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ABSTRACT

The Scale Invariant Feature Transform, SIFT, has been success-
fully applied to robot localization. Still, the number of features
extracted with this approach is immense, especially when dealing
with omnidirectional vision. In this work, we propose a new ap-
proach that reduces the number of features generated by SIFT as
well as their extraction and matching time. With the help of a par-
ticle filter, we demonstrate that we can still localize the mobile
robot accurately with a lower number of features.

1. INTRODUCTION

Vision based robot localization demands image features with many
properties. On one hand the features should exhibit invariance to
scale and rotation as well as robustness against noise and changes
in illumination. On the other hand they should be extracted very
quickly so as not to hinder the other tasks that the robot plans to
perform. Local descriptors are commonly employed in robot lo-
calization because they can be computed efficiently, are resistant
to partial occlusion, and are relatively insensitive to changes in
viewpoint.

SIFT features, explained in section 2, have been widely used
in the robot localization field. In [1] the SIFT scale and orientation
constraints are employed for matching stereo images; after match-
ing the features, the authors used a least-squares procedure to reach
better localization performance. In [2] a modified version of the
SIFT approach is proposed and used to solve the robot localization
problem; their approach takes the properties of panoramic images
into consideration. The work in [3] proposes an approach to mod-
eling the pose-dependent characteristics of the SIFT features; their
model is a learning based one and is successfully applied to the
robot localization problem. In order to further minimize the clas-
sification errors during localization, the work in [4] has proposed
extracting SIFT features from each image and then using spatial
relationships among the locations by means of a hidden Markov
model. In [5] an image map based on SIFT and Harris corners is
built and used later for localization.

In this paper we apply a new approach, iterative SIFT, to the
robot localization problem. We try to reduce the computational
effort of the feature extraction and matching process as much as
possible while maintaining high localization accuracy. This means
that the robot will try to localize itself using less features than with
classical SIFT.

The remaining sections of this paper are organized as follows:
Section 2 is a review of the SIFT approach. Section 3 introduces
the idea behind iterative SIFT and presents its algorithm. In section
4 the computation time of SIFT is compared with that of iterative
SIFT. Section 5 reviews the Monte Carlo approach to localization.
Section 6 gives the experimental results of applying the iterative
SIFT algorithm to the robot localization problem. Finally we con-
clude this paper in section 7.

2. SCALE INVARIANT FEATURE TRANSFORM

The Scale Invariant Feature Transform (SIFT), developed by Lowe
[6], is invariant to image translation, scaling and rotation. SIFT
features are also partially invariant to illumination changes and
affine 3D projection. These features have been widely used in
the robot localization field as well as many other computer vision
fields.

The SIFT algorithm has 4 major stages:

1. Scale-space extrema detection:The first stage searches
over scale space using a Difference of Gaussian (DoG) func-
tion to identify potential interest points.

2. Keypoint localization: The location and scale of each can-
didate point are determined and keypoints are selected based
on measures of stability.

3. Orientation assignment: One or more orientations are as-
signed to each keypoint based on local image gradients.

4. Keypoint descriptor: A descriptor is generated for each
keypoint from local image gradients information at the scale
found in stage 2.

The first stage is clarified as follows: For each octave in the
scale space, the initial image is repeatedly convolved with Gaus-
sians to produce the set of scale space images. Adjacent Gaussian
images are subtracted to produce the DoG images. After each oc-
tave, the Gaussian image is down-sampled by a factor of 2, and the
process is repeated. For a more detailed discussion of the keypoint
generation and factors involved see [6].

SIFT features are distinctive and invariant features used to ro-
bustly describe and match digital image content between different
views of a scene. While invariant to scale and rotation, and robust
to other image transforms, the SIFT feature description of an im-
age is typically large and slow to compute. For example, the work



Fig. 1. Local extrema detection. The pixel marked× is compared
against its 26 neighbours in a3× 3× 3 neighbourhood that spans
adjacent DoG images (from [6]).

