

0-7803-9387-2/05/$20.00 ©2005 IEEE

Feedback Memetic Algorithms for Modeling
Gene Regulatory Networks

C. Spieth, F. Streichert, J. Supper, N. Speer, and A. Zell
Centre for Bioinformatics
University of Tübingen

Sand 1, 72076 Tübingen, Germany
email: spieth@informatik.uni-tuebingen.de

Abstract— In this paper we address the problem of finding
gene regulatory networks from experimental DNA microarray
data. We focus on the evaluation of the performance of memetic
algorithms on the inference problem. These algorithms are used
to evolve an underlying quantitative mathematical model. The dy-
namics of the regulatory system are modeled with two commonly
used approaches, namely linear weight matrices and S-systems.
Due to the complexity of the inference problem, some researchers
suggested evolutionary algorithms for this purpose. We introduce
memetic enhancements to this optimization process to infer the
parameters of sparsely connected nonlinear systems from the
observed data. Due to the limited number of available data, the
inferring problem is underdetermined and ambiguous. Further
on, the problem often is multimodal and therefore appropriate
optimization strategies become necessary. We propose a memetic
method, which separates the overall inference problem into two
subproblems to find the correct network: first, the search for a
valid topology, and secondly, the optimization of the parameters
of the mathematical model. The performance and the properties
of the proposed methods are evaluated and compared to standard
algorithms found in the literature.

I. INTRODUCTION

Systems biology has become one of the major research
areas in biology over the past few years. Due to tremendous
progress in experimental methods like DNA microarrays,
several thousand expression levels of genes in an organism
can be measured in parallel under specific environmental
conditions [30]. This enables researchers to examine intra-
cellular processes on a systemic level. The inference of gene
regulatory networks from experimental data is one of the
main unsolved problems in the post-genomic area. A gene
regulatory network (GRN) is an abstract model representing
dependencies between genes using a directed graph. In this
graph, each node is a gene or component of the regulatory
system and each edge represents a regulatory impact from one
component to the other (e.g. activation or suppression of the
transcription and translation of the dependent gene).

Several publications addressing the problem of inferring
gene regulatory networks can be found in the literature. De
Jong gives a good overview about related work in [5]. A
major part of the work done in this field is using deterministic
mathematical models to simulate regulatory networks. One
kind of those deterministic models are linear models like
the weighted matrix model [28], [29]. These models have
only a small number of system parameters compared to S-

systems but are often not flexible enough to model biological
systems in detail, since they model the dependencies linearly.
S-systems, on the other hand, model dynamic systems in
a nonlinear manner. They consists of a set of differential
equations describing the changes in expression over time.
However, they show a significant higher number of system
parameters. S-systems have been recently examined in [14],
[15], [17]. The most flexible type of mathematical model are
ordinary differential equations, which have been investigated
in [4] and [3]. Most applications of deterministic models
use evolutionary algorithms (EA) to determine the correct
parameters of the mathematical model. EAs have proven to
be successful in finding parameters of mathematical models
representing GRNs. Another major focus of recent work
are stochastic methods like Bayesian networks, where the
dependencies are modeled by probabilistic transition values.
Examples for this kind of models can be found in recent
publications [8], [11], [12].

So far, only small networks have been successfully inferred
by computational methods. Larger networks could be recon-
structed, only if the participating genes show very similar
time dynamical behavior as the target system. However, the
correctness of the connections in a large graph cannot be
verified. The main obstacle is the ambiguity in the data and
the resulting high number of possible network structures. This
is caused by the limited number of microarrays compared to
the number of variables in the network model, thus making
the estimation of the underlying system a very difficult task.
We introduce a method, which separates the inference problem
into two subproblems. The first task is to find a valid topology
or structure of the network with a genetic algorithm (GA). In
the second task, the parameters of a mathematical model are
optimized by local search steps on the given topology with an
evolution strategy (ES). In contrast to a previous paper [24],
we additionally examine enhanced versions of the memetic
algorithms, extended by a feedback mechanism. Here, the
local search returns a feedback to the global optimizer to
reduce the complexity of the search space. This was done
by deleting dependencies in the model that had already been
assigned a small interaction strength. Thus, the number of
model parameters are significantly reduced. We examine two
different implementations of the Feedback MA (FMA). The
first uses a fixed threshold value determining the upper limit

