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Abstract— Parameter estimation for biochemical model sys-
tems has become an important problem in systems biology. Here
we focus on the metabolic subnetwork of the valine and leucine
biosynthesis in C. glutamicum. Due to the lack of indisputable
information regarding reversibility of the reactions in the path-
way we derived two alternative ordinary differential equation
models based on the formalisms of the generalized mass-action
rate law. We introduced two alternative modeling approaches
for feedback inhibition and evaluated the applicability of six
optimization procedures (multi start Hill Climber, binary and
real valued Genetic Algorithm, standard and covariance matrix
adaption Evolution Strategy as well as Simulated Annealing) to
the problem of parameter fitting. The model considering irre-
versible reactions performed worse and was therefore rejected
from further analysis. We benchmarked the impact of different
mutation and crossover operators as well as the influence of
the population size on the remaining system and the two best
optimization procedures namely binary Genetic Algorithm and
the Evolution Strategy. The GA performed best on average and
found the best total result based on the relative squared error.

I. INTRODUCTION

Modeling the dynamic behavior of complex biological
reaction systems has become a challenging task in systems
biology. The parameters in those models describe constant
enzyme properties. These can be measured in vitro ex-
perimentally. However, this is expensive, time consuming
and also often impractical. As the parameters define the
thermodynamical dynamic behavior of the system, a common
method is the inference of suitable parameter values so that
the resulting curves approximate the measurements. This
method is based on the assumption that biological systems
are optimized for the given environmental circumstances.
Thus, the parameters represent the optimal set of enzyme
features. Many studies have constructed a set of differential
equations or postulated further network properties [1]–[5].
Due to the high nonlinearity of most common model equa-
tions, Evolutionary Algorithms (EA) have been successfully
applied to similar problems [2], [3]. However, less attention
has been drawn to the optimization process of the model
parameters. During the last decades many derivatives of EAs
have been proposed. Each of them has certain advantages and
is therefore more or less appropriate for a specific problem.

Here we consider a metabolic network of the valine (Val)
and leucine (Leu) biosynthesis in C. glutamicum based on in
vivo data obtained in a glucose stimulus-response experiment
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with the use of a rapid sampling device and advanced mass
spectrometry. Measurements of 13 metabolites were taken at
sub-second intervals for a time period of 25 s, showing a
high degree of accuracy [4]. Two mathematical models were
developed using the formalism of the mass-action kinetics
including different generic formulas for feedback inhibition
for cases in which the exact mechanism of the inhibition
is unknown. The Val/Leu biosynthesis pathway has already
been modeled using linlog kinetics [4], which is an approxi-
mation of the metabolic process [6]. By introducing a model
description based on mass-action kinetics the formalism is
similar to the traditional biochemical modeling.

To explore the applicability of various optimization algo-
rithms to this problem it is necessary to study the influence
of their different settings. Four Evolutionary Algorithms
(binary and real valued Genetic Algorithm as well as standard
and covariance matrix adaption Evolution Strategy) and two
non-evolutionary optimization algorithms (multi start Hill
Climber and Simulated Annealing) were applied to this infer-
ence problem. These algorithms were tested systematically
on the data set using default settings. The two best perform-
ing algorithms and the best performing model were selected
and investigated subsequently in more detail. The influence
of different mutation and crossover operators, probabilities
pm and pc as well as the impact of the population size
was examined and compared. The qualities and drawbacks
of both model descriptions and optimization procedure were
exposed.