Fig. 2. Matching two different panoramic images using SIFT. The
number of common features is huge, requiring a high computation
time.

in [7] presents a study of SIFT features for outdoor robot localiza-
tion. Although their approach is able to pick up features that are
stable despite the varying illumination, the authors reported some
disadvantages of using SIFT, specifically that it takes a long time
to extract the features from an image. Furthermore, the number of
features is immense, which poses problems when searching for the
matching pairs, along with having to store a large amount of data.
An example of this problem is illustrated in figure (2), where the
robot approaches a known area and a large number of keypoints is
matched between current and stored features. This problem arises
because panoramic images naturally hold a rather high amount of
information from all the surroundings, which makes the process of
dealing with this amount of information very time-consuming.

3. ITERATIVE SIFT

The main objective of the iterative SIFT approach is to reduce
the number of keypoints and their corresponding extraction and
matching time, while maintaining the same descriptor for each
keypoint. In the classical SIFT approach, keypoints are detected by
testing each value in the DoG at each scale with the 8 surrounding
values of the same scale as well as with 9 neighbouring values in
the scale above and 9 neighbouring values in the scale below. The
first and last DoG scales are not examined. This means26×m×n
comparisons for a DoG of sizem × n, taking into consideration

that points around a given border of each DoG are not included
in the keypoint detection, as seen in figure (1). Since SIFT estab-
lishes multiple scales in each octave, the above analysis is applied
several times to each scale in each octave. Each octave has one
quarter of the pixels of the previous one, so that keypoint detection
in lower octaves requires more time than in higher ones. We aim
to modify this exhaustive search into a sample based one.

In the proposed approach, the number of keypoints can be de-
fined in advance. The process of finding the keypoints continues it-
eratively without the need for sequentially going through the whole
scale space. This involves two phases. The first phase is randomly
searching the scale space for local extrema. The random search
is followed by an update phase only when the local extremum is
more likely to be found. The theory behind the iterative SIFT ap-
proach is mainly based on the assumption that local extrema points
are located in a blob region [8], i.e. smooth wide two dimensional
hills or valleys. In other words, blobs are regions in the image that
are either significantly brighter or significantly darker than their
surroundings. A local extremum cannot be located on a flat region
and can hardly be found near it. Another possible location of lo-
cal extrema are spikes, i.e. rapidly changing narrow regions. But
since the scale space structure involves multiple smoothing oper-
ations on the image, only information on the coarse scale remains
and the spikes are filtered out.

With the above assumption we can say that our search mech-
anism involves dealing only with two cases when searching for
a local extremum: 1) In the case where we detect a blob region,
an update phase handles the search for the position of the local
extremum in that region. The search ends either when the local
extremum is found or when a given number of trials elapses. 2) In
the case where we detect a non-blob region, the result of the search
in this area is ignored and the search is started somewhere else.

The test whether a pointp lies in a blob region or not is shown
as a functionisBlob() in equation (1), whereTScale is a threshold
depending on the scale of the pointp.

isBlob =

(
True (Abs(p) > TScale)

False otherwise
(1)

In the iterative SIFT algorithm, see algorithm (1), the fol-
lowing functions are used: The functionKeypointDescriptor()
builds the keypoint descriptor for the point located in(xi, yi). The
functionRandomCoord() returns a set of randomly chosen (x,y)
coordinates bounded by the size of the current scale. The func-
tion isExtremum() tests whether the point located in(xi, yi) is
a local maximum or local minimum. This involves comparing the
value of a point with the 26 neighbours as explained above. The
functionfindNewCandidate() searches the8 neighbours of the
point (xi, yi) in the same scale and returns the coordinate of the
maximum point ifp(xi, yi) is positive and the coordinate of the
minimum point ifp(xi, yi) is negative. Note that the DoG image
contains both positive and negative points with the median0.