61

of values to be filtered. In the second implementation, this
threshold value is itself evolved and optimized by the MA.
Both types of FMA, the previous published MA and several
standard optimization algorithms are compared on the infer-
ence problem using the two most commonly used determin-
istic type of models, namely linear weight matrices and S-
systems. Both recently have found increased attention in the
literature and were thus selected to examine the performance
of the mentioned algorithms. For evaluation, we will apply
the proposed methods in comparison to standard algorithms
on artificial expression data of regulatory networks with 5-10
genes.

The remainder of this paper is structured as follows. Section
II and III describe the mathematical models and the proposed
algorithm used in the optimization process. Applications and
results are listed in section V and the conclusions and an
outlook are given in section VI.

II. MATHEMATICAL MODELING

The genetic dependencies of a cell can be abstracted by a
directed graph with N nodes representing N genes. Each gene
gi produces a certain amount of mRNA xi when expressed
and changes the concentration of the mRNA level over time:
~x(t + 1) = h(~x(t)) , ~x(t) = (x1, · · · , xn). Here, function h
represents the changes of expression levels from one state to
the next. To model this function, several approaches can be
found in the literature. We decided to use the two most popular
deterministic models, namely linear weight matrices and S-
systems. These models are described in details in the following
sections.

A. Linear Weight Matrices

Linear weight matrices (WM) have been originally intro-
duced in [28]. In this approach, the regulative interactions
between the genes are represented by a weight matrix, W ,
where each row of W represents all the regulatory inputs for
a specific gene. The regulatory effect of gene gj on gene gi

at time t is simply the expression level of gj multiplied by its
regulatory influence on gi, wij . The total regulatory input to
gi is derived by summing across all the genes in the system
and in the following referred to as ri(t):

ri(t) =
∑

j

wijxj(t) (1)

Here, a positive value for wij indicates that gene gj is
stimulating the expression of gene gi. Similarly, a negative
value indicates repression, while a value of zero indicates that
gene gj does not influence the transcription of gene gi. By
modeling regulatory interactions with a weight matrix, we
can use mathematical matrix approaches found in the field
of neural networks for subsequent analyses of the resultant
models.

With the regulatory state of each gene, we now are able to
model the response of each gene to the given input. The impact
of ri(t) on gene gi is calculated using a so called ”squashing”
function. The resulting expression level is only a relative value

between 0 and 1, with 0 representing complete repression and
1 representing maximal expression. Thus, these relative levels
have to be converted into the real expression space. In addition,
the genes can have different levels of maximal expression.
Hence, we multiply the calculated relative gene expression
level xi by the maximal expression level for each gene mi, to
get the final expression level for gi xi(t + 1):

xi(t + 1) =
mi

1 + e−(αiri(t)+βi)
(2)

where ri(t) is the mentioned regulatory state of gene gi, and
αi and βi are gene specific constants that define the shape of
the squashing function for gene gi.

B. S-systems

Another, more flexible type of model, are S-systems (SS).
They employ a general formalism, which allow for capturing
the nonlinearity and general dynamics of the gene regulation.
S-systems are a type of power-law formalism, which have been
suggested by [20] and can be described by a set of nonlinear
differential equations:

dxi(t)
dt

= αi

N∏

j=1

xj(t)Gi,j − βi

N∏

j=1

xj(t)Hi,j (3)

where Gi,j and Hi,j are kinetic exponents, αi and βi are
positive rate constants and N is the number of genes in the
system. The equations in (3) can be seen as divided into two
components: an excitatory and an inhibitory component. The
kinetic exponents Gi,j and Hi,j determine the structure of the
regulatory network. In the case Gi,j > 0, gene gj induces the
synthesis of gene gi. If Gi,j < 0, gene gj inhibits the synthesis
of gene gi. Analogously, a positive (negative) value of Hi,j

indicates that gene gj induces (suppresses) the degradation of
the mRNA level of gene gi.

