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Abstract. Many classifiers are designed with the assumption of well-
balanced datasets. But in real problems, like protein classification and
remote homology detection, when using binary classifiers like support
vector machine (SVM) and kernel methods, we are facing imbalanced
data in which we have a low number of protein sequences as positive
data (minor class) compared with negative data (major class). A widely
used solution to that issue in protein classification is using a different
error cost or decision threshold for positive and negative data to control
the sensitivity of the classifiers. Our experiments show that when the
datasets are highly imbalanced, and especially with overlapped datasets,
the efficiency and stability of that method decreases. This paper shows
that a combination of the above method and our suggested oversam-
pling method for protein sequences can increase the sensitivity and also
stability of the classifier. Our method of oversampling involves creating
synthetic protein sequences of the minor class, considering the distribu-
tion of that class and also of the major class, and it operates in data space
instead of feature space. This method is very useful in remote homology
detection, and we used real and artificial data with different distributions
and overlappings of minor and major classes to measure the efficiency of
our method. The method was evaluated by the area under the Receiver
Operating Curve (ROC).

1 Introduction

A dataset is imbalanced if the classes are not equally represented and the num-
ber of examples in one class (major class) greatly outnumbers the other class
(minor class). With imbalanced data, the classifiers tend to classify almost all
instances as negative. This problem is of great importance, since it appears
in a large number of real domains, such as fraud detection, text classification,
medical diagnosis and protein classification [1,2]. There have been two types of
solutions for copping with imbalanced datasets. The first type, as exemplified by
different forms of re-sampling techniques, tries to increase the number of minor
class examples (oversampling) or decrease the number of major class examples
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(undersampling) in different ways. The second type adjusts the cost of error or
decision thresholds in classification for imbalanced data and tries to control the
sensitivity of the classifier [3,4].

Undersampling techniques involve loss of information but decrease the time
of training. With oversampling we do not loose the information but instead it
increases the size of the training set and so the training time for classifiers. Fur-
thermore, inserting inappropriate data can lead to overfitting. Some researchers
[2] concluded that undersampling can better solve the problem of imbalanced
datasets. On the other hand, some other researchers are in favor of oversampling
techniques. Wu and Chang [5] showed that with imbalanced datasets, the SVM
classifiers learn a boundary that is too close to positive examples. Then if we
add positive instances (oversampling), they can push the boundary towards the
negative data, and we have increased the accuracy of classifier.

To decide the question of oversampling vs. undersampling, two parameters
should be taken into consideration: the imbalance ratio and the distribution of
data in imbalanced datasets. The imbalance ratio (%Zﬁg:;g;%gg:gzggig) is an
important parameter that shows the degree of imbalance. In undersampling we
should be sure of the existence of enough information in the minor class and
also of not loosing the valuable information in the major class. We found out
that the oversampling technique can balance the class distribution and improve
that situation. But the distribution of inserted positive instances is of great
importance. Chawla et al. [6] developed a method for oversampling named Syn-
thetic Minority Oversampling Technique (SMOTE). In their technique, between
each positive instance and its nearest neighbors new synthetic positive instances
were created and placed randomly between them. Their approach proved to be
successful in different datasets.

On the other hand Veropoulos et al. [4] suggested using different error costs
(DEC) for positive and negative classes. So the classifier is more sensitive to
the positive instances and gets more feedback about the orientation of the class-
separating hyperplane from positive instances than from negative instances.

In protein classification problems the efficiency of that approach (Veropoulos
et al. [4]) has been accepted. In kernel based protein classification methods [7,
8,1] a class-depending regularization parameter is added to the diagonal of the
kernel matrix. But, based on our experiments, if the dataset is highly imbalanced
and has overlapping data, choosing a suitable ratio of error costs for positive
and negative examples is not always simple and sometimes the values near the
optimum value of the error cost ratio give unsatisfying results.