II. METHODS

A. The System under Consideration

1) Biochemical Model: C. glutamicum is an important
industrial producer species of amino acids. Due to this fact
it is desirable to gain a better understanding of the chemical
processes during the formation of its metabolic products.
Fig. 1 shows the biochemical reactions of the Val and Leu
biosynthesis according to the METACYC database [8] and
Magnus et al. [4]. Our consideration of the Val and Leu
biosynthesis starts with pyruvate (Pyr), which is subsequently
consumed to form 2-ketoisovalerate (KIV) in two reactions.
There are two different ways to form Val and one to convert
KIV to 2-isopropylmalate (2IPM). The latter is the starting
substance for the Leu production in four following reaction
steps. Both Val and Leu can be used for biomass production
or can be pumped out of the cell if not needed. Here we only
consider the transport out of the cell, which is the industrially
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interesting reaction. In four feedback loops Val and Leu
downregulate their own production rate. The transport of Leu
and Val accross the cell wall is actually performed by one
enzyme, for which both substrates compete. For modeling
purposes two distinct reactions are necessary in which the
competition is included as inhibition.

Since the reaction 2 IPM −−⇀↽−− 3 IPM is fast, it is as-
sumed to be in equilibrium. This and the two following
reactions 3 IPM + NAD+ −−→ 2 I3OS + NADH2 and (2S)-
2-isopropyl-3-oxosuccinate (2 I3OS) −−→ 2-ketoisocaproate
(KIC) +CO2 that depend only on the concentration of 2 IPM
were lumped together introducing the symbol IPM for both
derivates as suggested by Magnus et al. [4]. The KEGG
database [9] mentions two additional reaction steps not
included in METACYC [8]: Pyr reacts to 2-hydroxyethyl-
thio-dipyrophosphate first before forming (S)-2-acetolactate
(AcLac) which then turns over in 3-hydroxy-3-methyl-2-
oxobutanoate before it further reacts to (R)-2,3-dihydroxy-
3-metylbutanoate (DHIV).
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Fig. 1. Process diagram of the Val and Leu synthesis in C. glutamicum

Metabolites outside the cell are not directly included in the model system.

Both amino acids can be formed from Pyr, the end product of the glycolysis.

2) Glucose Stimulus-Response Experiment: After a 10
min starvation period a glucose impulse was added to the
culture medium increasing the glucose concentration from
0 to 3.5 g/l. This caused a glucose shock leading to a
spontaneous increase of metabolic products linked to this
central nutrient. 47 samples of the fermenter broth were taken
over 25 s starting 4 s before the glucose pulse. Immediate
quenching and cooling with methanol to -50 °C prevented
the metabolites from further reactions. Mass spectrometry
(HPLC MS/MS) was used to quantify the metabolite con-
centrations in the probes [4].

No measurements have been taken for intermediates of
the glycolysis before Pyr. It was technically not possible
to obtain measurements of NADH2 and NADPH2 with a
high degree of exactness. Due to this fact we follow the
suggestion of Magnus et al. [4] taking into account that both
couples NAD+ and NADH2 as well as NADP+ and NADPH2
follow a conservation relation so that the total amount of

TABLE I

THE REACTION SYSTEM IN MORE DETAIL

The reactions in KEGG were lumped together to result in this reaction
scheme which is in accordance with METACYC besides the question of
irreversibility. Two of the resulting reactions contain reversible steps.

No. Reaction Enzyme Inhib.

R1 2 Pyr −−→ AcLac + CO2 AHAS Val

R2 AcLac + NADPH2
−−⇀↽−− DHIV + NADP+ AHAIR Val

R3 DHIV −−→ KIV + H2O DHAD Val

R4 KIV + Glut −−→ Val + αKG BCAATValB

R5 KIV + Ala −−→ Val + Pyr BCAATValC

R6 Val −−→ Valext TransVal Leu

R7 KIV + AcCoA −−→ IPM + CoA IPMS Leu

R8 IPM + NAD+ −−→ KIC + NADH2 + CO2 IPMDH

R9 KIC + Glut −−⇀↽−− Leu + αKG BCAATLeuB

R10Leu −−→ Leuext TransLeu Val

both coupled metabolites remains constant during the 25 s
of interest. Thus, we can assume that the concentration
of NADH2 equals 0.8 mM − [NAD+] and [NADPH2] =
0.04 mM − [NADP+]. It has also not been possible to mea-
sure the concentration of AcetylCoA and CoA in sufficient
quality. We assume there is a constant pool of these central
metabolites involved in many reactions and this pool does
not vary over the short time period of 25 s. Depending on
what model we use this yields either an additional parameter
to be estimated or these constants can be lumped together
with another constant. The steady-state concentrations [4] of
the seven metabolites to be simulated serve as initial values
for the models.