III. MEMETIC ALGORITHM

Evolutionary Algorithms have proven to be a powerful tool
for solving complex optimization problems. Four main types
of Evolutionary Algorithms have evolved during the last 30
years: genetic algorithms, mainly developed by J.H. Holland
[10], evolution strategies, developed by I. Rechenberg [19] and
H.-P. Schwefel [21], Genetic Programming (GP) by J.R. Koza
[16] and Evolutionary Programming by David Fogel et al. [7],
[6]. Each of these uses different data representations and apply
different main operators to them. They are, however, inspired
by the same principles of natural evolution.

In the present work we use a combination of a global search
for optimizing the topology together with a local search to find
the best parameters for a given topology. This basic definition
of a memetic algorithm (MA) differs in the implementation
details as listed in the following.

62

A. Global Search

In all implementations, a genetic algorithm evolves popula-
tions of structures of possible networks. These structures are
encoded as bitsets where each bit represents the existence or
absence of an interaction between genes and thus of non-zero
parameters in the mathematical model. The evaluation of the
fitness of each individual within the global GA population uses
directly the fitness values of the local search described in the
following section.

B. Local Search

To evaluate each structure suggested by the global optimizer
an evolution strategy is used, which is well suited for optimiz-
ing problems based on real values. The ES optimizes the para-
meters of the mathematical model representing the regulatory
network. For determining the fitness of each individual, the
similarity of the time dynamics between the experimental and
the simulated data (resulting from the parameters coded in the
individuals) are evaluated. We use the following equation to
calculate the fitness value, referred to as the relative squared
error or relative standard error (RSE):

fRSE =
N∑

i=1

T∑

k=1

{(
x̂i(tk)− xi(tk)

xi(tk)

)2
}

(4)

where N is the total number of genes in the system, T is the
total number of sampling points taken from the experimental
time series and x̂ and x distinguish between estimated data
of the simulated model and data sampled in the experiment.
Here, the models run from the initial conditions using the
current model output as input for the next integration. The
overall optimization problem is then to minimize the fitness
values of objective function fRSE and thus maximize the
similarity between the simulated model and the experiment.
This fitness function is straight-forward and has already been
used by several publications on this problem [23], [27].

C. Feedback

We examined the performance of three different types of
memetic algorithms. The first algorithm is a standard memetic
method without any feedback from the local search as de-
scribed in [24]. The other two implementations return the
values for each system parameter from the local search to
the global topology optimizer, which in turn is filtering all
gene dependencies with a strength below a certain feedback
threshold tfb. One implementation is using a fixed threshold
value tfb whereas the second feedback algorithm uses a
parameter value tfb that itself is optimized during the inference
process.

IV. EXPERIMENT SETTINGS

To compare the results with established inference methods
we also used a standard GA, a standard ES, and an enhance-
ment to a GA developed by Tominaga et al. [27] to infer
the parameters of the network as described in the following.
The following sections list the details and the settings for

each optimization algorithm that was used in the comparison
experiments. All settings for the evolutionary algorithms were
determined in preliminary experiments. Overall, six different
algorithms were used for comparison. To gain sound statistics,
the experiment settings of the algorithms were repeated 20
times.

A. Evolution Strategy - ES
The first algorithm was a standard (µ,λ)-ES with µ = 10

parents and λ = 100 offspring together with a Covariance
Matrix Adaptation (CMA) mutation operator [9] without re-
combination. In case of the ES, the probabilities of crossover
and mutation were chosen as pc = 0.0 and pm = 1.0. Overall,
the ES evolved the individuals for 50, 000 generations.

1) Genetic Algorithm - GA: The second algorithm was
a real-value encoding GA that used a population of 500
individuals, a tournament selection strategy with tournament
group size of 8, a uniform-crossover-operator with a crossover
probability of pc = 1.0, and a mutation probability of pm =
0.1. The decision variables were binary encoded and one-point
mutation was applied to the genotype. Each GA optimization
process evolved the individuals in the population for 10, 000
generations resulting in a total number of 5, 000, 000 fitness
evaluations per run.

