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Abstract. With the invention of biotechnological high throughput me-
thods like DNA microarrays, biologists are capable of producing huge
amounts of data. During the analysis of such data the need for a group-
ing of the genes according to their biological function arises. In this pa-
per, we propose a method that provides such a grouping. As functional
information, we use Gene Ontology terms. Our method clusters all GO
terms present in a data set using a Spectral Clustering method. Then,
mapping the genes back to their annotation, genes can be associated to
one or more clusters of defined biological processes. We show that our
Spectral Clustering method is capable of finding clusters with high inner
cluster similarity.

1 Introduction

In the past few years, high-throughput techniques like microarrays have be-
come major tools in the field of genomics. In contrast to traditional methods,
these technologies enable researchers to collect tremendous amounts of data,
whose analysis itself constitutes a challenge. Since these techniques provide a
global view on the cellular processes as well as on their underlying regulatory
mechanisms, they are quite popular among biologists. After the analysis of such
data, using filtering methods, clustering techniques or statistical approaches, re-
searchers often end up with long lists of interesting candidate genes that need
further examination. Then, in a second step, they categorize these genes by
known biological functions.

In this paper, we address the problem of finding functional clusters of genes
by clustering Gene Ontology terms. Based on methods originally developed for
semantic similarity, we are able to compute a functional similarity between GO
terms [13]. This information is fed into a spectral clustering algorithm [15]. This
has the advantage, that after mapping the genes back to the GO terms, a gene
with more than one associated term (function) can be present in more than one
cluster which seems biologically plausible.

The organization of this paper is as follows: a brief introduction to the Gene
Ontology is given in section 2. Related Work is discussed in section 3. Section
4 explains our method in detail. The experimental setup and the results on real
world data sets are shown in section 5. Finally, in section 6, we conclude.
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique accession
number.

2 The Gene Ontology

The Gene Ontology (GO) is one of the most important ontologies within the
bioinformatics community and is developed by the Gene Ontology Consortium
[21]. It is specifically intended for annotating gene products with a consistent,
controlled and structured vocabulary. Gene products are for instance sequences
in databases as well as measured expression profiles. The GO is independent from
any biological species. It represents terms in a Directed Acyclic Graph (DAG),
covering three orthogonal taxonomies or ”aspects”: molecular function, biological
process and cellular component. The GO-graph consists of over 18.000 terms,
represented as nodes within the DAG, connected by relationships, represented
as edges. Terms are allowed to have multiple parents as well as multiple children.
Two different kinds of relationship exist: the ”is-a” relationship (photoreceptor
cell differentiation is, for example, a child of cell differentiation) and the ”part-
of” relationship that describes, for instance, that regulation of cell differentiation
is part of cell differentiation.

Providing a standard vocabulary across any biological resources, the GO
enables researchers to use this information for automatic data analysis done by
computers and not by humans.

3 Related Work

While GO analysis is an increasingly important field, existing techniques suffer
from some weaknesses: Many methods consider the GO simply as a list of terms,
ignoring any structural relationships [2,7,17,23]. Others regard the GO primar-
ily as a tree and convert the GO graph into a tree structure for determining
distances between nodes [11]. Again others use a pseudo-distance that does not
fulfill all metric conditions and relies on counting path lengths [3]. This is a deli-
cate approach in unbalanced graphs like the GO those subgraphs have different
degrees of detail.

Besides, the aim of some methods is primary either to use the GO as prepro-
cessing [1] or as visualization tool [6]. Only few approaches utilize its structure
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for computation. Many methods are scoring techniques describing a list of genes
annotated with GO terms [2,6,7,11,17,23]. But to our knowledge and apart from
our earlier publications [20,19], there exists no automatic functional GO-based
clustering method. One method is related to clustering and can be used to in-
dicate which clusters are present in the data [3]. However, it suffers from the
weaknesses that come along with using pseudo-distances as mentioned earlier.

4 Methodology

Our method consists of different steps that will be explained separately in this
section: the mapping of the genes to the Gene Ontology, the calculation of func-
tional similarities on GO terms, the spectral clustering algorithm and finally how
the appropriate number of clusters is determined.

4.1 Mapping the Genes to the Gene Ontology

The functional similarity measure operates on pairs of GO nodes in a DAG,
whereas in general, researchers are dealing with database ids of genes or probes.
Therefore, a mapping M that relates the genes of a microarray experiment
to nodes in the GO graph is required. Many databases (e.g. TrEMBL (GOA-
project)) provide GO annotation for their entries and companies like Affymetrix
provide GO mappings to their probe set ids as well. We used GeneLynx [8] to
map the genes of dataset I. Hvidsten et al. [9] provide a mapping for dataset II.

4.2 Similarities Within the Gene Ontology

To calculate functional similarities between GO nodes, we rely on a technique
that was originally developed for other taxonomies like WordNet to measure
semantic similarities between words [12].

