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Introduction 
Planning collision-free paths is one of the basic skills for a mobile robot performing a goal-oriented task. Especially in 
highly dynamic environments such as robot soccer there is a need for smooth navigation avoiding the cooperating and 
competing players. Today, robots in RoboCup [5] are moving at speeds of up to 3 m/s. Navigation thus requires real time 
path planning considering the movement of the obstacles. Although there are publications on path planning in the robot 
soccer domain (e.g. [1],[3],[7]), the presented approaches do not incorporate the speed of the obstacles into the planned 
paths. The majority of the teams in the RoboCup middle size league competition of 2005 are actually completely unaware 
of the speed of the other robots [6]. To the best knowledge of the authors no team uses information on moving obstacles in 
their path planning algorithms. 
This paper presents a new method of path planning for the RoboCup domain that extends the approach introduced by 
Weigel et al. [7] to time variant potential fields that consider the movement of the obstacles over time. Using this method 
results in smoother paths and less collisions for several scenarios, that frequently occur in RoboCup. The remainder of the 
paper explains the method in detail and presents first results.  
 
The Path Planning Algorithm 
As our method is an improvement of the path planner of Weigel et al. [7], a brief overview of this planner is given first. 
The approach of Weigel et al. is one of the most efficient approaches for path planning in the RoboCup domain. It uses a 
combination of a potential field and grid-based path planning to plan out of local minima. 
 
Potential Field 
The idea of using a potential field for mobile robot movement was first presented by Khatib [4]. The robot is exposed to an 
attractive potential towards the target and repulsive potentials away from obstacles and moves according to an artificial 
force computed as the negative gradient of this potential field. The path the robot follows in such a potential field is 
comparable to the path an electric particle would follow in a potential field produced by other attractive or repulsive 
electric charges. The robot is always heading towards the next position with lower potential, thus automatically avoiding 
the high potential of the obstacles. 
The potential field at position ( )21, xxx =  is composed of an attractive potential well )(xpatt  at the target 

( )21, ggg =  and repulsive potential barriers )(, xp irep  at the position of obstacles ),( ,2,1 iii ooo =  and the 

walls ),0( ,2 jj ww =  for walls in x-direction, )0,( ,1 jj ww =  for walls in y-direction. The attractive potential is modelled 
as a conic potential well 

)()( xdxp attattatt ρ=  

with )()( gxxdatt −=  that results in a movement towards the target at constant velocity, as the artificial force 
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linearly decreases towards the goal. The repulsive potentials are modelled as potential barriers with a potential inversely 
proportional to the squared distance to the obstacle or wall 
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for the obstacles, with vectors )()(, iiobs oxxd −= . Here 22

22

obsobs

obsobs
obs μ

μ
κ

−Μ
Μ

=  is a normalization factor used to make 

)(, xp iobs  continuous at 22
, )( obsiobs xd Μ=  and 22

, )( obsiobs xd μ= . As the potential )(, xp iobs  would infinitely 

increase towards the obstacle, a minimum distance obsμ  is introduced. For positions that are nearer to the obstacle than 

this distance, the potential is at the maximum possible value for obstacles obsρ . Since RoboCup robots are limited to a 
size of 50x50cm they are assumed to be round, which simplifies the computation of the potential field of obstacles. Thus, 
the minimum distance is composed of the obstacle radius obsr , the robot’s radius robr  and a security distance ε  

εμ ++= robobsobs rr  

As obstacles that are far away from the robot should not influence its path, a maximum distance obsΜ  is used to cut off 
the influence of the obstacles. This also reduces the amount of local minima resulting from the superposition of the fields 
of many obstacles. The artificial force for the obstacles is computed as 
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As in robot soccer and other applications of robotics the space for driving with the robot is limited, walls and artificial 
limitations of this space are modelled as potential barriers, as well. Their computation is similar to that of the obstacles 
 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Μ≥

>>Μ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

Μ
−

≥

=

22

,

22

,
2

22

,

2

,
2

,

)(0

)(1

)(

1

)(

)(

walljwall

walljwallwall
walljwall

wallwall

jwallwallwall

jwall

xdif

xdif
xd

xdif

xp μκρ

μρ

 

 

with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
j

jwall wx
xd

,22
,

0
)(  for walls in x-direction or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