We propose an oversampling technique for protein sequences in which the
minority class in the data space is oversampled by creating synthetic examples.
Working with protein data in data space instead of feature space allows us to
consider the probability distribution of residues of the sequence using a HMM-
profile of the minority class and also one of the majority class and then synthesize
protein sequences which can push precisely the boundary towards the negative
examples. So we increase the information of the minor class. Our method of
oversampling can cause the classifier to build larger decision regions for the
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minor class without overlapping with the major class. In this work we used real
and artificial data with different degrees of overlapping and imbalance ratio to
show the efficiency of our methods and we also suggest that our algorithm can
be used along with DEC methods to increase the sensitivity and stability of the
classifier. As SVM classifiers and kernel methods outperformed other methods
in protein classification [7,1,8], we discuss the efficiency of our oversampling
technique when used with kernel-based classifiers.

2 Algorithm

Given a set of positive training sequences (minor class) S; and a set of neg-
ative training sequences (major class) S_ we want to create synthetic protein
sequences Ssynthetic a5 mutated replicas of each sequence of the minor class,
provided that those synthetic sequences are created by an HMM profile (Hid-
den Markov Model profile) of the minor class and are phylogenetically related
to that class and far away from the major class. For this, at first we build a
multiple alignment of the sequences of the minor class using ClustalW [9] and
then we train a hidden Markov model profile with length of the created multiple
alignment sequences for each class (positive data and every family belonging to
the negative data).

Algorithm SPSO(S4,5_ )

Input : 54, set of sequences of minority class; S_, set of sequences of majority
class
Output: Ssyntnetic, set of synthetic protein sequences from the minority class

1 Create HMM profile of set Sy, call it HM Mp ;
Create array of HMM profiles consisting of all families belonging to S_, call it
HMMp-_|J;

N

3 Choose an arbitrary number as number of start points for mutation, call it N,;
4 for i« 1 to |S4| do
5 s =841 ;
6 repeat
7 Create an array of sorted non-repeating random numbers with size of
N, as array of start points for mutation, call it P, ;
Ssynthetic[]=newSeq (s,HM Mp,,Py,);
9 P+ = Pe(Ssyntheticli], HMMpy) ;
10 p-[l = Pe(Ssyntnetic[i], HMMp_[]) ;
11 until p;y < minp_{] ;
12 end

13 return Ssynthetic

For every sequence in the minor class we create another mutated sequence
synthetically. For that, we consider an arbitrary N,, as number of start points
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Function newSeq(s,HM Mp. ,P,,)
Input : s, original sequence; HM Mpy, HMM profile of set S+ to which s
belongs; P,,, array of start points for mutation
Output: ssynthetic, synthetic sequence from s

Ssynthetic = S ;
for i — 1 to |Pp| do
p = Ppli] ; (* assume that HM Mp4 in position p has emitted s[p] *)
repeat
Ssynthetic|p + 1]= emitted residue in position p+ 1 by HM Mpy ;
p=p+1;
until (newres # s[p]) && (p < |[HMMp4|) ;
end
return Ssynthetic
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for mutation in that sequence. We suppose the HM Mp ( hidden Markov model
profile of positive instances) has emitted another sequence identical to the main
sequence until the first point of mutation. From that point afterward we assume
that HM Mp, emits new residues until the emitted residue is equal to a residue
in the same position in the main sequence. From this residue, all residues are
the same as residues in the original sequence until the next point of mutation
(Fig. 1).

In this way, if the point of mutation belongs to a low entropy area of the
HMM profile the emitted residue will be very similar to the main sequence (will
have few mutations). We expect the emmitance probability of the synthesized
sequence with HM Mp. to be higher than with HM Mp_, if not (very rarely),
we synthesize another one or we decrease the value of N,,. The N, parameter
can adjust the radius of the neighborhood of the original sequences and the
synthesized sequences. With larger values of N,,, the algorithm creates sequences
that are phylogenetically farer away from main sequences and vice versa. We used
another routine to find a suitable value of IV,,,. At first, in the minor class, we find
the protein sequence which has the highest emission probability with the HMM
profile of the minor class and consider it as root node. Then, we suppose the
root node has been mutated to synthesize all other sequences in the minor class
through the newSequence procedure of our algorithm. It means each sequence
is a mutated replica of the root node sequence which is emitted by the HMM
profile of the minor class. We gain the value of N,, for each sequence. Then, we
get the average of all those values as N, entry for the SPSO algorithm.

