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Abstract. In appearance-based localization, the robot environment is implicitly
represented as a database of features derived from a set of images collected at
known positions in a training phase. For localization the features of the image, ob-
served by the robot, are compared with the features stored in the database. In this
paper we propose the application of the integral invariants to the robot localization
problem on a local basis. First, our approach detects a set of interest points in the
image using a Difference of Gaussian (DoG)-based interest point detector. Then, it
finds a set of local features based on the integral invariants around each of the in-
terest points. These features are invariant to similarity transformation (translation,
rotation, and scale). Our approach proves to lead to significant localization rates
and outperforms a previous work.

Keywords. Appearance-based robot localization, integral invariants, (DoG)-based
interest point detector.

1. Introduction

Vision-based robot localization demands image features with many properties. On one
hand the features should exhibit invariance to scale and rotation as well as robustness
against noise and changes in illumination. On the other hand they should be extracted
very quickly so as not to hinder other tasks that the robot plans to perform. Both global
and local features are used to solve the robot localization problem. Global features are
extracted from the image as a whole, such as histograms [18], Principal Component
Analysis (PCA)-based features [3], and integral invariants [17]. On the other hand, lo-
cal features are computed from areas of high relevance in the image under consideration
such as Scale Invariant Feature Transform (SIFT) [6], kernel PCA-based features [16],
and wavelet-based features [15]. Local features are more commonly employed because
they can be computed efficiently, are resistant to partial occlusion, and are relatively in-
sensitive to changes in viewpoint. There are two considerations when using local features
[5]: First, the interest points should be localized in position and scale. Interest points are
positioned at local peaks in a scale-space search, and filtered to preserve only those that
are likely to remain stable over transformations. Second, a signature of the interest point
is built. This signature should be distinctive and invariant over transformations caused
by changes in camera pose as well as illumination changes. While point localization and
signature aspects of interest point algorithms are often designed together, they can be
considered independently [7].



In this paper we propose the application of the integral invariants to the robot local-
ization problem on a local basis. First, our approach detects a set of interest points in
the image based on a Difference of Gaussian (DoG)-based interest point detector devel-
oped by Lowe [6]. Then, it finds a set of descriptive features based on the integral invari-
ants around each of the interest points. These features are invariant to similarity trans-
formation (translation, rotation, and scale). Our approach proves to lead to significant
localization rates and outperforms a previous work that is described in Section 4.

2. Integral Invariants

Following is a brief description of the calculation of the rotation- and translation-
invariant features based on integration. The idea of constructing invariant features is to
apply a nonlinear kernel functionf (I) to a gray-valued image,I , and to integrate the
result over all possible rotations and translations (Haar integral over the Euclidean mo-
tion):
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whereT[ f ](I) is the invariant feature of the image,M,N are the dimensions of the
image, andg is an element in the transformation groupG (which consists here of ro-
tations and translations). Bilinear interpolation is applied when the samples do not fall
onto the image grid. The above equation suggests that invariant features are computed
by applying a nonlinear function,f , on the neighborhood of each pixel in the image,
then summing up all the results to get a single value representing the invariant feature.
Using several different functions finally builds up a feature space. To preserve more local
information we remove the summation over all translations. This results in a mapT that
has the same dimensions ofI :

(T [ f ] I)(n0,n1) =
1
P

P−1

∑
p=0

f

(
g

(
n0,n1, p

2π
P

)
I
)

(2)

Applying a set of different f ’s will result in a set of maps. A global multi-
dimensional feature histogram is then constructed from the elements of these maps. The
choice of the non-linear kernel functionf can vary. For example, invariant features can
be computed by applying the monomial kernel, which has the form:
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One disadvantage of this type of kernels is that it is sensitive to illumination changes.
The work in [10] defines another kind of kernels that are robust to illumination changes.
These kernels are called relational kernel functions and have the form:

f (I) = rel (I (x1,y1)− I (x2,y2)) (4)

with the ramp function



Figure 1. Calculation off = rel (I(0,3)− I(4,0)), by applying Equation 2, involves applying the functionrel
to the difference between the grey scale value of the pixels that lie on the circumference of circle of radius3
and pixels that lie on the circumference of another circle of radius4 (taking into consideration a phase shift of
π
2 between the corresponding points) and taking the average of the result [17].

rel (γ) =





1 if γ <−ε
ε−γ
2ε if − ε ≤ γ ≤ ε

0 if ε < γ
(5)

centered at the origin and0 < ε < 1 is chosen by experiment. Global integral invari-
ants have been successfully used for many applications such as content-based image re-
trieval [12], texture-classification [9], object recognition [8], and robot localization [17].
Figure 1 illustrates how these features are calculated. Please refer to [12] for detailed
theory.