0
)( ,11

,
j

jwall

wx
xd  for walls in y-direction. Again 

22

22

wallwall

wallwall
wall μ

μ
κ

−Μ
Μ

=  is a normalization factor used to make )(, xp jwall  continuous at 22
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22

, )( walljwall xd μ= . Here, the minimum distance εμ += robwall r  only consists of the robot’s radius robr  and a 

security distance ε . The artificial force for the walls is computed as 
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As the attractive and repulsive potentials are independent of each other, the final potential field that attracts the robot 
towards the target while keeping it away from the obstacles can be computed as a superposition of the singular potential 
fields 

∑ ∑++=
i j

jwalliobsatt xpxpxpxP )()()()( ,,  

and the resulting force is given by 

∑∑∑ ∑ ++=∇+∇−−∇=−∇=
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jwall
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iobsatt
i j

jwalliobsatt ffxfxpxpxpxPxF ,,,, )()()()()()(  

Although the potential field of obstacles and walls is not continuously differentiable at the minimum and maximum 
distances, this does not affect the presented approach, as in the final algorithm the gradient will be approximated. 
Please note, that for the computation of the potentials only the attractive potential uses the norm of the distance vectors. 
For the obstacles and walls the squared norm is used, avoiding the extraction of the root which is computationally 
expensive. Especially if many obstacles and walls are present, this results in an enormous performance benefit. 
 
Grid Step Planner 
Moving the robot directly into the direction of the negative gradient )()( xPxF −∇=  takes the risk of ending up in a 
local minimum. A mechanism is needed to detect that the robot is trapped and to generate a reasonable movement out of 
such local minima. Therefore, the state space is subdivided into an equally spaced grid with α  being the size of a grid cell 
and a complete set of waypoints is planned from the current position of the robot towards the target. When planning the 
path, the next waypoint is the next grid cell following the direction of the gradient. The error made in choosing a discrete 
grid cell in the direction of the gradient is accumulated and affects the grid cell chosen in the next step similarly to 
Bresenham’s line-drawing algorithm [2]. The gradient is approximated by evaluating the potential field locally using the 
difference quotient which reduces the computational costs for evalutating the whole potential field 
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If the next grid cell is already contained in the path, the algorithm has detected a local minimum. Then a best-first search 
begins for the adjacent grid cells that ends if either a cell is found with a potential lower than the potential of the cell where 
the search started, or the target cell is found. 
As the set of grid cells generated as path by the grid step planning algorithm is very square-edged due to the discretization 
on the grid, the vector of movement followed by the robot is calculated as average over the first m  waypoints. If 

nww ,,1 K  denote the waypoints of the planned path and ),( 21 sss =  denotes the current position of the robot, the robot 
moves into the direction 
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Backwards Planning 
The main advantage of the approach of Weigel et al., however, is the idea to plan the path backwards from the target to the 
robot to avoid heading directly into an obstacle and then following a curve around it. If the path planning is reversed, the 
robot directly enters a trajectory that leads around the obstacle. The left image in Figure 1 shows the potential field for a 
typical situation. It ranges from a low potential (black) at the target located in the upper middle to a high potential at the 
location of an obstacle in the middle. Furthermore, a path generated by planning from the start in the lower middle towards 
the target is shown. The path directly approaches the obstacle and gets very near until it starts to surround the obstacle in a 
very close curve. After passing the obstacle, the robot moves to the goal in a smooth curve (cf. left side of Figure 1). 
Although our implementation of the path planning algorithm is able to constantly replan the paths in every cycle of the 
robot control algorithm, the path that the robot finally takes when moving is identical to the path planned in the first cycle 
as the potential field does not change. 
Instead, if the path is planned backwards by changing the target and the start location and is then followed by the robot in 
reverse order, the robot finally takes a smooth curve around the obstacle. In the first cycle shown on the right side of 
Figure 1, the planned path seems to be identical to the path planned forwards, taking into account that the start and the 
target location were exchanged. However, if the robot follows the path in reverse order from its real start location in the 



 
Figure 1 

 
lower middle towards the target, it directly enters a smooth curve around the obstacle. The constant replanning of the path 
in each cycle changes the path to a smooth curve even behind the obstacle as the potential well follows the robot position 
when moving (cf. the images for cycle 60 and cycle 120 on the right side in Figure 1). 
Although this idea of Weigel et al. to plan the path backwards from the target to the goal results in very smooth and 
efficient paths for slowly moving obstacles, there are many situations where the planned path is inefficient because of the 
unconsidered movement of faster moving obstacles. 
 
