
IMPROVED PATH PLANNING IN HIGHLY DYNAMIC ENVIRONMENTS
BASED ON TIME VARIANT POTENTIAL FIELDS

Patrick Heinemann

University of Tübingen, WSI-RA
Germany

Hannes Becker
University of Tübingen, WSI-RA

Germany

Andreas Zell
University of Tübingen, WSI-RA

Germany

Speaker: Patrick Heinemann, University of Tübingen, WSI-RA, Sand 1, 72076 Tübingen, 07071 / 29 - 78989,
patrick.heinemann@uni-tuebingen.de

Topic: Mobile robot navigation
Keywords: potential field, path planning, obstacle avoidance

Introduction
Planning collision-free paths is one of the basic skills for a mobile robot performing a goal-oriented task. Especially in
highly dynamic environments such as robot soccer there is a need for smooth navigation avoiding the cooperating and
competing players. Today, robots in RoboCup [5] are moving at speeds of up to 3 m/s. Navigation thus requires real time
path planning considering the movement of the obstacles. Although there are publications on path planning in the robot
soccer domain (e.g. [1],[3],[7]), the presented approaches do not incorporate the speed of the obstacles into the planned
paths. The majority of the teams in the RoboCup middle size league competition of 2005 are actually completely unaware
of the speed of the other robots [6]. To the best knowledge of the authors no team uses information on moving obstacles in
their path planning algorithms.
This paper presents a new method of path planning for the RoboCup domain that extends the approach introduced by
Weigel et al. [7] to time variant potential fields that consider the movement of the obstacles over time. Using this method
results in smoother paths and less collisions for several scenarios, that frequently occur in RoboCup. The remainder of the
paper explains the method in detail and presents first results.

The Path Planning Algorithm
As our method is an improvement of the path planner of Weigel et al. [7], a brief overview of this planner is given first.
The approach of Weigel et al. is one of the most efficient approaches for path planning in the RoboCup domain. It uses a
combination of a potential field and grid-based path planning to plan out of local minima.

Potential Field
The idea of using a potential field for mobile robot movement was first presented by Khatib [4]. The robot is exposed to an
attractive potential towards the target and repulsive potentials away from obstacles and moves according to an artificial
force computed as the negative gradient of this potential field. The path the robot follows in such a potential field is
comparable to the path an electric particle would follow in a potential field produced by other attractive or repulsive
electric charges. The robot is always heading towards the next position with lower potential, thus automatically avoiding
the high potential of the obstacles.
The potential field at position ()21, xxx = is composed of an attractive potential well)(xpatt at the target

()21, ggg = and repulsive potential barriers)(, xp irep at the position of obstacles),(,2,1 iii ooo = and the

walls),0(,2 jj ww = for walls in x-direction,)0,(,1 jj ww = for walls in y-direction. The attractive potential is modelled
as a conic potential well

)()(xdxp attattatt ρ=

with)()(gxxdatt −= that results in a movement towards the target at constant velocity, as the artificial force

)(
)(

)()(xd
xd

xpxf att
att

att
attatt

ρ
−=−∇=

linearly decreases towards the goal. The repulsive potentials are modelled as potential barriers with a potential inversely
proportional to the squared distance to the obstacle or wall

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Μ≥

>>Μ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Μ
−

≥

=

22
,

22
,

2
22

,

2
,

2

,

)(0

)(1

)(

1

)(

)(

obsiobs

obsiobsobs
obsiobs

obsobs

iobsobsobs

iobs

xdif

xdif
xd

xdif

xp μκρ

μρ

for the obstacles, with vectors)()(, iiobs oxxd −= . Here 22

22

obsobs

obsobs
obs μ

μ
κ

−Μ
Μ

= is a normalization factor used to make

)(, xp iobs continuous at 22
,)(obsiobs xd Μ= and 22

,)(obsiobs xd μ= . As the potential)(, xp iobs would infinitely

increase towards the obstacle, a minimum distance obsμ is introduced. For positions that are nearer to the obstacle than

this distance, the potential is at the maximum possible value for obstacles obsρ . Since RoboCup robots are limited to a
size of 50x50cm they are assumed to be round, which simplifies the computation of the potential field of obstacles. Thus,
the minimum distance is composed of the obstacle radius obsr , the robot’s radius robr and a security distance ε