3. DoG-based Point Detector

The interest points, which are used in our work, were first proposed as a part of the Scale
Invariant Feature Transform (SIFT) developed by Lowe [6]. These features have been
widely used in the robot localization field [11] [14]. The advantage of this detector is its
stability under similarity transformations, illumination changes and presence of noise.

The interest points are found as scale-space extrema located in the Difference of
Gaussians (DoG) function,D(x,y,σ), which can be computed from the difference of two
nearby scaled images separated by a multiplicative factor k:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I (x,y)

= L(x,y,kσ)−L(x,y,σ) (6)

whereL(x,y,σ) defines the scale space of an image, built by convolving the image
I(x,y) with the Gaussian kernelG(x,y,σ). Points in the DoG function, which are lo-
cal extrema in their own scale and one scale above and below are extracted as interest
points. The interest points are then filtered for more stable matches, and more accurately
localized to scale and subpixel image location using methods described in [2].



4. Using Global Integral Invariants For Robot Localization

In [17], integral invariants are used to extract global features for solving the robot local-
ization problem by applying Equation 2 to each pixel(n0,n1) in the imageI . The calcu-
lation of the matrixT involves finding an invariant value around each pixel in the image
which is time consuming. Instead of this, Monte-Carlo approximation is used to estimate
the overall calculation [13]. This approximation involves applying the nonlinear kernel
functions to a set of randomly chosen locations and directions rather than to all locations
and directions.

Global features achieve robustness mainly because of their histogram nature. On the
other hand, local features, extracted from areas of high relevance in the image under
consideration, are more robust in situations where the objects in images are scaled or
presented in different views [4]. Such situations are often encountered by the robot dur-
ing its navigation. In the next sections we modify the global approach by applying the
integral invariants locally around a set of interest points.

5. Extracting Local Integral Invariants

Unlike the existing approach, explained in Section 2, the features that we propose are not
globally extracted; they are extracted only around a set of interest points. Our approach
can be described in the following steps:

1. Interest point detection:
The first stage is to apply the DoG-based detector to the image in order to iden-
tify potential interest points. The location and scale of each candidate point are
determined and the interest points are selected based on measures of stability
described in [6].

2. Invariant features initial construction: For each interest point located at
(n0,n1) we determine the set of all points which lie on the circumference of a cir-
cle of radiusr1. We use bilinear interpolation for sub-pixel calculation. Another
set of points that lie on a circumference of a circle of radiusr2 are determined in
the same manner. Both circles have their origin at(n0,n1). To make the features
invariant to scale changes, the radii are adapted linearly to the local scale of each
interest point. This way the patch that is used for feature extraction always covers
the same details of the image independent of the scale.

3. Nonlinear kernel application: A non-linear kernel function is applied to the val-
ues of the points of the two circles. Each point located at(x0,y0) on the circum-
ference of the first circle is tackled with another point located at(x1,y1) on the
circumference of the second circle, taking into consideration a phase shiftθ be-
tween the corresponding points. This step is repeated together with step 2 for a
set ofV kernel functionsfi , i = 1,2, · · · ,V. The kernels differ from each other by
changingr1, r2 andθ . Finally we apply Equation 7 for each interest point located
at (n0,n1).

Fi(n0,n1) =
1
P

P−1

∑
p=0

fi

(
g

(
n0,n1, p

2π
P

)
I
)

, i = 1,2, · · · ,V. (7)

We end up with aV-dimensional feature vector,F , for each single interest point.



(a) Step (1) (b) Step (2) (c) Step (3) (d) Step (4)

(e) Step (5) (f) Step (6) (g) Step (7) (h) Step (8)

Figure 2. Eight different image samples that belong to the same reference location.