B. Skeletalizing Genetic Algorithm - SkGA
The third algorithm is an extension to a standard real-

coded GA using tournament selection with a tournament group
size of tgroup = 8, uniform-crossover recombination with
pc = 1.0 and a mutation probability pm = 0.1. This method
was referred to as ’skeletalizing’ in several publications. This
enhancement introduces a threshold value tskel = 0.05, which
represents a lower boundary for the parameters in the mathe-
matical model. If a decoded decision variable of the GA drops
below this threshold during optimization the corresponding
phenotype value is forced to 0.0.

C. Memetic Algorithm - MA
The main focus of this publication is the performance of

the proposed memetic algorithms as presented in sect. III. The
global GA evolved a population of 100 possible structures with
a tournament selection, a tournament group size of tgroup = 8,
uniform-crossover with pc = 1.0 and a mutation probability
pm = 0.1. The local optimization was started using a (µ,λ)-
ES with µ = 2 parents and λ = 5 offsprings together with
a Covariance Matrix Adaptation (CMA) mutation operator
without recombination as in the case of the standard ES. The
number of total fitness evaluations were as for all algorithms
5, 000, 000.

D. Feedback Memetic Algorithm - FMA
For the feedback algorithms we used the same settings as

for the MA. Further on, feedback algorithm FMA-I used a
fixed threshold value tfb = 0.05 as in case of the skeletalizing
GA. As described in the previous section, FMA-II evolved
this value during optimization with initial values for tfb ∈
[0.01, 0.2].

63

0 1000000 2000000 3000000 4000000 5000000
0

10

20

30

40

50

60

70
fit

ne
ss

evaluations

 ES
 GA
 SkGA
 MA
 FMA-I
 FMA-II

Fig. 1. Results of the inference of small-sized systems modeled with a
weight matrix. Given are the fitness courses for each examined optimization
algorithm: ES, GA, Skeletalizing GA, Memetic Algorithm, and the proposed
Feedback MAs.

V. RESULTS

To evaluate the proposed methods we created several arti-
ficial gene regulatory networks for both model types, which
were simulated to gain microarray expression data sets. These
data sets were then reverse-engineered by our algorithms. The
data sets represented two classes of N-dimensional artificial
regulatory systems. The first test class were small-sized net-
works with a number of system components of N ∈ [2, 5],
i.e. there existed relationship between at most 5 genes. These
relationships were randomly assigned and the resulting model
simulated to gain data sets. The second class of example data
were artificially created medium-sized GRNs, which consists
of N ∈ [6, 10] components. The regulatory models of both
classes were sampled equidistantly with T = 40 time points.

A. Small-sized Networks

Due to the fact that GRNs in nature are sparse systems [26],
we randomly created 4 small-sized ((N ∈ [2, 5])) regulatory
networks for each model type with a cardinality of 0 ≤ k ≤ 3,
i.e. each of the N genes depends on three or less other genes
within the network. With the 20 repetitions of the algorithms
on each of these networks, we examined 80 experimental runs.

The compared algorithms were used to infer the underlying
regulatory dependencies with the parameter settings given in
the previous section. The resulting averaged fitness courses
are plotted in the following graphs (figure 1 for the weight
matrices and figure 2 for the S-systems).

As can be seen, the standard optimizers ES and GA are not
able to find a solution to the optimizing problem. Obviously,
they both got stuck in local optima without being able to
escape. This is reflected by the high averaged fitness values
of 56.88 and 57.99, respectively. The skeletalizing GA was
able to converge to relative good fitness values (23.93), which
is comparable with the slightly better results obtained by the

TABLE I
AVERAGED BEST FITNESS VALUES FOR THE SMALL-SIZED INFERENCE

PROBLEM AFTER A TOTAL NUMBER OF 5.000.000 FITNESS EVALUATIONS.