εμ ++= robobsobs rr

As obstacles that are far away from the robot should not influence its path, a maximum distance obsΜ is used to cut off
the influence of the obstacles. This also reduces the amount of local minima resulting from the superposition of the fields
of many obstacles. The artificial force for the obstacles is computed as

⎪
⎪
⎩

⎪⎪
⎨

⎧

Μ>∨>

>>Μ=∇−
=

22
,

2
,

2

22
,

2
,4

,

2

,

,

)()(0

)()(
)(

2)(

obsiobsiobsobs

obsiobsobsiobs

iobs

obsobsobs
iobs

iobs

xdxdif

xdifxd
xd

xp
f

μ

μ
μκρ

r

As in robot soccer and other applications of robotics the space for driving with the robot is limited, walls and artificial
limitations of this space are modelled as potential barriers, as well. Their computation is similar to that of the obstacles

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Μ≥

>>Μ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Μ
−

≥

=

22

,

22

,
2

22

,

2

,
2

,

)(0

)(1

)(

1

)(

)(

walljwall

walljwallwall
walljwall

wallwall

jwallwallwall

jwall

xdif

xdif
xd

xdif

xp μκρ

μρ

with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
j

jwall wx
xd

,22
,

0
)(for walls in x-direction or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

0
)(,11

,
j

jwall

wx
xd for walls in y-direction. Again

22

22

wallwall

wallwall
wall μ

μ
κ

−Μ
Μ

= is a normalization factor used to make)(, xp jwall continuous at 22

,)(walljwall xd Μ= and

22

,)(walljwall xd μ= . Here, the minimum distance εμ += robwall r only consists of the robot’s radius robr and a

security distance ε . The artificial force for the walls is computed as

⎪
⎪
⎩

⎪⎪
⎨

⎧

Μ>∨>

>>Μ=∇−
=

22

,

2

,
2

22

,
2

,4

,

2

,

,

)()(0

)()(
)(

2)(

walljwalljwallwall

walljwallwalljwall

jwall

wallwallwall
jwall

jwall

xdxdif

xdifxd
xd

xp
f

μ

μ
μκρ

r

As the attractive and repulsive potentials are independent of each other, the final potential field that attracts the robot
towards the target while keeping it away from the obstacles can be computed as a superposition of the singular potential
fields

∑ ∑++=
i j

jwalliobsatt xpxpxpxP)()()()(,,

and the resulting force is given by

∑∑∑ ∑ ++=∇+∇−−∇=−∇=
j

jwall
i

iobsatt
i j

jwalliobsatt ffxfxpxpxpxPxF ,,,,)()()()()()(

Although the potential field of obstacles and walls is not continuously differentiable at the minimum and maximum
distances, this does not affect the presented approach, as in the final algorithm the gradient will be approximated.
Please note, that for the computation of the potentials only the attractive potential uses the norm of the distance vectors.
For the obstacles and walls the squared norm is used, avoiding the extraction of the root which is computationally
expensive. Especially if many obstacles and walls are present, this results in an enormous performance benefit.

Grid Step Planner
Moving the robot directly into the direction of the negative gradient)()(xPxF −∇= takes the risk of ending up in a
local minimum. A mechanism is needed to detect that the robot is trapped and to generate a reasonable movement out of
such local minima. Therefore, the state space is subdivided into an equally spaced grid with α being the size of a grid cell
and a complete set of waypoints is planned from the current position of the robot towards the target. When planning the
path, the next waypoint is the next grid cell following the direction of the gradient. The error made in choosing a discrete
grid cell in the direction of the gradient is accumulated and affects the grid cell chosen in the next step similarly to
Bresenham’s line-drawing algorithm [2]. The gradient is approximated by evaluating the potential field locally using the
difference quotient which reduces the computational costs for evalutating the whole potential field