B. Mathematical Modeling

We benchmarked a reversible generalized mass-action
kinetics (GMAK) model as well as its irreversible alternative
with a different inhibition function on this metabolic system.

The topology of the reaction system (Tab. I) can be
represented by a stoechiometric matrix N. The change of
the metabolite concentrations over time can be calculated by
combining N with the vector of reaction velocities v linearly

d

dt
S = Nv(S(t), t,p)

with S being the vector of reacting species and the parameter
vector p. The equations (1) through (7) show the linear com-
bination of the reaction velocities to the resulting metabolite
concentrations for this reaction system.

d[AcLac]

dt
= v1 − v2 (1)

d[DHIV]

dt
= v2 − v3 (2)

d[KIV]

dt
= v3 − v4 − v5 − v7 (3)

d[Val]

dt
= v4 + v5 − v6 (4)

d[IPM]

dt
= v7 − v8 (5)
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d[KIC]

dt
= v8 − v9 (6)

d[Leu]

dt
= v9 − v10 (7)

1) Generalized Mass-Action Kinetics (GMAK): To model
enzyme catalyzed reactions with more than one substrate
one has to consider the exact reaction mechanism in the
kinetic model which is often unknown. Due to the fact
that the Michaelis-Menten kinetics is a special case of the
GMAK it may be desired to neglect the enzyme catalysis.
The mechanism can be described by a mass-action kinetics
instead. However, if any kind of inhibition is involved in
the reaction, this cannot easily be included in the kinetic
equation. Here we apply an inhibition function that fits in
the generalized mass-action rate law as proposed by Schauer
and Heinrich (1983) [10]

vj(S,p) = Fj(S,p)

(
k+j

∏
i

S
n
−

ij

i − k−j

∏
i

S
n

+

ij

i

)
(8)

The function Fj(S,p) was defined as any positive function
of the substrate concentrations S and the parameter vector p

to introduce saturation or inhibition effects to the common
mass-action kinetics written in brackets [10]. For conve-
nience of notation the matrices N± were introduced, whose
elements n±

ij express the absolute values of the positive or
negative stochiometric coefficients, respectively.

Feedback inhibition loops can be included using one of
the following approaches

Fj(S,p) =
1

1 + KI
j · [I]

(9)

Fj(S,p) = exp(−KI
j · [I]) (10)

with KI
j � 0. The inhibition term (9) was derived from the

competing reactions of the enzyme with its substrate or the
inhibitor, respectively. Using the equilibrium constant for the
inhibition reaction and the conservation law of the enzyme
and the enzyme-inhibitor complex concentrations yields the
first equation. Applying Eq. (8) combined with Eq. (9) to
reaction system R1 through R10 leads to an ODE system
with 24 parameters k±i, KI

j :

v1 =
k+1[Pyr]

2
− k−1[AcLac]

1 + KI
1[Val]

(11)

v2 =
k+2[AcLac][NADPH2]

1 + KI
2[Val]

−
k−2[DHIV][NADP+]

1 + KI
2[Val]

(12)

v3 =
k+3[DHIV] − k−3[KIV]

1 + KI
3[Val]

(13)

v4 = k+4[KIV][Glut] − k−4[Val][αKG] (14)

v5 = k+5[KIV][Ala] − k−5[Val][Pyr] (15)

v6 =
k+6[Val]

1 + KI
4[Leu]

(16)

v7 =
k+7[KIV][AcCoA] − k−7[IPM][CoA]

1 + KI
5[Leu]