Following the notation in information theory, the information content (IC)
of a term t can be quantified as follows [13]:

IC(t) = − ln P (t) (1)

where P (t) is the probability of encountering an instance of term t in the data.
In the case of a hierarchical structure, such as the GO, where a term in the

hierarchy subsumes those lower in the hierarchy, this implies that P (t) is mono-
tonic as one moves towards the root node. As the node’s probability increases,
its information content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three aspects of the
GO are disconnected subgraphs, this is still true if we ignore the root node ”Gene
Ontology” and take, for example, ”biological process” as our root node instead.

To compute a similarity between two terms, one can use the IC of their
common ancestor. As the GO allows multiple parents for each term, two terms
can share ancestors by multiple paths. We take the minimum P (t), if there
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is more than one ancestor. This is called Pms, for probability of the minimum
subsumer [13]. Thereby, it is guaranteed, that the most specific parent term is
selected:

Pms(ti, tj) = min
t∈S(ti,tj)

P (t) (2)

where S(ti, tj) is the set of parental terms shared by both ti and tj . Based on
Eq. 1 and 2, Lin extended the similarity measure, so that the IC of each single
node was also taken into account [12,13]:

s(ti, tj) =
2 ln Pms(ti, tj)

ln P (ti) + lnP (tj)
. (3)

Since Pms(ti, tj) ≥ P (ti) and Pms(ti, tj) ≥ P (tj), its value varies between 1 (for
similar terms) and 0.

One should note, that the probability of a term as well as the resulting
similarity between two terms differs from data set to data set, depending on the
distribution of terms. Therefore, our clustering differs from a general clustering
of the GO and a subsequent mapping of the genes to such a general clustering.
Due to our approach, we are able to arrange the resulting cluster boundaries
depending on the distribution of the GO terms either more specific (if the terms
concentrate on a specific part of the GO) or more general (if the terms are widely
spread).

4.3 Spectral Clustering

We decided to cluster GO terms, not genes, because of two reasons: first, we do
not face the problem of combining different similarities per gene like in earlier
publications [19,20] and second, after mapping the genes back to the GO, they
can be present in more than one functional cluster which is biologically plausible,
since they can also fulfill more than one biological function.

Recently, Spectral Clustering methods haven been growing in popularity.
Several new algorithms have been published [22,18,14,15]. A set of objects (in
our case GO terms) to be clustered will be denoted by T , with |T | = n. Given an
affinity measure Aij = Aji ≥ 0 for two objects i, j, the affinities Aij can be seen
as weights on the undirected edges ij of a graph G over T . Then, the matrix
A = [Aij ] is the real-valued adjacency matrix for G. Let di =

∑
j∈T Aij be called

the degree of node i, and D be the diagonal matrix with di as its diagonal.
A clustering C = {C1, C2, . . . , CK} is a partitioning of T into the nonempty
mutually disjoint subsets C1, C2, . . . , CK . In the graph theoretical paradigm a
clustering represents a multiway cut in the graph G.

In general, all Spectral Clustering algorithms use Eigenvectors of a ma-
trix (derived from the affinity matrix A) to map the original data to the K-
dimensional vectors {γ1, γ2, . . . , γn} of the spectral domain �K . Then, in a sec-
ond step, these vectors are clustered with standard clustering algorithms. Here,
we use K-means. We chose the newest Spectral Clustering algorithm by Ng et
al. [15] and we will now review it briefly:
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1. From the affinity matrix A and its derived diagonal matrix D, compute the
Laplacian matrix L = D−1/2AD−1/2.

2. Find v1, v2, . . . , vK , the Eigenvectors of L, corresponding to the K largest
Eigenvalues.

3. Form the matrix Vn×k =
[
v1, v2, . . ., vK

]
with these Eigenvectors as columns.

4. Form the matrix Y from V by renormalizing each of X ’s rows to have unit
norm.

5. Cluster the rows of Y = [γ1, γ2, . . . , γn] as points in a K-dimensional space.
6. Finally assign the original object i to cluster j if and only if row γi of the

matrix Y was assigned to j.

Since Spectral Clustering relies on the affinity matrix A, it is easy to apply
it to any kind of data, where affinities can be computed. For numerical data,
affinities are usually computed with a kernel function, e.g. Aij = exp(−d(i,j)2

2σ2 ),
with d(i, j) denoting the Euclidean distance between point i and j and σ denoting
the kernel width. For non-numerical data, like GO terms, affinity can either be
defined in the same way, given a distance measure d. This approach has the
advantage of non-linearity, controlled by the kernel width σ, which allows for
sharper separation between clusters. But it has also disadvantages: the question
of how to deduce σ in a meaningful way arises and additionally, for many data
types, especially the GO, similarity is much easier to define since it does not need
to fulfill any metric conditions. As noted in [16], there is nothing magical about
the definition of affinity. Therefore, we directly apply our similarity matrix as
affinity matrix.

4.4 Cluster Validity

We selected the number of clusters K in our data according to the Davies-Bouldin
index [5]. Given a clustering C = {C1, C2, . . . , CK}, it is defined as:

DB(C) =
1
K

K∑

i=1

max
{

∆(Ci) + ∆(Cj)
δ(Ci, Cj)

}

(4)

where ∆(Ci) represents the inner cluster distance of cluster Ci and δ(Ci, Cj)
denotes the inter cluster distance between cluster Ci and Cj . K is the number
of clusters. Small values of DB(C) indicate a good clustering.