Model WM SS Averaged

ES 55.93 57.82 56.88
GA 56.8 59.1 57.99

SkGA 23.4 24.38 23.93
MA 20.8 23.29 22.08

FMA-I 11.16 11.36 11.26
FMA-II 4.05 3.98 4.02

0 1000000 2000000 3000000 4000000 5000000
0

10

20

30

40

50

60

70

 ES
 GA
 SkGA
 MA
 FMA-I
 FMA-II

fit
ne

ss

evaluations

Fig. 2. Results of the inference of small-sized systems modeled with
an S-system. Given are the fitness courses for each examined optimization
algorithm: ES, GA, Skeletalizing GA, Memetic Algorithm, and the proposed
Feedback MAs.

plain MA (22.08). The graphs of both suggest that they can
achieve even better results with an increased number of fitness
evaluations. In contrast to the other methods the proposed
Feedback MAs converged quickly and reliably to very good
fitness values (11.26 and 4.02). The self-tuning FMA-II clearly
outperforms the other algorithms. The results suggest that the
ability to change the threshold value enables the method to
adapt to each of the problem instances.

B. Medium-sized Networks

As a second test class we created 4 medium-sized (N ∈
[6, 10]) regulatory networks randomly with a cardinality of
0 ≤ k ≤ 3. The optimization processes were performed as in
the example before.

The compared algorithms were again used to infer the un-
derlying regulatory dependencies with the parameter settings
given in the previous sections. The resulting averaged fitness
courses are plotted in the following graphs (figure 3 for the
weight matrices and figure 4 for the S-systems).

As illustrated by the fitness plots (figures 3 and 4) the
standard ES and GA were again not able to find a solution
for the optimization problem. Again, both seemed unable to
escape a local optimum and therefore no further improvement

64

0 1000000 2000000 3000000 4000000 5000000
0

20

40

60

80

100

120

140

160

 ES
 GA
 SkGA
 MA
 FMA-I
 FMA-II

fit
ne

ss

evaluations

Fig. 3. Results of the inference of medium-sized systems modeled with a
weight matrix. Given are the fitness courses for each examined optimization
algorithm: ES, GA, Skeletalizing GA, Memetic Algorithm, and the proposed
Feedback MAs.

TABLE II
AVERAGED BEST FITNESS VALUES FOR THE MEDIUM-SIZED INFERENCE

PROBLEM AFTER A TOTAL NUMBER OF 5.000.000 FITNESS EVALUATIONS.

Model WM SS Averaged

ES 146.67 142.90 144.79
GA 149.23 145.93 47.58

SkGA 61.00 61.54 61.27
MA 63.25 62.66 62.95

FMA-I 46.16 35.73 40.94
FMA-II 22.16 21.01 21.58

is achieved. The skeletalizing SkGA and the plain MA yielded
both similar good results (61.27 and 62.95). But in the higher
dimensional solution space, the SkGA performed slightly
better than the MA. Again, both seem to have the potential
to reach better fitness values with a larger number of fitness
evaluations. Our proposed Feedback MAs outperformed the
other methods by finding very good solutions with respect
to the fitness values and with a high speed of convergence.
Especially the self-adapting FMA-II resulted in the best fitness
values.

C. Ambiguity

Unfortunately, the resulting networks face a problem not
captured by the fitness values. Looking closer at the results
it becomes clear that good fitness values do not necessarily
correspond to the correct network topology. Table III gives
the absolute numbers of runs and the ratio of runs in which
the correct network was found with respect to the topology
and parameter values.

Neither the standard evolutionary algorithms (ES and GA)
nor the MA found the correct solutions, with respect to the
topology and parameter values, in a large number of the re-
peated optimizing runs. The skeletalizing GA found the correct

0 1000000 2000000 3000000 4000000 5000000
0

20

40

60

80

100

120

140

160

 ES
 GA
 SkGA
 MA
 FMA-I
 FMA-II

fit
ne

ss

evaluations

Fig. 4. Results of the inference of medium-sized systems modeled with
an S-system. Given are the fitness courses for each examined optimization
algorithm: ES, GA, Skeletalizing GA, Memetic Algorithm, and the proposed
Feedback MAs.

target system in a slightly larger number of experiment runs.
The Feedback MAs identified the largest number of correct
solutions but the total number of correct networks found is
still by far not sufficient. In the remaining optimization runs,
systems were found, which fitted the experimental data but
showed different relationships between the component genes.