())1,()1,(),,1(),1(
2
1),(−−+−−+= vuPvuPvuPvuPvug
α

If the next grid cell is already contained in the path, the algorithm has detected a local minimum. Then a best-first search
begins for the adjacent grid cells that ends if either a cell is found with a potential lower than the potential of the cell where
the search started, or the target cell is found.
As the set of grid cells generated as path by the grid step planning algorithm is very square-edged due to the discretization
on the grid, the vector of movement followed by the robot is calculated as average over the first m waypoints. If

nww ,,1 K denote the waypoints of the planned path and),(21 sss = denotes the current position of the robot, the robot
moves into the direction

∑
=

−=
m

i
i sw

m 1

1λ

Backwards Planning
The main advantage of the approach of Weigel et al., however, is the idea to plan the path backwards from the target to the
robot to avoid heading directly into an obstacle and then following a curve around it. If the path planning is reversed, the
robot directly enters a trajectory that leads around the obstacle. The left image in Figure 1 shows the potential field for a
typical situation. It ranges from a low potential (black) at the target located in the upper middle to a high potential at the
location of an obstacle in the middle. Furthermore, a path generated by planning from the start in the lower middle towards
the target is shown. The path directly approaches the obstacle and gets very near until it starts to surround the obstacle in a
very close curve. After passing the obstacle, the robot moves to the goal in a smooth curve (cf. left side of Figure 1).
Although our implementation of the path planning algorithm is able to constantly replan the paths in every cycle of the
robot control algorithm, the path that the robot finally takes when moving is identical to the path planned in the first cycle
as the potential field does not change.
Instead, if the path is planned backwards by changing the target and the start location and is then followed by the robot in
reverse order, the robot finally takes a smooth curve around the obstacle. In the first cycle shown on the right side of
Figure 1, the planned path seems to be identical to the path planned forwards, taking into account that the start and the
target location were exchanged. However, if the robot follows the path in reverse order from its real start location in the

Figure 1

lower middle towards the target, it directly enters a smooth curve around the obstacle. The constant replanning of the path
in each cycle changes the path to a smooth curve even behind the obstacle as the potential well follows the robot position
when moving (cf. the images for cycle 60 and cycle 120 on the right side in Figure 1).
Although this idea of Weigel et al. to plan the path backwards from the target to the goal results in very smooth and
efficient paths for slowly moving obstacles, there are many situations where the planned path is inefficient because of the
unconsidered movement of faster moving obstacles.

Time Variant Potential Field
To overcome this shortcoming of the approach of Weigel et al. the improved path planning method presented in this paper
extends the approach to cope with moving obstacles. For that, the position of the obstacles is no longer assumed to be
static for the whole planning process. Instead, whenever the next grid cell is reached in the planning process, the obstacles
are moved to a new position

))(,)(())(),(()(,2,2,1,1,2,1 iiiiiii vtovtotototo τττττ ++=++=+

with ii oo =)0(,),(,2,1 iii vvv = being the observed velocity of obstacle io at 0=t and τ being the time the robot

needs to reach the next grid cell, which only depends on the maximum speed maxv of the robot as the robot should always
move with this speed. This process results in a time variant potential field reflecting the changed obstacle situation in each
planning step. Planning in this time variant potential field avoids paths that interfere with the predicted trajectories of the
moving obstacles while a conventional path planner based on the approach of Weigel et al. fails to plan an efficient as
shown in Figure 2.
As the original method included backwards planning from the target to the starting point of the robot, the proposed
algorithm must know the time T the robot needs to reach the target a priori to predict the obstacle positions. However, T
depends on the planned path, which is unknown before the planning. To overcome this problem two proposals are made
and compared in this paper. Firstly, the Euclidian distance estimator uses the Euclidian distance from the start to the target
point to calculate an a priori estimation of the time needed to reach the target

 Cycle 1 Cycle 60 Cycle 120

The potential field for a typical situation. Lower
potentials are shown in darker color than higher
potentials. The robot is located in the lower half and
plans a path (green waypoints) towards the target in
the upper half around an obstacle in the middle.

 The same situation, but the path is planned backwards from
the target to the robot. By constantly replanning the path
after moving to the next waypoint the robot finally follows a
smooth trajectory (red points) around the stationary
obstacle.