Time Variant Potential Field 
To overcome this shortcoming of the approach of Weigel et al. the improved path planning method presented in this paper 
extends the approach to cope with moving obstacles. For that, the position of the obstacles is no longer assumed to be 
static for the whole planning process. Instead, whenever the next grid cell is reached in the planning process, the obstacles 
are moved to a new position 

))(,)(())(),(()( ,2,2,1,1,2,1 iiiiiii vtovtotototo τττττ ++=++=+  

with ii oo =)0( , ),( ,2,1 iii vvv =  being the observed velocity of obstacle io  at 0=t  and τ  being the time the robot 

needs to reach the next grid cell, which only depends on the maximum speed maxv of the robot as the robot should always 
move with this speed. This process results in a time variant potential field reflecting the changed obstacle situation in each 
planning step. Planning in this time variant potential field avoids paths that interfere with the predicted trajectories of the 
moving obstacles while a conventional path planner based on the approach of Weigel et al. fails to plan an efficient as 
shown in Figure 2.  
As the original method included backwards planning from the target to the starting point of the robot, the proposed 
algorithm must know the time T  the robot needs to reach the target a priori to predict the obstacle positions. However, T  
depends on the planned path, which is unknown before the planning. To overcome this problem two proposals are made 
and compared in this paper. Firstly, the Euclidian distance estimator uses the Euclidian distance from the start to the target 
point to calculate an a priori estimation of the time needed to reach the target 

 

 

  

   
    Cycle 1 Cycle 60 Cycle 120 

The potential field for a typical situation. Lower 
potentials are shown in darker color than higher 
potentials. The robot is located in the lower half and 
plans a path (green waypoints) towards the target in 
the upper half around an obstacle in the middle. 

 The same situation, but the path is planned backwards from 
the target to the robot. By constantly replanning the path 
after moving to the next waypoint the robot finally follows a 
smooth trajectory (red points) around the stationary 
obstacle. 



 
Figure 2 

 

max
e v

sg
T

−
=0,

ˆ  

where s  is the current position of the robot and g  is the target position, as defined earlier. This time is an 
underestimation of the time needed to follow the resulting path. Starting with this a priori estimation, an iterative process is 
started to estimate T . Denoting the a priori estimation in iteration k  with keT ,

ˆ  and the a posteriori time as  

max

kb
ke v

L
T ,

,
~ =  

with kbL ,  being the length of the path planned backwards using keT ,
ˆ  as estimation, we compute the a priori estimation for 

the next iteration by 
)ˆ~(ˆˆ

,,,1, kekekeke TTTT −+=+ γ  
Thus, in each iteration we add a fraction of the estimation error between a priori estimation and a posteriori time to the a 
priori estimation to approach the real value of T . The iterative process stops, if either the estimation error is below a 
threshold 

ξ≤− keke TT ,,
ˆ~

 

or if a maximum number of iterations maxk  is reached, to stop the process in cases where the estimation oscillates. 
Secondly, a different a priori estimation of the time is generated by planning the path in forward direction and calculating 
the time needed to follow this path 

max

f
f v

L
T =ˆ  

where fL  is the length of the path planned in forward direction. This estimator is called the forward planning estimator. 
The subsequent iterative process is identical to that used for the Euclidian distance estimator. 

   

 

   
Cycle 1 Cycle 60 Cycle 100  Cycle 1 Cycle 60 Cycle 100 

Again, the robot is located in the lower middle and plans 
a path towards the target in the upper middle. In this 
scenario, a moving obstacle crosses the path from right to 
left. The conventional path planner assumes the obstacle 
to be static and tries to get around the left side of the 
obstacle (cycle 60). As the object moves, the passage 
between the obstacle and the wall gets too narrow and the 
path has to be planned out of the emerging local 
minimum and finally surrounds the obstacle on the right. 