As can be seen from table III, the ambiguity is a serious
issue, which has to be considered in future publications on
the inference problem. However, the issue has been addressed
recently by only a few publications. Some approaches try to
increase the diversity of the solution population to increase
the probability of finding the correct network topology [17],
[18]. To further identify the correct network in a set of possible
solutions, approaches like an iterative search, where additional
experiments enables the algorithm to find the correct solution,
multi-objective methods [25] or methods that incorporate bio-
logical information [1], [2], [13] have recently been published.

VI. CONCLUSION

In this paper we compared different optimization methods
to infer gene regulatory networks from time-series microar-
ray data. We showed that memetic algorithms are superior
to standard optimization approaches found in the literature.
The comparison to our previous paper showed significant
differences in the performance of the algorithms. The reason
therefore is the high impact of the network properties. The
performance of the methods differ on each of the problems and
it is thus necessary to average over several network structures.

In case of the weight matrices, the standard ES and GA
were not able to find good solutions to the inference problem.
Both resulted in similar fitness values for the weight matrices
and the S-systems. Further on, they were able to find models
that fit the given data in only a small fraction of the test
instances. This is likely due to the fact that they were trapped

65

TABLE III
AMBIGUOUS RESULTS OF THE INFERENCE. GIVEN ARE THE TOTAL NUMBER OF RUNS AND THE RATIO OF RUNS IN WHICH THE CORRECT NETWORK WAS

FOUND WITH RESPECT TO THE TRUE TOPOLOGY AND THE CORRESPONDING PARAMETER VALUES .

Size small medium total
Model WM SS WM SS

ES 2/80 (2.5%) 1/80 (1.25%) 1/80 (1.25%) 0/80 (0%) 4/320 (1.25%)
GA 1/80 (1.25%) 0/80 (0%) 1/80 (2.5%) 0/80 (0%) 2/320 (0.63%)

SkGA 2/80 (2.5%) 1/80 (1.25%) 3/80 (3.75%) 1/80 (1.25%) 7/320 (2.19%)
MA 2/80 (2.5%) 1/80 (1.25%) 2/80 (2.5%) 1/80 (1.25%) 6/320 (1.88%)

FMA-I 4/80 (5%) 2/80 (2.5%) 4/80 (5%) 2/80 (2.5%) 12/320 (3.75%)
FMA-II 4/80 (5%) 3/80 (3.75%) 5/80 (6.25%) 3/80 (3.75%) 19/320 (5.93%)

in local optima in most of the test cases. The skeletalizing
algorithm proposed by Tominaga et al. was able to find
comparably good sets of model parameters with respect to
the fitness value but faced the major disadvantage of relying
on large population sizes and therefore on a large number of
total fitness evaluations. This algorithm performed better than
the standard optimization techniques and found the correct
solution in more test problems. Furthermore, it resulted in
sparse matrices, which is biologically more plausible than
fully connected networks. Our plain memetic algorithm (MA)
yielded better fitness values as the SkGA, but the resulting
network models were often fully connected and thus showed
huge differences to the true solution. This can also be seen
in the small number of correct identified models. The pro-
posed feedback algorithm FMA-I performed better than the
skeletalizing algorithm with respect to the fitness values and
showed slightly better identification rates. This suggests that
the algorithm is able to find a network structure that is either
similar to the correct one or which represents a network
topology with similar properties. And finally, the self-tuning
feedback algorithm FMA-II showed the best fitness values as
well as the best identification rates. The ability to fine-tune
the parameter value of tfb enabled the algorithm to adapt to
the network models and thus yielded the best solutions.