The algorithm is clarified as follows: We first initialize a set
of samples with random numbers, each of which holds a value that
represents the coordinate of one of the points in the current scale.
The samples are then verified so that only those that have a value
above the given thresholdTScale remain. This reflects our assump-
tions that a value above this threshold is most probably a point that
lies in a blob. The total number of samples in the algorithm after



Algorithm 1 The iterative SIFT algorithm.
Definitions:

NSamples: The number of samples.
NKeys: The number of requested keypoints.
NTrials: The number of trials.
NScales: The number of Scale images.

initialization: Keypoints← {};
for Scale← 1 to NScales do
{(xi, yi)} ← RandomCoord(), given that
isBlob (p (xi, yi)) is True,∀i = 1, 2, ..., Nsamples;
i← 0;
while i < NSamples And |Keypoints| < NKeys do

i← i + 1;
trial← 0;
ExtremaFound← False;
while trial < NTrials And¬ExtremaFound do

if isExtremum (xi, yi) then
Keyi ← KeypointDescriptor(xi, yi);
Keypoints← Keypoints ∪ {Keyi};
ExtremaFound← True;

else
(xi, yi)← findNewCandidate (xi, yi);

end if
trial← trial + 1;

end while
end while

end for

the verification should beNSamples and depends on the size of
the scale image. After some initial experiments, we found that set-
ting NSamples = r ×M ×N with r = 3 leads to best results.
Here(M, N) are the size of the current scale image. The search
for the keypoints in the algorithm is applied to one scale after an-
other. The search stops when the required number of keypoints
NKeys is reached. The search within a blob involves testing
whether the current point is a local extremum using the function
isExtremum(). If the point is an extremum then the keypoint
descriptor is generated for that point. If the current keypoint is not
a local extremum, the functionfindNewCandidate() returns a
new coordinate for a candidate local extremum. With this update,
the sample is assumed to move in the direction of the local ex-
trema. The update goes on until the local extremum is found or
until the maximum number of trials,NTrials, is reached. In the
later case the point is neglected and the search is performed by
another sample in another new location.

4. TIME CONSIDERATIONS OF ITERATIVE SIFT

Before introducing the experimental results with the particle filter,
we first demonstrate the ability of iterative SIFT to extract a given
number of keypoints and how this varies with the required time.

Figure (3) shows the feature extraction time when applying
SIFT and iterative SIFT approaches to a sample image. The plot
shows that the SIFT approach finds a constant number of keypoints
and requires a relatively high and constant time.

It is worth noting that even though iterative SIFT finds a good
amount of features in less time than it takes SIFT, our approach
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Fig. 3. The time required to extract a given number of keypoints
on a sample images, including the time of calculating the DoG,
done with a 3GHz Pentium.
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Fig. 4. The time required to extract and match a given number of
keypoints using iterative SIFT versus the time of SIFT for a set of
100 images, done with a 3GHz Pentium.

fails to keep doing so as the number of given keypoints gets higher
and is not able to find the number of keypoints that the classical
SIFT finds within less or equal time. This is because our approach
is based on samples which are randomly distributed in the search
space. These samples need much more time than the linear ap-
proach of SIFT in order to cover the whole search space. Still,
the application of robot localization, as well as other similar appli-
cations, does not need such a large number of keypoints as SIFT
produces.

Since the number of keypoints using iterative SIFT is clearly
reduced, the time for matching two sets of keypoints during the
robot localization process can be minimized to a great extent. Fig-
ure (4) shows the feature extraction and matching time required
by each approach. This time is constant in most cases unless the
required number of keypoints cannot be found. This happens in
images that contain small details.



5. MONTE CARLO LOCALIZATION

Monte Carlo methods or Particle Filters [9] have become quite
popular in recent years for estimating the state of a system at a
certain time based on the current and past measurements. The
probability p(Xt|Zt) of a system being in the stateXt given a
history of measurementsZt = {z0, ..., zt} is approximated by a
set ofN weighted particles:

St = {x(i)
t , π

(i)
t }, i = 1...N. (2)

Each particlex(i)
t describes a possible state together with a

weightπ(i)
t , which is proportional to the likelihood that the system

is in this state. Particle Filtering consists of three main steps:

1. Create a new particle setSt+1 by resampling from the old
particle setSt based on the particle weightsπ

(i)
t , i = 1...N

2. Predict the next particle states based on the dynamic model
p(x

(i)
t+1|x(i)

t , ut) with odometryut, i = 1...N

3. Calculate the new weights by application of the measure-
ment model:π(i)

t+1 ∝ p(zt+1|Xt+1 = x
(i)
t+1), i = 1...N .