 The path planner using the time variant potential field 
presented in this paper incorporates the velocity of the 
obstacle and predicts the position over time. Thus, for the 
same scenario the path is planned around the right side of 
the obstacle right from the beginning, resulting in a 
smooth and efficient path. While the conventional path 
planner is still avoiding the obstacle in cycle 100, the 
new path planner already reaches the target at the same 
time. 



The predicted position of the moving obstacles in each time step of the path planner extremely depends on the estimation 
of T . An obstacle moving at 2m/s changes its position by up to 40cm if the time estimation varies by 0.2s. While the 
algorithm might be able to plan a smooth curve behind the obstacle in one iteration, the same obstacle can force the 
planning into a local minimum in the next iteration, now being predicted to a different position. Thus, small variations in 
the a priori estimation T̂  can result in extreme variations of T~ . Therefore, the parameters γ  and ξ  have a strong 
influence on the performance of the algorithm which is investigated thoroughly in the next section. 
 
Results 
In this section, first results of the new path planning algorithm based on time variant potential fields are presented. Initially 
the influence of the factor γ  and the threshold ξ  on the number of iterations is tested. Then, the paths planned by the 
method of Weigel et al. are compared to those planned with the proposed algorithm for two scenarios with moving 
obstacles. Finally, the length of the paths planned by these two methods is compared for several random scenarios, as the 
length of the path is a measure of the efficiency of the planned path. For all experiments the parameters given in Table 1 
were used. 
 

Parameters used for the experiments 

attρ  obsρ  wallρ  obsr  robr  ε  objΜ  wallΜ  α  m  maxv  
1·106 4·105 2·105 25cm 20cm 5cm 50cm 20cm 10cm 5 2m/s 

Table 1 
 
To investigate the influence of the factor γ  and the threshold ξ  on the number of iterations made in each cycle of the 
planning algorithm, two different experiments were carried out for different values of γ  and ξ . The first Experiment was 
the simple scenario that was used to create the snapshots in Figure 2, while the second Experiment was a more complex 
scenario including three moving obstacles on a field of 12x8m2 size where a path was planned over more than 12m from 
the lower right corner of the field to the upper left. One of the obstacles starts on the left side of the robot and moves into 
nearly the same direction crossing the diagonal at the middle of the field, thus extremely interfering with the direct path of 
the robot. Another obstacle moves at a low speed from near the target point into the direction of the robot, so that the robot 
has to surround the obstacle at the end of the path. The third obstacle moves in the upper half from right to left obstructing 
the pathway around the second obstacle on the right side (cf. Figure 4). Four different values for the threshold ξ  
controlling the difference between a priori estimation and a posteriori time were used ranging from 0.1s to 0.25s. The 
maximum error in the position estimation of an obstacle for these values ranges from 0.2m to 0.5m for obstacles moving at 
2m/s. However, this maximum position error affects only obstacles near the target, as the difference in the predicted time 
is very low at the beginning of the path. Thus, the direction of movement averaged over the first waypoints does not 
contain this maximum error, and the robot still avoids bumping into the obstacles. For each value of ξ  10 different values 
of the factor γ  controlling the amount of the estimation error that is added to the estimation for the next iteration were 
tested ranging from 0.05 to 0.5. In addition, all runs were carried out once for the Euclidian distance estimator and for the 
forward planning estimator. Finally, for these runs the maximum number of iterations was raised to 50=maxk . 

Figure 3 shows the resulting mean number of iterations )(kμ  over all cycles of the path planning for each parameter set 
and estimator used. Several aspects of the influence of γ  and ξ  can be gathered from these results. Firstly, it is obvious, 
that the mean number of iterations for the simple experiment is lower than the mean number of iterations for the more 
complex experiment in nearly all runs, as the influence of the obstacles on the time estimation is higher for the complex 
scenario. Also, as only a single obstacle is interfering with the robot in the simple experiment, the a posteriori times are a 
good estimation and therefore lower values of γ  result in a higher number of iterations as only a small fraction of the 
estimation error is added to the a priori estimation, while raising the factor results in less iterations needed to let the 
estimation error drop below the threshold ξ . For the complex scenario, the influence of the factor γ  is diverse. On the 
one hand, values of γ  above 0.25 change the estimated time from one iteration to the next so much, that the a posteriori 
time using these different a priori estimations oscillates. Using these values the maximum number of iterations was 
reached more often, as the iterative process could not converge. On the other hand, values lower than 0.15 converge 
reliably but too slow, again needing a higher number of iterations. The total number of iterations needed to push the 
estimation error below the threshold ξ  rises for lower values of the threshold. The few exceptions to this statement 
concerning the complex experiment come from a different movement in the first cycles due to a higher estimation error, 
resulting in a less optimal position for the later cycles. Finally, the mean number of iterations needed in each cycle of the 