Figure 2

max
e v

sg
T

−
=0,

ˆ

where s is the current position of the robot and g is the target position, as defined earlier. This time is an
underestimation of the time needed to follow the resulting path. Starting with this a priori estimation, an iterative process is
started to estimate T . Denoting the a priori estimation in iteration k with keT ,

ˆ and the a posteriori time as

max

kb
ke v

L
T ,

,
~ =

with kbL , being the length of the path planned backwards using keT ,
ˆ as estimation, we compute the a priori estimation for

the next iteration by
)ˆ~(ˆˆ

,,,1, kekekeke TTTT −+=+ γ
Thus, in each iteration we add a fraction of the estimation error between a priori estimation and a posteriori time to the a
priori estimation to approach the real value of T . The iterative process stops, if either the estimation error is below a
threshold

ξ≤− keke TT ,,
ˆ~

or if a maximum number of iterations maxk is reached, to stop the process in cases where the estimation oscillates.
Secondly, a different a priori estimation of the time is generated by planning the path in forward direction and calculating
the time needed to follow this path

max

f
f v

L
T =ˆ

where fL is the length of the path planned in forward direction. This estimator is called the forward planning estimator.
The subsequent iterative process is identical to that used for the Euclidian distance estimator.

Cycle 1 Cycle 60 Cycle 100 Cycle 1 Cycle 60 Cycle 100

Again, the robot is located in the lower middle and plans
a path towards the target in the upper middle. In this
scenario, a moving obstacle crosses the path from right to
left. The conventional path planner assumes the obstacle
to be static and tries to get around the left side of the
obstacle (cycle 60). As the object moves, the passage
between the obstacle and the wall gets too narrow and the
path has to be planned out of the emerging local
minimum and finally surrounds the obstacle on the right.

 The path planner using the time variant potential field
presented in this paper incorporates the velocity of the
obstacle and predicts the position over time. Thus, for the
same scenario the path is planned around the right side of
the obstacle right from the beginning, resulting in a
smooth and efficient path. While the conventional path
planner is still avoiding the obstacle in cycle 100, the
new path planner already reaches the target at the same
time.

The predicted position of the moving obstacles in each time step of the path planner extremely depends on the estimation
of T . An obstacle moving at 2m/s changes its position by up to 40cm if the time estimation varies by 0.2s. While the
algorithm might be able to plan a smooth curve behind the obstacle in one iteration, the same obstacle can force the
planning into a local minimum in the next iteration, now being predicted to a different position. Thus, small variations in
the a priori estimation T̂ can result in extreme variations of T~ . Therefore, the parameters γ and ξ have a strong
influence on the performance of the algorithm which is investigated thoroughly in the next section.

Results
In this section, first results of the new path planning algorithm based on time variant potential fields are presented. Initially
the influence of the factor γ and the threshold ξ on the number of iterations is tested. Then, the paths planned by the
method of Weigel et al. are compared to those planned with the proposed algorithm for two scenarios with moving
obstacles. Finally, the length of the paths planned by these two methods is compared for several random scenarios, as the
length of the path is a measure of the efficiency of the planned path. For all experiments the parameters given in Table 1
were used.

Parameters used for the experiments

attρ obsρ wallρ obsr robr ε objΜ wallΜ α m maxv
1·106 4·105 2·105 25cm 20cm 5cm 50cm 20cm 10cm 5 2m/s

Table 1

To investigate the influence of the factor γ and the threshold ξ on the number of iterations made in each cycle of the
planning algorithm, two different experiments were carried out for different values of γ and ξ . The first Experiment was
the simple scenario that was used to create the snapshots in Figure 2, while the second Experiment was a more complex
scenario including three moving obstacles on a field of 12x8m2 size where a path was planned over more than 12m from
the lower right corner of the field to the upper left. One of the obstacles starts on the left side of the robot and moves into
nearly the same direction crossing the diagonal at the middle of the field, thus extremely interfering with the direct path of
the robot. Another obstacle moves at a low speed from near the target point into the direction of the robot, so that the robot
has to surround the obstacle at the end of the path. The third obstacle moves in the upper half from right to left obstructing
the pathway around the second obstacle on the right side (cf. Figure 4). Four different values for the threshold ξ
controlling the difference between a priori estimation and a posteriori time were used ranging from 0.1s to 0.25s. The
maximum error in the position estimation of an obstacle for these values ranges from 0.2m to 0.5m for obstacles moving at
2m/s. However, this maximum position error affects only obstacles near the target, as the difference in the predicted time
is very low at the beginning of the path. Thus, the direction of movement averaged over the first waypoints does not
contain this maximum error, and the robot still avoids bumping into the obstacles. For each value of ξ 10 different values
of the factor γ controlling the amount of the estimation error that is added to the estimation for the next iteration were
tested ranging from 0.05 to 0.5. In addition, all runs were carried out once for the Euclidian distance estimator and for the
forward planning estimator. Finally, for these runs the maximum number of iterations was raised to 50=maxk .