(17)

v8 = k+8[IPM][NAD+] − k−8[KIC][NADH2] (18)

v9 = k+9[KIC][Glut] − k−9[Leu][αKG] (19)

v10 =
k+10[Leu]

1 + KI
6[Val]

(20)

2) GMAK, irreversible with exp Inhibition: Eq. (10) was
derived more intuitively driven by the assumption that the ex-
ponent function constitutes an important growth and shrink-
age function in biology. By setting all product concentrations
apart from R2 and R9 to zero and applying Eq. (10) to Eq.
(8) we obtain the irreversible version of this equation system
with 18 parameters k±i, KI

j :

v1 = k+1[Pyr]
2
exp(−KI

1[Val]) (21)

v2 = exp(−KI
2[Val]) · (k+2[AcLac][NADPH2]

−k−2[DHIV][NADP+]
)

(22)

v3 = k+3[DHIV] exp(−KI
3[Val]) (23)

v4 = k+4[Glut][KIV] (24)

v5 = k+5[Ala][KIV] (25)

v6 = k+6[Val] exp(−KI
4[Leu]) (26)

v7 = k+7[KIV] exp(−KI
5[Leu]) (27)

v8 = k+8[NAD+][IPM] (28)

v9 = k+9[Glut][KIC] − k−9[αKG][Leu] (29)

v10 = k+10[Leu] exp(−KI
6[Val]) (30)

3) Representing external Metabolites with Splines: As
suggested by Magnus et al. [4], metabolites, whose con-
centrations cannot be explained by the model itself, are
approximated using splines. These metabolites are consid-
ered external, i. e., they are an input to the model but they
are involved in several other reactions outside this system
(Fig. 1).

We used cubic approximation splines to smooth the mea-
surements. The degree of smoothness λ and the weight
vector ω define the shape of every spline. To weight all
measurements equally, ωi was set to 1 for all i. Due to the
different ranges of the concentrations of the six metabolites
it is not possible to find one appropriate parameter λ that
leads to equally smooth curves. Hence, we transformed all
concentrations into the range [0, 1], set λ = 1, computed the
spline coefficients and retransformed the result back into the
original range (Fig. 2).

C. Fitness Function and Search Space Restrictions

Due to the differences in the concentrations of certain
metabolites in the system under study the choice of the
right fitness function is a crucial step. The Euclidian distance
between the model values and the measurements is not
applicable here because metabolites in higher concentration
would tend to dominate the fitness whereas those in lower
concentration would not play any role during the curve fitting
procedure. The relative squared error or relative standard
error (RSE)

fRSE(x̂,X) =

dim(x̂)∑
i=1

T∑
t=1

(
x̂i(τt) − xti

xti

)2

(31)
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Fig. 2. Representing external metabolites using splines

Metabolites whose dynamic change of their concentration cannot be explained in terms of the modeled metabolic subnetwork, were considered external

and approximated using splines. The six external metabolites describe the system’s input. Splines smooth the fluctuating measurements but do not depend

on any biologically relevant model since their coefficients were computed individually for each chemical species.

to be minimized overcomes these limitations. The first sum
runs over all dimensions of x̂, i.e., all compounds of the
system and T is the number of measurements taken. Here,
x̂(τt) is a vector describing the model output at each sample
time τt and X = (xti) is the given data matrix. The fitness
(31) has already been used in several publications for similar
problems [7].

The fourth order Runge-Kutta method was used to solve
the ordinary differential equation systems to obtain x̂(τt) for
every t.

In biology the parameter space is limited to values greater
than or equal to zero and cannot exceed the diffusion rate.
Therefore, it is necessary to define ranges for every parameter
to restrict the search space for the optimizer. Here, all
parameter values were limited to the range [0, 2000] covering
98.748 % of all known kinetic parameters in the BRENDA
database [11]. In more detail, 99.958 % of all KI values,
99.957 % of all KM values and 96.328 % of all kcat values
are lower than 2000. All known parameters in BRENDA are
greater than or equal to zero. For the alternative exp(−KI[I])
inhibition formalism for the GMAK model we set the search
space for KI ∈ [0, 8]. The focus here was to restrict the
search space.