With each call of the SPSO algorithm, we double the minor class. As an ex-
ample of random synthesizing of sequences, Fig. 1(upper) shows the phylogenetic
tree of the original sequences and the synthesized sequences for the vasoactive
intestinal polypeptide family of class B (9 out of 18 sequences were randomly
selected). It is shown that the synthesized sequences of most original sequences
have less distance to them than to other sequences. In that figure (lower) we see



SPSO: Synthetic Protein Sequence Oversampling 5

r : - Synthetic4
r S4 Q6ZN22 HUMAN|002
Synthetic1
r - Synthetic2
$2 Q6PRD3 CAVPO|002
$1 Q6PRD2 CAVPO|002
r e - Synthetic3
$3 VIPR2 MOUSE|002 0C
Synthetic9
- S9 QB64FL3 ONCMY|002
- Synthetic8
- S8 VIPR MELGA|002 009
- Syntheticé

J—

| S

————d

T =

]

= - Synthetics

r H:g - $6 Q6P2M6 HUMAN|002
e - $5 VIPR1 HUMAN]|002 00

-+

|

- Synthetic?
S7 VIPR1 RAT|002 009

Loy entropy Lres

fera R e S B o S S e Y e S R SR SR
]
[
[

e el el e e W Sl

b, 51 DHIVKHKGNLSKTCTSE GWTEVHPLD TALHCGYNAHNTGDDE- - -~ HEFHQVKIGYTVGHS ISLISLI TSIVILSIFRK
syntheticl DHIVLGAHNLSKTCTSDRWCEVHPLD IALCL—-HAHNTGDDG- - -HEFWQVKIGYTVGHSISLISLIKCDTILSIFRK
& Pm ———-M--M-———-M- MM ————— M= ——mm—m—mm e M- ———-] M-——-M-——————————

synthetic? DHIVKHKGHLSRTCASHHWTEVVVKE TMSADTVL ATGTSLDG- ——-HFF AHLATGYTVMMSISLMSLI TSTVILSIFRK
d. Pm Mo MMM MM ——— MM ———————— ] MM M- ——— —————-] MM - ————M-M—— MM MMM ———

Fig. 1. The phylogenetic tree of the original and the synthesized sequences from the
”vasoactive intestinal polypeptide” family of GPCRs (upper) and an example of the
SPSO algorithm for sequences from the above family (lower). a. Multiple sequence
alignment and low entropy area of that family b. A part of sequence sl. c. Synthetic
sequence of s1 with N,,=50 . d. Synthetic sequence of s1 with N,,=100.
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two synthetic sequences of sl with different values of N,,. In the low entropy
area of the HMM profile of that family we have less mutations.

3 Datasets

To evaluate the performance of our algorithm, we ran our experiments on a
series of both real and artificial datasets, whose specification covers different
complexity and allows us to fully interpret the results. We want to check its
efficiency with different ratio of imbalance and complexity. Fig. 2 shows the
pictorial representation of our datasets. In the first one, the distribution of the
positive and negative data are completely different and they are separate from
each other. With that distribution, we want to see, how the imbalance ratio
affects the performance of the classifier by itself. The second one shows datasets
in which positive data are closer to negative data and there is an overlap between
the minor and major classes. With this distribution, we can consider both the
ratio of imbalance and overlap of the datasets in our study. The third one is a
case where the minor class completely overlaps with the major class and we have
fully overlapping data.