6. Experimental Results

In this section we present the experimental results of our local integral invariants com-
pared with the global integral invariants reviewed in Section 4.

6.1. Setting up the Database

To simulate the robot localization we use a set of264gray scale images taken at33 dif-
ferent reference locations. Each has a resolution of320×240. In each reference location
we apply the following scenario capturing an image after each step: (1) The robot stops.
(2) It translates 50 cm to the right. (3) The pan-tilt unit rotates 20 degrees to the left. (4)
The robot moves 50 cm ahead. (5) The pan-tilt unit rotates 40 degrees to the right. (6)
The pan-tilt unit rotates 20 degrees to the left. (7) The pan-tilt unit moves five degrees
up. (8) The pan-tilt unit moves 10 degrees down. Figure 2 includes eight sample images
of one reference location.

The database is divided into two equal parts. 132 images are selected for training
and 132 for testing. This partitioning is repeated50 times with different combinations
for training and testing images. The average localization rate is computed for each com-
bination. We assume that optimal localization results are obtained when each input im-
age from one of the reference locations matches another image that belongs the same
reference location.

6.2. Global Integral Invariants

In order to compare our work with the work of [17] which involves calculating the global
features, a set of40× 103 random samples is used for the Monte-Carlo approxima-
tion, which is also suggested in [13] for best performance. For each sample we apply
a set of three different kernels. Both monomial and texture kernel functions are inves-
tigated for best localization accuracy using the above images. For each image a single



D-dimensional histogram is build withD = 3. Each dimension contains8 bins which
has experimentally led to best results. The histograms are compared using thel2−Norm
measure.

6.3. Local Integral Invariants

We use the following parameters when implementing our descriptive features: For each
interest point we setV = 12which gives us a 12-dimensional feature vector that is gener-
ated using a set of either relational kernel functions or monomial kernel functions. Best
results were obtained withε = 0.098in Equation 5.

When evaluating the localization approach we first compare each individual feature
vector from the image in the query with all the other feature vectors, extracted from
the training set of images, using thel2−Normmeasure. Correspondences between the
feature vectors are found based on the method described in [1] which leads to robust
matching. Then we apply a voting mechanism to find the corresponding image to the one
in query. The voting is basically performed by finding the image that has the maximum
number of matches. Figure 3 gives an example of the correspondences found between
two different images using the proposed approach.

Figure 3. Matching two different images using the proposed approach.

6.4. Results

Figure 4 demonstrates the localization rate of the proposed approach and the existing one.
It can be seen that the local integral invariants-based approach performers better than the
global integral invariants-based approach using any of the two kernel types but gives best
results using the relational kernel function. The global integral invariants-based approach
has better results when using the monomial kernel function. One way to test if the results
of the proposed approach are statisticallysignificantor not, is to calculate the confidence
interval for each experiment, and to check if the confidence interval of the mean values of
the proposed approach does not overlap the confidence interval of the mean values of the
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Figure 4. The localization rate of the local integral invariants-based approach using relational kernel func-
tions (LR) and monomial kernel functions (LM), compared with the existing global integral invariants-based
approach using relational kernel functions (GR) and monomial kernel functions (GM).

existing approach. The 95%-confidence interval test is used here, which means that the
real mean value of each experiment lies in this interval with the propability of 95%. On
the top of each bar in Figure 4, the following information are represented from outside
to inside: The maximum and minimum values of the data, the standard deviation and the
95%−confidence interval. The confidence interval in the bar (LR) does not overlap any
confidence interval of the other bars. This means that the results of this local integral
invariants-based approach are significantly better than the other results.

The average localization time of the global approach and the local approach are 0.42
and 0.86 seconds respectively using a 3GHz Pentium 4. The additional computation time
in the case of the local approach is due to the additional complexity in the feature extrac-
tion stages and the computation overhead during the comparison of the local features.

7. Conclusion

In this paper we have proposed an appearance-based robot localization approach based
on local integral invariants. The local features have a compact size but are capable of
matching images with high accuracy. In comparison with using global features, the local
features show better localization results with a moderate computational overhead. Using
local integral invariants with relational kernel functions leads to significant localization
rate than the monomial kernel functions.
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