Previous Monte Carlo searches showed that initialization
plays an important role due to the high nonlinearity of all
considered models. Parameter values choosen completely
by chance often lead to instable systems. Hence, all pa-
rameters were initialized with low values, assuming that
large parameter values are rather infrequent in nature. This
assumtion is also supported by the entries of the BRENDA
database, showing that 64.807 % of the known parameters
are lower than or equal to 2. A Gaussian distribution with
μ = σ = 1 guarantees low initial values and ensures stable
initial populations. Each parameter was set to the boundary
values if it broke any of the restrictions of the search space.

D. Standard Settings for the Optimization Algorithms

Following the framework of Spieth et al. [7], [12], we
applied six optimization algorithms, implemented in the
JAVAEVA framework1 [13] to the inference problem.

• (multi start) Hill Climber (HC): we varied the number
of multi starts from 1, 10, 25, 50, 100 to 250. All used
mutation with a fixed step size σ = 0.2 and a mutation
probability pm = 1.0.

1http://www-ra.informatik.uni-tuebingen.de/software/JavaEvA
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• Binary Genetic Algorithm (binGA): we utilized one-
point mutation, pm = 0.1, and one-point crossover,
pc = 0.7.

• Real valued Genetic Algorithm (realGA): was employed
with global mutation, pm = 0.1 and UNDX crossover,
pc = 0.8. Both GAs used tournament selection with a
group size of 8 in a population of 250 individals.

• Standard Evolution Strategy (stdES): (μ = 5, λ = 25)-
ES used global mutation, pm = 0.8 and discrete one-
point crossover, pc = 0.2.

• Evolution Strategy with covariance matrix adaption
(cmaES): (5, 25)-ES, the mutation rate was set to pm =
1.0 without crossover. Both ESs applied best selection
to choose the next generation.

• Simulated Annealing (SA): We employed the SA with
α = 0.1 and an initial temperature T = 5 using a
linear annealing schedule and a population size of 250
individuals.

For all algorithms with population sizes lower than 250
individuals, a pre-population with 250 parameter vectors
was generated and the best were selected to generate the
initial population. This step is crucial to obtain comparable
results for algorithms with different population sizes [7].
Each experiment was repeated 20 times to obtain statistically
significant results with 100,000 fitness evaluations.

E. Optimized Settings for the Evolutionary Algorithms

To study the influence of different mutation and crossover
operators on the ES and the binGA on the rev. GMAK model
system, a grid search was performed with 100,000 fitness
evaluations and 20 multi starts.

For the ES the values for pm and pc were set to 0.8 and
0.2, respectively. To study the impact of mutation alone, pm

was set to one and pc to zero. To investigate the influence of
crossover without mutation the mutation probability was set
to one. In the grid search, the operators correlated mutation
(main vector adaption), covariance matrix adaption, local and
global mutation as well as the 1/5 success rule for mutation
paired with one- and n-point as well as UNDX crossover
were systematically benchmarked.

We also performed a grid search on the following mu-
tation operators, using pm = 0.1 and pc = 0.7 evaluating
adaptive and one-point mutation paired with bit-simulated,
one- and n-point (n = 3) as well as uniform crossover.
Likewise, to study the influence of crossover and mutation
operators alone for the binGA the mutation and crossover
probabilities were either set to one or zero depending on
what influence was investigated. This setting is reasonable,
since neither adaptive mutation, which modifies individual
mutation probabilities similar to ES step-size adaption, nor
one-point mutation, which flips one randomly choosen bit,
inverts all bits of the bit string to the opposite value. The
mutation probability is rather the chance of an opperator to
be invoked. We selected adaptive muation and bit-simulated
crossover for the reversible model and evaluated all pairs of
pm and pc each varied from 0.0 through 1.0 in 0.1 steps

excluding (0, 0)T in 20 repeats. Subsequently we tested the
impact of the population size ∈ {50, 100, 250, 500, 1000}
with (pm, pc)

T = (0.2, 1)T each with 20 multi starts.