The estimate of the system state at timet is the weighted mean
over all particle states:

X̂t = E(St) =

NX
i=1

π
(i)
t x

(i)
t . (3)

The weightsπ(i)
t are normalized so that

PN
i=1 π

(i)
t = 1. In

our case the state is described by a three dimensional vectorxt =
(x, y, θ)t containing the position of the robot(x, y) and the orien-
tationθ. Thex andy coordinates are initialized randomly within a
radius of one meter around a randomly selected database position.
To estimate an initial orientationθ, a 32 bin orientation difference
histogram is created where the orientation difference is calculated
from the matched points. The highest bin is then used to calculate
the orientation with an added random value drawn from a normal
distribution with standard deviationπ/8 radians. The prediction
and measurement steps are described in the following sections. In
the experiments, a total of 500 particles were used and 10% of
these were randomly reinitialized at each iteration to enable relo-
calization.

5.1. Dynamic Model

All state variablesx(i)
t = (x, y, θ)t are updated from the odometry

readingsut from the robot. To cope with the additional uncertainty
due to odometry error, the odometry values are updated with small
random values drawn from a normal distribution, using a standard
deviation of 0.1 radians for the rotation and a standard deviation of
2% of the measured distance for the translation.

5.2. Measurement Model

To calculate the weight of particles only the database location that
is closest to the current particle is used. This means that the com-
putation time will decrease as the particles converge around the
true location of the robot, since fewer of the features in the database
will need to be matched to the current image. The weight is based
on the number of interest points that match between the current

image and the corresponding database image (N
(i)
match). A candi-

date interest point match is considered if the lowest match value,
calculated from the squared Euclidean distance between the his-
tograms,M1, is less than 60% of the next lowest match valueM2.
This factor that was found empirically and also used in [10]. This
guarantees that the interest point match will be significantly better
compared to the other possibilities. No interest point is allowed to
be matched against more than one other interest point. If an inter-
est point has more than one candidate match, the match which has
the lowest match value among the candidate matches is selected.

All particles that are closest to the same database point will
have the same match value. To avoid drifting of the particles away
from the database position, the weighting functionfw(d) is ap-
plied:

fw(d) =

(
exp

ş
− (d−σ)2

τ2

ť
(d > σ)

1 (d ≤ σ)
(4)

whered is the euclidean distance between the particle and the
database position. In the experiments,σ and τ were set to 2T
whereT is the minimum distance between database positions. The
new weight is then calculated asπ

(i)
t = fw(d) ·N (i)

match.

6. EXPERIMENTS

6.1. Building the database

The localization system consists of a database of features where
one set of features is stored for each database position. The fea-
tures were calculated from images taken at the known positions.
To obtain these positions and the ground truth data for perfor-
mance evaluation, a SLAM implementation was applied using the
technique described in [11]. A total of 603 images were collected
covering an area of approximately 60×55 meters, as shown in fig-
ure (5). New laser scans and images were recorded if the rotation
since the previous image exceeded 15 degrees or when the transla-
tion exceeded 0.5 meters. For each image the corresponding pose
estimate from the SLAM algorithm was stored. We refer to this set
of images as the exploration set.

Since all the features used are rotationally invariant, it is only
necessary to use images with different locations and not orienta-
tions, i.e., when the robot is travelling back and forward along a
corridor it is sufficient to save the data in one direction. The build-
ing of the database starts after the run is completed and optimized
with SLAM. The images are used in the same order as they were
taken. An image is added to the database if the metric distance to
the nearest stored image exceeds a thresholdT . In this paper, a
value ofT = 0.4 meters was used. For each image included in the
database, a feature set is calculated and stored.