We used the G-protein coupled receptors (GPCRs) family as real data and
then created artificial data based on it. G-protein coupled receptors (GPCRs) are
a large superfamily of integral membrane proteins that transduce signals across
the cell membrane [10]. According to the binding of GPCRs to different ligand
types they are classified into different families. Based on GPCRDB (G protein
coupled receptor database) [11] all GPCRs have been divided into a hierarchy
of ‘class’, ‘subfamily’, ‘sub-sub-family’ and ‘type’. The dataset of this study was
collected from GPCRDB and we used the latest dataset (June 2005 release,
http://www.gpcr.org/7tm/). The six main families are: Class A (Rhodopsin
like), Class B (Secretin like), Class C (Metabotropic glutamate/pheromone),
Class D (Fungal pheromone), Class E (cAMP receptors) and Frizzled /Smoothened
family. The sequences of proteins in GPCRDB were taken from SWISS-PROT
and TrEMBL [12]. All six families of GPCRs (5300 protein sequences) are clas-
sified in 43 subfamilies and 99 sub-subfamilies.

If we want to classify GPCRs at the sub-subfamily level, mostly we have only
a very low number of protein sequences as positive data (minor class) compared
with others (major class). We chose different protein families from that level to
cover all states of complexity and imbalance ratio discussed above (Fig. 2). In
some experiments we made artificial data using those families and synthesized
sequences from them (discussed later). We used numbers to show the level of
family, subfamily and sub-subfamily. For example 001-001-002 means the sub-
subfamily Adrenoceptors that belongs to subfamily of Amine (001-001) and class
A (001).
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Fig. 2. Pictorial representation of the minor (shaded circle) and major classes of our
datasets.

4 Experiments

We selected the peptide subfamily (001-002) of Class A (Rhodopsin-like) to clas-
sify its 32 families (or sub-subfamily level of class A). We built HMM profiles
of all families and measured the probability of emission of sequences belonging
to each one by all HMM profiles. We saw that the emission probability of each
sequence generated by the HMM profile of its own family is higher than that of
almost all other families. So we can conclude that the distribution of the peptide
subfamily in a suitable feature map can be considered as in Fig. 2.a. In this
study, we used the local alignment kernel (LA kernel) [13] to generate vectors
from protein sequences. It has been shown that the local alignment kernel has
better performance than other previously suggested kernels for remote homology
detection when applied to the standard SCOP test set [8]. It represents a modi-
fication of the Smith-Waterman score to incorporate sub-optimal alignments by
computing the sum (instead of the maximum) over all possible alignments. We
build a kernel matrix K for the training data. Each cell of the matrix is a local
alignment kernel score between protein ¢ and protein j. Then we normalize the
kernel matrix via K;; <« K;;/\/K;;K;;. Each family is considered as positive
training data and all others as negative training data. After that the SVM al-
gorithm with RBF kernel is used for training. For testing, we created feature
vectors by calculating a local alignment kernel between the test sequence and
all training data. The number of sequences in the peptide subfamily is in the
range of 4 to 251 belonging to (001-002-024) and (001-002-008), respectively.
Thus the imbalance ratio varies from = to %. Fig. 3.a shows the result
of SPSO oversampling for classification of some of those families. We see that
this method can increase the accuracy and sensitivity of the classifier faced with
highly imbalanced data without decreasing its specificity. The minority class was
oversampled at 100%, 200%, 300%,..., 800% of its original size. We see that the
more we increase the synthetic data (oversample) the better result we get, until
we get the optimum value of 100%. It should be noted that after oversampling,
the accuracy of classifiers for the major class didn’t decrease.

We compared our method with two other methods. The first one was SMOTE
(Synthetic Minority Oversampling Techniques) [6] that operates in the feature
space rather than in data space, so it works with all kind of data. The second
comparison was done with randomly oversampling, in which we create random
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Fig. 3. a. %Minority correct for SPSO oversampling for some families of peptide sub-
family (N number of sequences). b. Comparison of several methods for oversampling.
The graph plots the total number of families for which a given method exceeds an ROC
score threshold.

sequences by the HMM profile of each family. For this, like our method, we
build a multiple alignment of the minor class sequences using ClustalW and
then train a hidden Markov model profile with length of the created multiple
alignment sequence. Then, we create random sequences by the HMM profile of
each family. In this method we don’t have enough control on the distribution of
created random sequences. We call this method rHMMp in this paper.