F. Hard- and Software Configuration

All experiments were run on a cluster with 16 AMD dual
Opteron CPUs with 2.4 GHz, 1 MB level 2 cache and 2 GB
RAM per node under the Sun Grid Engine and JVM 1.5.0
with Scientific Linux 4 as operating system. An experiment
with 20 runs took a computation time of approximately 1.5 h.

III. RESULTS

Fig. 3 shows the capabilities of the aforementioned op-
timization algorithms on the two optimization problems.
All optimization attempts on the irreversible alternative per-
formed significantly worse than on the reversible model.
The irreversible model was therefore discarded from further
investigations (Tab. II).
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Fig. 3. Comparison of the different optimization algorithms

The binGA finds the best parameters for both models in total, on the

reversible model even on average. The realGA performs worst whereas the

other algorithms yield moderate results in similar ranges.
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Two algorithms were selected for further analysis: the
binGA, that clearly outperformes the other procedures on
the remaining system, and the ES, whose median yields the
second best result (42.081) when invoked with covariance
matrix adaption. However, the median of the HC with 250
multi starts (42.437) is only slighly worse than that of
cmaES followed by the HC with only one start (42.497) and
SA (43.988). As the differences of the performance ratios
between the algorithms mentioned before are very small, but
the ES provides a large number of alternative settings, we
investigated if the rather bad performance of the stdES can
be improved by choosing different mutation and crossover
operators.

The realGA, which performes worst, SA and the HC, that
yield only moderate results, were therefore discarded from
being further analysed.
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Fig. 4. Dependency of the fitness on mutation and crossover operators

Both box plots depict the dependency of the fitness on different combina-

tions of mutation and crossover operators available for ES (4(a)) or binGA

(4(b)), respectively. Both plots were limited to a fitness of 60. The binGA

(4(b)) found on average better results than the ES.

The comparison of different mutation and crossover op-
erators on the selected algorithms ES and binGA (Fig. 4)
showed that the rev. GMAK model achieved significantly
better fitness values in total using ES or binGA with opti-
mized settings of the algorithms.

Fig. 4 also highlights that the binGA finds reasonable
results with lower variance no matter what combination of
mutation and crossover operators are applied. The only two
exceptions are the combinations of no mutation with one-
or n-point crossover. In case of the ES, which performs
best with local mutation and n-point crossover in total—best
result of 21.481—and with one-point crossover according
to the median (21.884), more than half of all operator
combinations give median fitness values above 30.

For that reason we also examined the influence of pm
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Fig. 5. The fitness with respect to pm and pc and the population size

A grid search using binGA of the influence of pc and pm for the rev. GMAK

model 5(a) showed the best average results for pm = 0.2 and pc = 1 using

adaptive mutation and bit-simulated crossover. This setting was employed

to study the impact of the population size 5(b).
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(a) Acetolactate (AcLac)
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(b) Dihydroxyisovalerate (DHIV)
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(c) Isopropylmalate (IPM)
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(d) 2-Ketoisocaproate (KIC)
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(e) 2-Ketoisovalerate (KIV)
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Fig. 6. The best fit of two different models

For better visual representation, splines were placed in the figure (light gray curves). These were constructed using the same settings as described in Section

II-B.3 for external metabolites and give an impression of what one would expect for a good model fit.

and pc on the rev. GMAK model for the binGA with
adaptive mutation and bit-simulated crossover (Fig. 5(a)).
The best total fitness 21.241 was found for pm = pc = 0.3.
An increasing population size improves the optimization
performance to a median of 22.916 (Fig. 5(b)).