The MAs proved to work even in medium-sized examples.
Most examples found in literature are artificial and very small,
i.e. with a total number of five genes or lower. The low
dimensionality of these examples is by far not relevant to
biological networks where even small systems have at least
50–100 components. We showed that our method is able to
handle ≤ 10 genes, restricted currently only by computational
performance. Because we use a bitset representation of the
topology, the algorithm reduces the total number of parameters
and thus makes it possible to infer larger systems. Future
experiments on high performance computers will address
large-scale systems with 50 genes or more.

Furthermore, the solutions found by the MAs and the
SkGA are sparse due to the preceding structure optimization.
Because in nature GRNs are sparse systems the solutions of
those algorithms represent better resemblance to biological
systems than the standard optimizer, which always resulted
in complete and thus dense matrices. Therefore, the proposed

MA is better suited to infer gene regulatory systems.

Due to the large number of model parameters and the small
number of data sets available, the system of equations is highly
underdetermined. Therefore, multiple solutions exist, which fit
the given data, but show only little resemblance to the original
target system. In future work we plan to incorporate additional
methods to identify the correct network as suggested in section
V-C.

Further on, we plan to include a-priori information into the
inference process, like partially known pathways or informa-
tion about co-regulated genes, which can be found in litera-
ture or public databases. Additionally, other models for gene
regulatory networks will be examined for simulation of the
nonlinear interaction system to overcome the problems with
those gene regulatory networks that hardly can be modeled by
S-systems. To further reduce the dimensionality of the data
set, we plan to use cluster methods. Recently, we developed a
new method that incorporates biological ontologies [22] and
thus yields biologically more plausible clustering results.

ACKNOWLEDGEMENT

This work was supported by the National Genome Research
Network (NGFN) of the Federal Ministry of Education and
Research in Germany under contract number 0313323.

REFERENCES

[1] Hong-Chu Chen, Hsiao-Ching Lee, Tsai-Yun Lin, Wen-Hsiung Li,
and Bor-Sen Chen. Quantitative characterization of the transcriptional
regulatory network in the yeast cell cycle. Bioinformatics, 20(12):1914–
1927, 2004.

[2] Kuang-Chi Chen, Tse-Yi Wang, Huei-Hun Tseng, Chi-Ying F. Huang,
and Cheng-Yan Kao. A stochastic differential equation model for quan-
tifying transcriptional regulatory network in Saccharomyces cerevisiae.
Bioinformatics, 21(12):2883–2890, 2005.

[3] Ting Chen, Hongyu L. He, and George M. Church. Modeling gene
expression with differential equations. In Proceedings of the Pacific
Symposium on Biocomputing, 1999.

[4] Michiel J.L. de Hoon, Seiya Imoto, Kazuo Kobayashi, Naotake Oga-
sawara, and Satoru Miyano. Inferring gene regulatory networks from
time-ordered gene expression data of Bacillus Subtilis using differential
equations. In Proceedings of the Pacific Symposium on Biocomputing,
volume 8, pages 17–28, 2003.

[5] Hidde de Jong. Modeling and simulation of genetic regulatory systems:
A literature review. Journal of Computational Biology, 9(1):67–103,
January 2002.

[6] David B. Fogel. Evolving Artificial Intelligence. Phd thesis, University
of California, 1992.

66

[7] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through
Simulated Evolution. John Wiley & Sons, 1966.

[8] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using
Bayesian networks to analyze expression data. Journal of Computational
Biology, 7:601?620, 2000.

[9] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal
mutation distributions in evolution strategies: the covariance matrix
adaptation. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 312–317, 1996.

[10] John H. Holland. Adaption in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control and Artificial
Systems. University Press of Michigan, 1975.

[11] Dirk Husmeier. Sensitivity and specificity of inferring genetic regula-
tory interactions from microarray experiments with dynamic Bayesian
networks. Bioinformatics, 19(17):2271–2282, 2003.

[12] S. Imoto, T. Goto, and S. Miyano. Estimation of genetic networks and
functional structures between genes by using Bayesian networks and
nonparametric regression. In Proceedings of the Pacific Symposium on
Biocomputing, pages 175–186, 2002.