In our study, we used the Bioinformatics Toolbox of MATLAB to create
the HMM profiles of families and the SVMlight package [14], to perform SVM
training and classification.

We used the Receiver Operating Characteristic (ROC) graphs [15] to show
the quality of the SPSO oversampling technique. An ROC graph characterizes
the performance of a binary classifier across all possible trade-off between the
classifier sensitivity (T'Prqt.) and false positive error rates (F'Pqe) [16]. The
closer the ROC score is to 1, the better performance the classifier has. We over-
sampled each minority class with the three different methods noted above, until
we got the optimum performance for each of them. At that point, we calculated
the ROC score of all methods.

Fig. 3.b shows the quality of classifiers when using different oversampling
methods. This graph plots the total number of families for which a given method
exceeds an ROC score threshold. The curve of our method is above the curve of
other methods and shows better performance. In our method and in SMOTE,
the inserted positive examples have been created more accurately than random
oversampling (rHMMp). Our method (SPSO) outperforms the other two meth-
ods especially for families in which we have a low number of sequences, although
the quality of the SMOTE is comparable to the SPSO method.
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To study the second and third representation of the dataset shown in Fig. 2
we had to create some sequences synthetically. At first we built the HMM profile
of each family of the peptide families and then computed the probability score
of each sequence when emitted not only by the HMM profile of its own family
but also from all other families. The average of those scores for sequences of
each family when emitted by each HMM profile can be used as a criterion for
the closeness of the distribution of that family to other families and how much
it can be represented by their HMM profiles. In this way we can find the nearest
families to each peptide family. After that we synthesized sequences for each
family through the newSequ procedure of the SPSO algorithm, provided that it
is emitted by the HMM profile of another near family and not by its own HMM
profile. So after each start position for mutation (Fig.1 (lower)) we have residues
that are emitted by another HMM profile instead of its own HMM profile and
there is an overlap for the distribution of synthesized sequences between those
two families. The degree of overlapping can be tuned by the value of N, (number
of mutations). This dataset (original and new synthesized sequences) can be con-
sidered as partially overlapping dataset (Fig. 2.b). If we create more sequences
using other HMM profiles the distribution of the dataset is fully overlapping
(Fig. 2.c¢). To study the partially overlapping datasets, we selected 10 families of
peptide families and built the synthesized sequences as noted above. To create
the fully overlapping dataset, we performed that routine for each family using
the HMM profile of three families near to the original family, separately.

We compared our oversampling technique with the SMOTE oversampling
technique and the different error cost (DEC) method [4]. Tables 1 and 2 show
the results. We see that in general SPSO outperforms the SMOTE and DEC
methods, and the performance of the classifier with the SPSO oversampling
technique in fully overlapped datasets is more apparent. When there is more
overlapping between the minor and major classes, the problem of imbalanced
data is more acute. So the position of the inserted data in the minor class is
more important and in our algorithm it has been done more accurately than in
SMOTE method. With regard to the time needed for each algorithm, DEC has
an advantage compared to our method, because in the oversampling technique
the minor class, depending on the number of its instances, is oversampled up
to 10 times (in our experiments) which increases the dimension of the of kernel
matrix. In contrast, in the DEC method choosing the correct cost of error for
minority and majority classes is an important issue. One suggested method is to
set the error cost ratio equal to the inverse of the imbalance ratio. But, based
on our experiments (not shown here) that value is not always the optimum,
and especially in partially and fully overlapped datasets we had instability of
performance even with values near the optimal value. Based on our experiments
in the well-separated imbalanced data the quality of DEC is very near to the
SPSO method and for some experiments, even better, and we could find optimum
value for error cost ratio simply. So perhaps with this kind of datasets one should
prefer the DEC method. But with partially and fully overlapping data, we found
that our oversampling method in general has better performance, and if it is
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used along with the DEC method, it not only increases the performance of the
classifier but it also makes finding the value for the error cost ratio simpler. We
also have more stability with values close to the optimum value of the error cost
ratio. The graphs in Fig. 4.a and Fig. 4.b show the value of the ROC score
of classifier for partially overlapped artificial sequences from the family of 001-
002-024 (001 — 002 — 024") when the DEC method and DEC along with SPSO
(400% oversampling) were applied. We see that when SPSO oversampling is
used we have stability in ROC score values and after the optimum value, the
ROC score does not change. The drawback is, that we again have to find the
best value for the error cost ratio and the rate of oversampling through the
experiment by checking different values, but in less time compared to only the
DEC method because of the stability that was shown in Fig. 4.b. We used that
method for all partially and fully overlapping artificial data (Table 1 and 2). For
each experiment we oversampled data in different rates and selected different
values of error cost ratio until we got the best result. The results in Fig. 4.c
show that for those kind of data the ROC scores of SPSO and DEC 4+ SPSO
are nearly the same. But in the second method (DEC + SPSO), we needed to
oversample data less than in SPSO only method and we could find the best value
of the error cost ratio sooner than in DEC only. With less rate of oversampling
in SPSO we get less accurate results but we can compensate that with DEC.