Figure 3 shows the resulting mean number of iterations)(kμ over all cycles of the path planning for each parameter set
and estimator used. Several aspects of the influence of γ and ξ can be gathered from these results. Firstly, it is obvious,
that the mean number of iterations for the simple experiment is lower than the mean number of iterations for the more
complex experiment in nearly all runs, as the influence of the obstacles on the time estimation is higher for the complex
scenario. Also, as only a single obstacle is interfering with the robot in the simple experiment, the a posteriori times are a
good estimation and therefore lower values of γ result in a higher number of iterations as only a small fraction of the
estimation error is added to the a priori estimation, while raising the factor results in less iterations needed to let the
estimation error drop below the threshold ξ . For the complex scenario, the influence of the factor γ is diverse. On the
one hand, values of γ above 0.25 change the estimated time from one iteration to the next so much, that the a posteriori
time using these different a priori estimations oscillates. Using these values the maximum number of iterations was
reached more often, as the iterative process could not converge. On the other hand, values lower than 0.15 converge
reliably but too slow, again needing a higher number of iterations. The total number of iterations needed to push the
estimation error below the threshold ξ rises for lower values of the threshold. The few exceptions to this statement
concerning the complex experiment come from a different movement in the first cycles due to a higher estimation error,
resulting in a less optimal position for the later cycles. Finally, the mean number of iterations needed in each cycle of the

Figure 3

Euclidian distance estimator is higher than that of the forward planning estimator. For the computation time, however, one
has to include the forward planning step to estimate the time in the forward planning estimator. This is a complete forward
planning that is comparable to one iteration regarding the computation time.
Based on these experiments, values of 25.0=γ and 2.0=ξ were chosen for the following experiments as these values
seemed to be a good compromise for a low number of iterations in all types of scenarios, simple as well as complex.
For the chosen values, the two experiments are compared concerning the efficiency on the Pentium-M 2GHz hardware of
our middle size league RoboCup team. As computation time on our robot hardware is extremely rare, the maximum
number of iterations is limited to 5=maxk . The mean computation time per cycle)(ntμ and the length of the planned

path in cycles N is shown in Table 2. Graphical visualizations of the planned path are shown in Figure 2 for the simple
and Figure 4 for the complex experiment. Although the computation time is much higher for the more complex scenario
when using the proposed approach, it is still able to run in the 20ms global cycle of our RoboCup robots. However, the
other processes like image processing and environment modelling were not running at the same time.

s10.0=ξ s15.0=ξ

s20.0=ξ s25.0=ξ

These graphs investigate the influence of the factor γ and the threshold ξ on the number of iterations made in each
cycle of the planning algorithm. The mean number of iterations)(kμ over all cycles of the path planning for two
different Experiments is compared for different values of γ and ξ . The first Experiment is the simple scenario that was
used to create the snapshots in Figure 2, while the second Experiment is a more complex scenario including three
moving obstacles on a field of 12x8m2 size where a path is planned over more than 12m from one corner of the field to
the other.

Figure 4

Cycle 20 Cycle 105

In this experiment the robot is located in the lower right corner and plans a path towards the target in the upper left
corner. A moving obstacle starts on the left of the robot and moves into nearly the same direction crossing the diagonal
at the middle of the field. The conventional path planner (upper images) tries to get around the right side of the obstacle
until it finally has to completely surround the obstacle in cycle 105. The path planner using the time variant potential
field presented in this paper incorporates the velocity of the obstacle and plans its path to the left of the obstacle directly
from the beginning.