[13] Phil Hyoun Kao and Doheon Lee. Modularized learning of genetic
interaction networks from biological annotations and mRNA expression
data. Bioinformatics, 21(11):406, 2005.

[14] Shinichi Kikuchi, Daisuke Tominaga, Masanori Arita, Katsutoshi Taka-
hashi, and Masaru Tomita. Dynamic modeling of genetic networks using
genetic algorithm and S-system. Bioinformatics, 19(5):643–650, 2003.

[15] Shuhei Kimura, Kaori Ide, Aiko Kashihara, Makoto Kano, Mariko
Hatakeyama, Ryoji Masui, Noriko Nakagawa, Shigeyuki Yokoyama,
Seiki Kuramitsu, and Akihiko Konagaya. Inference of S-system mod-
els of genetic networks using a cooperative coevolutionary algorithm.
Bioinformatics, 21(7):1154–1163, 2005.

[16] John R. Koza. Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, 1992.

[17] Ryohei Morishita, Hiroaki Imade, Isao Ono, Norihiko Ono, and
Masahiro Okamoto. Finding multiple solutions based on an evolutionary
algorithm for inference of genetic networks by S-system. In Proceedings
of the IEEE Congress on Evolutionary Computation, pages 603–612,
2003.

[18] Isao Ono, Ryohei Yoshiaki Seike, Norihiko Ono, and Masahiko Matsui.
An evolutionary algorithm taking account of mutual interactions among
substances for inference of genetic networks. In Proceedings of the
IEEE Congress on Evolutionary Computation, pages 2060–2067, 2004.

[19] Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Frommann-Holzboog,
1973.

[20] Michael A. Savageau. 20 years of S-systems. In E.O. Voit, editor,
Canonical Nonlinear Modeling. S-systems Approach to Understand
Complexity, pages 1–44, 1991.

[21] Hans-Paul Schwefel. Numerical optimization of computer models. John
Wiley & Sons, 1981.

[22] Nora Speer, Christian Spieth, and Andreas Zell. A memetic clustering
algorithm for the functional partition of genes based on the gene
ontology. In Proceedings of the IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology, pages 252–
259, 2004.

[23] Christian Spieth, Felix Streichert, Nora Speer, and Andreas Zell. It-
eratively inferring gene regulatory networks with virtual knockout ex-
periments. In Proceedings of the European Workshop on Evolutionary
Bioinformatics, volume 3005 of Lecture Notes in Computer Science,
pages 102–111, 2004.

[24] Christian Spieth, Felix Streichert, Nora Speer, and Andreas Zell. A
memetic inference method for gene regulatory networks based on
S-systems. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 152–157, 2004.

[25] Christian Spieth, Felix Streichert, Nora Speer, and Andreas Zell. Multi-
objective model optimization for inferring gene regulatory networks.
In Eckart Zitzler Carlos A. Coello Coello, Arturo Hernndez Aguirre,
editor, Proceedings of the Conference on Evolutionary Multi-Criterion
Optimization, volume 3410 of Lecture Notes in Computer Science, pages
607–620, 2005.

[26] Denis Thieffry, A. Huerta, E. Perez-Rueda, and J. Collado-Vides. From
specific gene regulation to genomic networks: a global analysis of
transcriptional regulation in escherichia coli. BioEssays, 20:433–440,
1998.

[27] Daisuke Tominaga, Nobuto Kog, and Masahiro Okamoto. Efficient
numeral optimization technique based on genetic algorithm for inverse
problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 251–258, 2000.

[28] D.C. Weaver, C.T. Workman, and G.D. Stormo. Modeling regulatory
networks with weight matrices. In Proceedings of the Pacific Symposium
on Biocomputing, volume 4, pages 112–123, 1999.

[29] M. K. Stephen Yeung, Jesper Tegner, and James J. Collins. Reverse
engineering gene networks using singular value decomposition and
robust regression. In Proceedings of the National Academy of Science,
volume 99, pages 6163–6168, 2002.

[30] Michael Q. Zhang. Large-scale gene expression data analysis: A new
challenge to computational biologists. Genome Research, 9(8):681–688,
1999.

67