Partially overlapping classes- ROC scores

minority class # of sequences|SMOTE| DEC [SPSO
001 — 002 — 015’ 16 0.863 |0.943(0.951
001 — 002 — 016’ 122 0.821 |0.912{0.929
001 — 002 — 017" 68 0.854 |0.892|0.884
001 — 002 — 018’ 74 0.912 |0.871(0.891
001 — 002 — 020’ 86 0.972 |0.975|0.984
001 — 002 — 021’ 40 0.695 |0.739(0.723
001 — 002 — 022" 44 0.725 |0.762(0.751
001 — 002 — 023’ 48 0.965 |0.982(0.996
001 — 002 — 024’ 8 0.845 |0.834(0.865
001 — 002 — 025’ 10 0.945 |0.972(0.987
overall ROC-score 0.859 |0.882/0.896

Table 1. ROC scores obtained on the partially overlapping classes created from peptide
families of GPCR dataset, by various methods. DEC = different error cost;

5 Conclusion

In this work, we suggested a new approach of oversampling for the imbalanced
protein data in which the minority class in the data space is oversampled by
creating synthetic protein sequences, considering the distribution of the minor
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Fully overlapping classes- ROC scores

minority class # of sequences| SMOTE| DEC |SPSO
001 — 002 — 015 32 0.673 [0.680]0.724
001 — 002 — 016" 244 0.753 |0.775]0.821
001 — 002 — 017" 136 0.672 |0.652|0.643
001 — 002 — 018" 148 0.591 |0.6240.672
001 — 002 — 020" 172 0.763 |0.821|0.858
001 — 002 — 021" 80 0.632 |0.689|0.681
001 — 002 — 022" 88 0.615 |0.812(0.854
001 — 002 — 023" 96 0.912 |0.942|0.968
001 — 002 — 024" 16 0.716 |0.768|0.819
001 — 002 — 025 20 0.908 |0.902|0.921
overall ROC-score 0.723 |0.766(0.796

Table 2. ROC scores obtained on the Fully overlapping classes created from peptide
families of GPCR dataset by various methods.

and major classes. This method can be used for protein classification problems
and remote homology detection, where classifiers must detect a remote relation
between unknown sequence and training data with an imbalance problem. We
think that this kind of oversampling in kernel-based classifiers not only pushes
the class separating hyperplane away from the positive data to negative data
but also changes the orientation of the hyperplane in a way that increases the
accuracy of classifier. We developed a systematic study using a set of real and
artificially generated datasets to show the efficiency of our method and how the
degree of class overlapping can affect class imbalance. The results show that
our SPSO algorithm outperforms other oversampling techniques. In this paper,
we also presented evidences suggesting that our oversampling technique can be
used along with DEC to increase its sensitivity and stability. For further work,
we hope to find an algorithm for finding the suitable rate of oversampling and
error cost ratio when DEC and SPSO methods are used together.
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