 
Figure 3 

 
Euclidian distance estimator is higher than that of the forward planning estimator. For the computation time, however, one 
has to include the forward planning step to estimate the time in the forward planning estimator. This is a complete forward 
planning that is comparable to one iteration regarding the computation time. 
Based on these experiments, values of 25.0=γ  and 2.0=ξ  were chosen for the following experiments as these values 
seemed to be a good compromise for a low number of iterations in all types of scenarios, simple as well as complex. 
For the chosen values, the two experiments are compared concerning the efficiency on the Pentium-M 2GHz hardware of 
our middle size league RoboCup team. As computation time on our robot hardware is extremely rare, the maximum 
number of iterations is limited to 5=maxk . The mean computation time per cycle )( ntμ  and the length of the planned 

path in cycles N  is shown in Table 2. Graphical visualizations of the planned path are shown in Figure 2 for the simple 
and Figure 4 for the complex experiment. Although the computation time is much higher for the more complex scenario 
when using the proposed approach, it is still able to run in the 20ms global cycle of our RoboCup robots. However, the 
other processes like image processing and environment modelling were not running at the same time. 

 

 

 
s10.0=ξ   s15.0=ξ  

 

 

 
s20.0=ξ   s25.0=ξ  

These graphs investigate the influence of the factor γ  and the threshold ξ  on the number of iterations made in each 
cycle of the planning algorithm. The mean number of iterations )(kμ  over all cycles of the path planning for two 
different Experiments is compared for different values of γ  and ξ . The first Experiment is the simple scenario that was 
used to create the snapshots in Figure 2, while the second Experiment is a more complex scenario including three 
moving obstacles on a field of 12x8m2 size where a path is planned over more than 12m from one corner of the field to 
the other. 



 
Figure 4 

  
  

  
Cycle 20 Cycle 105 

In this experiment the robot is located in the lower right corner and plans a path towards the target in the upper left 
corner. A moving obstacle starts on the left of the robot and moves into nearly the same direction crossing the diagonal 
at the middle of the field. The conventional path planner (upper images) tries to get around the right side of the obstacle 
until it finally has to completely surround the obstacle in cycle 105. The path planner using the time variant potential 
field presented in this paper incorporates the velocity of the obstacle and plans its path to the left of the obstacle directly 
from the beginning. 



In order to compare the performance of the path planning algorithm based on time variant potential fields to the 
conventional path planner of Weigel et al. in typical RoboCup scenarios, 100 random scenarios were created. On a field of 
12x8m2 size, which is the standard field size for the middle size league in the WorldCup 2006, seven obstacles were 
created at random positions with a random vector of movement. The number of obstacles was chosen to be seven, as this is 
the usual number of field players in the middle size leage of the RoboCup apart from the own robot. The obstacles keep 
their movement until they reach the field boundaries, where their movement is reflected back into the field. The start and 
target points of the robot are chosen randomly, too, such that they do not lie inside an obstacle. Furthermore, the target is 
only accepted if the Euclidian distance to the start is not less than 6m to get reasonable scenarios and not more than 8m, as 
this is the maximum distance to the target used in our RoboCup software. Again, the maximum number of iterations is 
limited to 5=maxk . 
 