TABLE II

BEST FITNESS VALUES AND ALGORITHMS FOR EVERY MODEL SYSTEM

For each model the minimal fitness and the corresponding standard algo-
rithm are listed. The algorithm that reached the best average fitness and the
corresponding average fitness are written in the last two columns together
with the standard deviation.

Model Minimum Algorithm Mean Std. dev. Algorithm

rev. 23.097 binGA 26.106 2.205 binGA

irrev. 25.891 binGA 50.093 4.669 HC MS 25

The resulting model systems for the parameter values
yielding the lowest fitness values are plotted in Fig. 6. For
a better visualization we added splines to the figures to
indicate a plausible fit (RSE of the splines: 19.670). The
irreversible system is unable to follow the dynamic behavior
of the measurements for KIV, DHIV, Leu and Val. Instead it
results in straight lines, best fitness found: 25.981 (Tab. II).

The rev. GMAK model (fitness 21.241) fits the data best.
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Fig. 6. The best fit of the different models

IV. CONCLUSIONS

We performed a systematical benchmark of six optimiza-
tion procedures with their specific settings on the problem
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of network inference with two model alternatives for the
Val and Leu biosynthesis in C. glutamicum. We highlighted
the advantages and drawbacks of every model system and
every optimization algorithm. None of the models was able
to reproduce the time series of Val and DHIV with high
accuracy. Certainly, biological data always show a more or
less wide range of measurement noise. Thus, it cannot be
expected that any deterministic model will explain every data
point exactly. Instead a model should provide a basis for a
predictive description of the dynamic network behavior.

Spline curves were fitted individually to each time series,
so they are uncoupled and do not underly any biological
model system. However, they indicate how we would expect
an ideal model to fit the data. Compared to splines, which
show an RSE of 19.670, the best model, the reversible
generalized mass-action model with inhibition (9), yielded a
fitness of 21.241 only slightly higher than that of the splines.

The advantage of the derived inhibition formalism (9) for
the rev. GMAK is that the model requires only 24 model
parameters, a small number compared to other approaches
that we will investigate in subsequent publications, but we
neglect the fact that the reactions are catalyzed by enzymes.

We also recognized that the second model based on the
assumption of irreversible reactions—except R2 and R9—
does not lead to a good model fit. The best fitness of this
model was found with an error of 25.981, a significantly
worse fitness than the best we found. This model includes
only 18 parameters, but is unable to reproduce the dynamics
of the system. Instead it mostly results in straight lines
(Fig. 6), which are a local optimum as well but biologically
implausible. If we trust the information stored in KEGG, this
behavior suggests other reactions not included in our model
system which interact with the metabolites on the pathway.

We identified the optimization procedures that provided
the best results for the studied optimzation problems:

1) The binary Genetic Algorithm with adaptive mutation
pm = 0.2 and bit-simulated crossover pc = 1 and a
population size of 1,000 individuals.

2) The Evolution Strategy with local mutation pm = 0.8
and one-point crossover pc = 0.2 and a population size
of (μ = 5, λ = 25).

The choice of the right model system and optimization
procedure with appropriate settings is a crucial step for model
identification and parameter fitting, which is also confirmed
by Spieth et al. [7], [12], who investigated the applicability
of EAs on artificial biological networks. In their study, the
realGA with UNDX crossover performed better than the
binGA, which is not the case for this metabolic model
based on another formalism and in vivo data. On artificial
networks the cmaES achieved the best results followed by
Differential Evolution, which was not considered in this
study. Here, the optimized ES performed finally better than
the optimized binGA according to the median—difference of
1.032, and found similar good single results with a difference
of only 0.24. The binGA finds regions of good local optima
with almost all settings and also the best total result after

fine tuning. Due to the manifold settings the ES is harder
manageable even though it performs as good with optimized
adjustments. These results may also highlight the differences
between in silico and in vivo data.

For our future work this study provides a valuable basis to
further extend this model system and to apply optimization
algorithms to similar problems with appropriate settings.
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