6.2. Evaluation Method

Another set of 300 images was collected, referred to as the local-
ization set. This set was collected over a period of two months at
different times after the exploration set, resulting in changes in the
environment as well as illumination. The localization set is taken
mainly from the Ph.D corridor, see figure (5), which contains a lot
of similar images, e.g., doors of office rooms, and a lack of furni-
ture or objects. All of the recorded image data covers a real en-
vironment where people are moving and occluding some details



Fig. 5. Area covered by the exploration set of images.

Fig. 6. Matching two different panoramic images using the pro-
posed approach. Only a small number of features are required to
get the same matching image.

which could have helped the robot to localize correctly. Other
challenges also arose from the fact that many different features
were detected depending on whether doors were open or closed.
To obtain more evaluation data from the localization set, the ex-
periments of the robot localization problem were repeated many
times. Each time, the robots chose a new scenario of navigation
using a different starting position.

When applying iterative SIFT to the robot localization prob-
lem, we try to reduce the computational effort of the feature ex-
traction as much as possible while maintaining high localization
accuracy. This means that the robot will try to localize itself us-
ing less keypoints than with classical SIFT. The keypoints in it-
erative SIFT are found through a random process. This makes it
dangerous that the keypoints found in the exploration phase are
different from those found in the localization phase, or that the
common keypoints between the two are not sufficient for localiza-
tion. Since the computation time of the exploration phase is not
critical, we overcome this problem by applying classical SIFT in
the exploration phase and iterative SIFT in the localization phase
as seen in figure (6).
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Fig. 7. Localization error against distance travelled by the robot
using different number of keypoints.NTrials = 7 in all the
experiments.

6.3. Results

We made 5 different experiments, where each experiment involves
a new navigation scenario for each image in the test run, and the
average results of scenarios are plotted as seen in figure (7). This
means we have tested the localization process with 300 different
scenarios. The figure illustrates how the robot localization process
converges using the particle filter as the robot travels in a 30 me-
ter long path. The results, when using the SIFT approach, show
earlier localization convergence and higher accuracy than the oth-
ers. We should not forget that this experiment needs much more
computation power than the others, as seen in figure (4). When
performing similar experiments with the iterative SIFT approach
using different number of keypoints, the results, seen in the same
figure, show that we can solve the robot localization with much
less computation time and still maintaining good accuracy. For
example, when using iterative SIFT with only 100 keypoints, the
accuracy is only 0.7 meter worse than SIFT after the robot moves
15 meters. We can notice that the robot can localize itself with
only 25 keypoints, but it needs more time than that of the experi-
ments with more keypoints. The case of 10 keypoints shows that
the robot cannot localize itself with such a small number of fea-
tures.

One important parameter to adjust in the iterative SIFT ap-
proach is the number of iterations,NTrials, which is discussed
in section 3. On one hand, reducing the number of iterations makes
it possible that the search for the keypoints would be stopped at an
early stage. On the other hand, increasing the number of itera-
tions would slow down the algorithm to a high degree. In figure
(8), we assign the required number of keypointsNKeys to 100.
The results show different accuracies using different number of it-
erations. We can see that usingNTrials = 7 or NTrials =
4 leads to the higher accuracy than the others. Note that using
NTrials = 1 would make the search of the keypoints fail too
early, and consequently leads to unsuccessful localization. Similar
results were obtained when repeating the experiment using 50 and
25 keypoints.
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7. CONCLUSION

In this paper we introduced a practical idea to speed up the SIFT
approach. The number of keypoints can be defined in advance and
the computation time is proportional to that number. When ap-
plying the approach to the robot localization problem, we demon-
strated that this approach is suitable since not many keypoints are
needed. The approach can be generally applied to any similar
problem. It should be obvious that any further optimization to the
original SIFT approach, such as in the keypoint descriptor or ori-
entation assignment, may also be applied to this approach. Also,
any optimization to the keypoint matching process, such as using
best-bin-first search, would generally have the same relative im-
provement on our approach as on the original SIFT approach.
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