In order to compare the performance of the path planning algorithm based on time variant potential fields to the
conventional path planner of Weigel et al. in typical RoboCup scenarios, 100 random scenarios were created. On a field of
12x8m2 size, which is the standard field size for the middle size league in the WorldCup 2006, seven obstacles were
created at random positions with a random vector of movement. The number of obstacles was chosen to be seven, as this is
the usual number of field players in the middle size leage of the RoboCup apart from the own robot. The obstacles keep
their movement until they reach the field boundaries, where their movement is reflected back into the field. The start and
target points of the robot are chosen randomly, too, such that they do not lie inside an obstacle. Furthermore, the target is
only accepted if the Euclidian distance to the start is not less than 6m to get reasonable scenarios and not more than 8m, as
this is the maximum distance to the target used in our RoboCup software. Again, the maximum number of iterations is
limited to 5=maxk .

Simple experiment Complex experiment
 N)(ntμ N)(ntμ

Conventional path planner 52 0.64ms 140 2.61ms
Euclidian distance estimator 46 1.47ms 106 9.34ms
Forward distance estimator 46 1.43ms 107 8.70ms

Table 2

Figure 5 presents the results of the 100 runs for the conventional method and each estimator. The upper graph displays the
number of cycles N it took to follow the planned path, as this is directly linked to the efficiency of the planned path
concerning the time needed to follow the path and the length of the path. The lower graph shows the mean time per cycle

)(ntμ as a measure of the computational load needed to compute the path. For better visibility the random runs are sorted
by the number of cycles of the conventional planner. In the first 60 experiments all three path planners are comparable in
terms of the path length apart from single outliers for the forward planning estimator. Although not meaningful in its
absolute value (these experiments were run on an AMD-Opteron cluster), the mean time per cycle is higher for the
proposed path planner, as it needs more iterations per cycle to estimate the time T . But only from experiment 50 to 60,
the computation time per cycle is significantly higher. From experiment 60 on, the computation time for the proposed path
planning algorithm is extremely high compared to the conventional planner most of the time. Nevertheless, the path
planned by the proposed algorithm is extremely more efficient in nearly all experiments. The most impressive difference
appears in experiment 100, where the path planned by the conventional planner is 150% longer than the path planned by
the proposed algorithm. Although this is an exceptional result, the fact that the new path planner could reach the target 300
cycles before the conventional path planner is impressive, as this means an extra pathway of 12m or a time gap of 6s at
2m/s maximum speed. Taking all experiments into account, the mean number of cycles per experiment)(Nμ is 184.62
for the Euclidian distance estimator and 191.41 for the forward planning estimator compared to 205.72 for the
conventional planner. Thus, the average path length for the Euclidian distance estimator is only 89.74% of the path length
planned with the conventional planner and 93.04% for the forward planning estimator. On the other hand, the mean time
per cycle needed to compute the path averaged over all experiments))((ntμμ is higher for the proposed planning
algorithm by a factor of 1.77 for the Euclidian distance estimator and 2.09 for the forward planning algorithm. See Table 3
for the exact values.
Finally, the comparison between the two different time estimators contains interesting results. Although the forward
planning estimator should give a better estimation of T than the Euclidian distance estimator, the latter performs better on
the conducted experiments. Apart from the mean number of cycles, the Euclidian distance estimator is also more efficient
in planning its paths as the cycle time shows. In only 3% of the experiments the paths planned by this estimator are more
than 10 cycles longer than the paths planned by the forward planning estimator, while in 17% it has planned paths that are
more than 10 cycles shorter.

)(Nμ)(Nσ))((ntμμ))((ntμσ

Conventional path planner 205.72 58.29 2.56ms 0.95ms
Euclidian distance estimator 184.62 26.30 4.53ms 2.36ms
Forward planning estimator 191.41 35.09 5.34ms 2.80ms