Simple experiment Complex experiment 
 N  )( ntμ  N  )( ntμ  

Conventional path planner 52 0.64ms 140 2.61ms 
Euclidian distance estimator 46 1.47ms 106 9.34ms 
Forward distance estimator 46 1.43ms 107 8.70ms 

Table 2 
 
Figure 5 presents the results of the 100 runs for the conventional method and each estimator. The upper graph displays the 
number of cycles N  it took to follow the planned path, as this is directly linked to the efficiency of the planned path 
concerning the time needed to follow the path and the length of the path. The lower graph shows the mean time per cycle 

)( ntμ  as a measure of the computational load needed to compute the path. For better visibility the random runs are sorted 
by the number of cycles of the conventional planner. In the first 60 experiments all three path planners are comparable in 
terms of the path length apart from single outliers for the forward planning estimator. Although not meaningful in its 
absolute value (these experiments were run on an AMD-Opteron cluster), the mean time per cycle is higher for the 
proposed path planner, as it needs more iterations per cycle to estimate the time T . But only from experiment 50 to 60, 
the computation time per cycle is significantly higher. From experiment 60 on, the computation time for the proposed path 
planning algorithm is extremely high compared to the conventional planner most of the time. Nevertheless, the path 
planned by the proposed algorithm is extremely more efficient in nearly all experiments. The most impressive difference 
appears in experiment 100, where the path planned by the conventional planner is 150% longer than the path planned by 
the proposed algorithm. Although this is an exceptional result, the fact that the new path planner could reach the target 300 
cycles before the conventional path planner is impressive, as this means an extra pathway of 12m or a time gap of 6s at 
2m/s maximum speed. Taking all experiments into account, the mean number of cycles per experiment )(Nμ  is 184.62 
for the Euclidian distance estimator and 191.41 for the forward planning estimator compared to 205.72 for the 
conventional planner. Thus, the average path length for the Euclidian distance estimator is only 89.74% of the path length 
planned with the conventional planner and 93.04% for the forward planning estimator. On the other hand, the mean time 
per cycle needed to compute the path averaged over all experiments ))(( ntμμ  is higher for the proposed planning 
algorithm by a factor of 1.77 for the Euclidian distance estimator and 2.09 for the forward planning algorithm. See Table 3 
for the exact values. 
Finally, the comparison between the two different time estimators contains interesting results. Although the forward 
planning estimator should give a better estimation of T  than the Euclidian distance estimator, the latter performs better on 
the conducted experiments. Apart from the mean number of cycles, the Euclidian distance estimator is also more efficient 
in planning its paths as the cycle time shows. In only 3% of the experiments the paths planned by this estimator are more 
than 10 cycles longer than the paths planned by the forward planning estimator, while in 17% it has planned paths that are 
more than 10 cycles shorter. 
 

 )(Nμ  )(Nσ  ))(( ntμμ  ))(( ntμσ  

Conventional path planner 205.72 58.29 2.56ms 0.95ms 
Euclidian distance estimator 184.62 26.30 4.53ms 2.36ms 
Forward planning estimator 191.41 35.09 5.34ms 2.80ms 

Table 3 



Figure 5 
 
 
Conclusions 
In this paper a path planning algorithm based on time variant potential fields is presented that incorporates the movement 
of dynamic obstacles to plan more efficient paths. The results of this algorithm show, that the iterative path planning 
process is able to improve the paths planned for many scenarios with dynamic obstacles. However, the additional 
computation time needed to iteratively estimate the time T  needed for the prediction of the obstacle position for the 
backwards planning uses more computational resources, which might not be available, depending on the given application. 
From the two presented estimators the Euclidian distance estimator outperforms the forward planning estimator both in 
efficiency and in computation time of the planned paths. The reason for this might be the underestimation of T  of the 
Euclidian distance estimator and the used factor of 25.0=γ  which is very small so that the correct estimation of T  is 
approached in small steps. 
Future work on this topic will include a modification of the Euclidian distance estimator that uses the Euclidian Distance 
as a first underestimation and then raises the a priori time estimation by ξ  until the estimation error becomes negative and 
then lowers the estimation by 2/ξ  to return to a value below the threshold. Additionally, experiments with real robot data 
will be conducted to investigate the influence of opponents reacting to the movements that result from the new path 
planner. Up to now all obstacles in the experiments were moving with a constant speed. However, it is very difficult to 
prepare real robot scenarios that can be repeated to compare the performance of different planning algorithms. 
Nevertheless, our first results using the path planner on our RoboCup robots were promising. 
 
 

The performance of the conventional path planner compared to the presented path planner based on time variant 
potential fields. 100 random scenarios were created on a field of 12x8m2 size by randomly choosing the position and 
velocity of 7 obstacles and start and target point of the path. The graphs show the results concerning the cycles N
needed to follow the planned path and the mean time per cycle needed to compute the path )( ntμ . 
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