3

 4

 5

 6

 7

 8

43211/21/4

A
ve

ra
ge

 e
rr

or
 (

m
)

Simulated Speed

Adaptive
Non-adaptive

Fig. 3. Kidnapped-robot scenario (left).Varying the virtual speed of the robot (right).

6.2 Final Comparison to a Particle Filter

For the final comparison of the PSO localization method with a Particle Filter
approach, we loop over all the rounds in the two data sets, but without testing
a round against itself. This means that for S vs. S and C vs. C, there are six, for
S vs. C there are nine experiments averaged (Tab. 4).

PF-100 PF-300 PSO-80,φ0 = 0.005 PSO-80,φ0 = 1

Avg.err.(m) #Cm Avg.err.(m) #Cm Avg.err.(m) #Cm Avg.err.(m) #Cm

S vs. S 3.16±0.89 40.0 2.15 ± 0.29 60.8 2.03± 0.42 21.0 2.16± 0.63 24.2
C vs. C 3.46±1.28 36.5 2.06 ± 0.56 55.3 1.45 ± 0.53 19.3 1.49± 0.35 22.7
S vs. C 3.93±0.66 40.4 3.27 ± 0.27 60.9 2.91 ± 0.73 22.8 2.87± 0.62 27.1
Table 4. Comparing the PF to PSO in avg. error and SIFT comparisons per image.

We compare two PSO variants with different scales of the random perturba-
tion with a PF using 100 and 300 particles [2]. The PF-100 localization is rather
inaccurate, producing errors of 3m − 4m, and it requires nearly twice as many
image comparisons as the PSO approach. The PF-300 nearly reaches the accu-
racy of the PSO, but requires about three times as many image comparisons,
so the PSO-80 variant is clearly more effective. The difference between low and
high random perturbation, depending on φ0, lies mostly in robustness. Since the
standard deviations in Tab. 4 refer to experiments with different rounds and not
single runs, this is more clearly visible in Tab. 1.

A SIFT comparison of the considered data sets took about 0.015 s on average
on our test system, a 2.4 GHz dual core AMD Opteron. An iteration of PF-300
therefore takes approx. 0.8−0.9 s. Compared to that, PSO reduces the necessary
comparisons by more than 50% and saves nearly half a second in every iteration.

7 Conclusions

Visual outdoor localization of mobile systems requires visual data processing
and is therefore time-consuming. A typical localization approach from robotics,
the Particle Filter, is successful especially with highly ambiguous sensory and
non-Gaussian noise. Yet, sparse visual outdoor images, which occur if large areas
(e.g. whole cities) are to be mapped in a short time, are relatively distinctive.
We therefore employed a PSO heuristic with modifications appropriate to the
high dynamics of a mobile robotic system. Using a current method to extract
and compare visual features from images, SIFT, we formulated an optimization
problem relating a test image sequence to a given map of images. By adding
adaptive mechanisms, the robustness of the swarm method could be increased.

Test results using two data sets recorded under different wheather conditions
showed that the PSO localization method requires considerably fewer particles
and thus less computation time compared to a Particle Filter approach, but is
still more accurate. It is able to adapt to different speeds and solves the difficult
kidnapped-robot case. We will tackle larger scenarios and incorporate odometry
readings from the robot, e.g., as an additional attractor in the PSO-formula, in
future work.

References

1. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a
survey. IEEE Transactions on Evolutionary Computation 9 (2005) 303–317

2. Weiss, C., Masselli, A., Tamimi, H., Zell, A.: Fast outdoor robot localization using
integral invariants. In: Proc. of the 5th International Conference on Computer
Vision Systems (ICVS), Bielefeld, Germany (March 2007)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE Int. Conf. on
Neural Networks, Perth, Australia (1995)

4. Kronfeld, M., Weiss, C., Zell, A.: Swarm-supported outdoor localization with
sparse visual data. In: 3rd Europ. Conf. on Mobile Robots. (2007) 259–264

5. Vahdat, A.R., NourAshrafoddin, N., Ghidary, S.S.: Mobile robot global localization
using differential evolution and particle swarm optimization. In Srinivasan, D.,
Wang, L., eds.: 2007 IEEE Congress on Evolutionary Computation, Singapore,
IEEE Computational Intelligence Society, IEEE Press (2007) 1527–1534

6. Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary filter for robust global local-
ization. Robotics and Autonomous Systems 54(7) (2006) 590–600

7. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in
a dynamic environment. In: GECCO ’06: Proc. of the 8th annual conf. on Genetic
and evolutionary computation, New York, NY, USA, ACM Press (2006) 51–58

8. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with parti-
cle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation.
Volume 1. (2001) 94–100

9. Fox, D., Thrun, S., Burgard, W., Dellaert, F.: Particle Filters for Mobile Robot
Localization. In: Sequential Monte Carlo Methods in Practice. Springer (2000) 401
– 428

10. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal
of Computer Vision 60(2) (2004) 91–110