Table 3

Figure 5

Conclusions
In this paper a path planning algorithm based on time variant potential fields is presented that incorporates the movement
of dynamic obstacles to plan more efficient paths. The results of this algorithm show, that the iterative path planning
process is able to improve the paths planned for many scenarios with dynamic obstacles. However, the additional
computation time needed to iteratively estimate the time T needed for the prediction of the obstacle position for the
backwards planning uses more computational resources, which might not be available, depending on the given application.
From the two presented estimators the Euclidian distance estimator outperforms the forward planning estimator both in
efficiency and in computation time of the planned paths. The reason for this might be the underestimation of T of the
Euclidian distance estimator and the used factor of 25.0=γ which is very small so that the correct estimation of T is
approached in small steps.
Future work on this topic will include a modification of the Euclidian distance estimator that uses the Euclidian Distance
as a first underestimation and then raises the a priori time estimation by ξ until the estimation error becomes negative and
then lowers the estimation by 2/ξ to return to a value below the threshold. Additionally, experiments with real robot data
will be conducted to investigate the influence of opponents reacting to the movements that result from the new path
planner. Up to now all obstacles in the experiments were moving with a constant speed. However, it is very difficult to
prepare real robot scenarios that can be repeated to compare the performance of different planning algorithms.
Nevertheless, our first results using the path planner on our RoboCup robots were promising.

The performance of the conventional path planner compared to the presented path planner based on time variant
potential fields. 100 random scenarios were created on a field of 12x8m2 size by randomly choosing the position and
velocity of 7 obstacles and start and target point of the path. The graphs show the results concerning the cycles N
needed to follow the planned path and the mean time per cycle needed to compute the path)(ntμ .

References
[1] J. Baltes and N. Hildreth: Adaptive Path Planner for Highly Dynamic Environments. In RoboCup 2000: Robot Soccer

World Cup IV, LNCS, 2019:76-85, Springer, 2001.
[2] J. Bresenham: Algorithm for computer control of a digital plotter. In IBM Systems Journal, Vol.4, No. 1, 1965.
[3] B. Damas, P. Lima, and L. Custódio: A Modified Potential Fields Method for Robot Navigation Applied to Dribbling

in Robotic Soccer. In RoboCup 2002: Robot Soccer World Cup VI, LNCS, 2752:65-77, Springer, 2003.
[4] O. Khatib: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of the International

Conference on Robotics and Automation, pp. 500-505, 1985.
[5] H. Kitano, M. Asada, Y. Kuniyoshi, et al.: RoboCup: The Robot World Cup Initiative. In AGENTS '97: Proceedings

of the first international conference on Autonomous agents, pp. 340-347, ACM Press, 1997.
[6] D. Sorrenti and H. Fujii: Summary of Team Questionnaires. Homepage of the Robocup middle-size league for 2005.

http://old.disco.unimib.it/robocup05msl.
[7] T. Weigel, A. Kleiner, F. Diesch, et al.: CS Freiburg 2001. In RoboCup 2001: Robot Soccer World Cup V, LNCS,

2377:26-38, Springer, 2002.

Authors
Patrick Heinemann received his diploma in technical computer science (2001) from the University of Kaiserslautern,
Germany. From 2001-2002 he worked as researcher for driver assisting systems for the DaimlerChrysler AG and is a PhD-
student at the W.-Schickard-Institute of Computer Science at the Eberhard-Karls-University of Tübingen since 2003. As
team leader of the Attempto Tübingen Robot Soccer Team his main research interests are cooperating mobile robots for
RoboCup, including real-time algorithms for robot vision and environment modelling.

Hannes Becker studies computer science at the University of Tübingen since 2001 and is a member of the Attempto
Tübingen Robot Soccer Team for 2 years. His main research interests are path planning and high level robot control.

Andreas H. Zell is Professor at the W.-Schickard-Institute of Computer Science at the Eberhard-Karls-University of
Tübingen and director of the Centre for Bioinformatics Tübingen (ZBIT). He received his diploma in computer science
(1987) from the University of Kaiserslautern, Germany, an M.S. in CS (1987) from Stanford University, CA, USA, and his
Ph.D. (1989) and the venia legendi (1994) from the University of Stuttgart, Germany. In 1995 he was appointed full
professor for computer architecture at the University of Tübingen, Germany, where he established the bioinformatics
curriculum and the ZBIT. From 2000-2002 he was dean of the CS department at the University of Tübingen. His research
interests include artificial neural networks, evolutionary algorithms and their applications, autonomous mobile robots
including robot vision and other sensors, bioinformatics and computational chemistry applications.