∆(Ci) and δ(Ci, Cj) are calculated as the sum of distances to the respective
cluster mean and the distance between the centers of two clusters, respectively.
Since we use similarities, not distances, and cannot compute means in the GO,
we apply the DB-Index in the spectral domain �K (after the Eigenvector de-
composition) where we are dealing with simple numerical data.

5 Computational Experiments

5.1 Data Sets

One possible scenario where researchers would like to group a list of genes ac-
cording to their function is when they received lists of up- or down-regulated
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genes from the analysis of an DNA microarray experiment. Thus, we chose
two publicly available microarray data sets, annotated the genes with the GO
and used them for functional clustering. We only use the taxonomy biological
process, because we are mainly interested in gene function in a more general
sense. However, our method can be applied in the same way for the other two
taxonomies.

The authors of the first data set examined the response of human fibrob-
lasts to serum on cDNA microarrays in order to study growth control and cell
cycle progression. They found 517 genes whose expression levels varied signifi-
cantly, for details see [10]. We used these 517 genes for which the authors pro-
vide NCBI accession numbers. The GO mapping was done using GeneLynx [8].
After mapping to the GO, 238 genes showed one or more mappings to biologi-
cal process or a child term of biological process. These 238 genes were used for
the clustering.

In order to study gene regulation during eukaryotic mitosis, the authors of
the second data set examined the transcriptional profiling of human fibroblasts
during cell cycle using microarrays [4]. Duplicate experiments were carried out
at 13 different time points ranging from 0 to 24 hours. Cho et al. [4] found
388 genes whose expression levels varied significantly. Hvidsten et al. [9] pro-
vide a mapping of the data set to GO. 233 of the 388 genes showed at least
one mapping to the GO biological process taxonomy and were thus used for
clustering.

5.2 Experimental Design

In the experiments, we had the problem of how to compare our method to
other known clustering algorithms, because to our best knowledge, there is no
clustering method that does a clustering only due to a similarity matrix. Instead,
most algorithms need distances. Beside that, most clustering techniques were
originally developed for numerical data and therefore utilize means during the
clustering process which we cannot compute in the GO. Only linkage methods
work on a proximity matrix, although this is also usually a distance matrix.
Average Linkage clustering is known to be its most robust, non-means based
representative. Therefore, we compare our approach to a modified version of
an Average Linkage algorithm that joins the most similar clusters, instead of
joining those with the smallest distance. Inner cluster similarity of cluster Ci is
computed as follows:

s(Ci) =
1

|Ci|(|Ci − 1|)
∑

ti,tj∈Ci,ti �=tj

s(ti, tj) (5)

with s(ti, tj) denoting the similarity between term ti and tj and |Ci| denoting
the number of terms in cluster Ci.

For Spectral Clustering, K-means was carried out 25 times and the solution
with the minimum distortion was taken as proposed in [15]. For both algorithms,
we performed runs for different values of K, ranging from K = 5, 6, . . . , 25.
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5.3 Results

Fig. 2 shows the average inner cluster similarity for Average Linkage and Spectral
Clustering for both data sets and different numbers of K. It is clearly visible that
except for one exception (K = 5, data set I), Spectral clustering always shows a
much higher inner cluster similarity than Average Linkage clustering.

Additionally, we wanted to evaluate the best solutions generated by Spectral
Clustering in more detail. Since inner cluster similarity is not independent from
the number of clusters K, we chose the best solution according to the Davies-
Bouldin index (Eq. 4) that was calculated after the Eigenvalue decomposition in
the spectral domain �K . Fig. 3 shows the Davies-Bouldin index for the cluster
numbers K = 5, ..., 25 for data set I and II, respectively. For data set I, the
best clustering was achieved with 10 clusters and for data set II with 9 clusters.
These two solutions (indicated by an arrow in Fig. 3) were then used for further
examination.

Figure 4 shows the Euclidean distance matrix calculated after the Eigenvec-
tor decomposition for data set I (left) and II (right). Higher values are indicated

Table 1. Cluster 5 of dataset I. This cluster contains mainly GO terms associated with
mitosis

Term Acc. GO Term Name
GO:0007050 cell cycle arrest
GO:0000074 regulation of cell cycle
GO:0008151 cell growth and/or maintenance
GO:0007049 cell cycle
GO:0007095 mitotic G2 checkpoint
GO:0000079 regulation of CDK activity
GO:0008284 positive regulation of cell proliferation
GO:0008283 cell proliferation
GO:0006878 copper ion homeostasis
GO:0008285 negative regulation of cell proliferation
GO:0006260 DNA replication
GO:0006874 calcium ion homeostasis
GO:0008156 negative regulation of DNA replication
GO:0006269 DNA replication, priming
GO:0007093 mitotic checkpoint
GO:0007096 regulation of exit from mitosis
GO:0006298 mismatch repair
GO:0000080 G1 phase of mitotic cell cycle
GO:0007088 regulation of mitosis
GO:0000067 DNA replication and chromosome cycle
GO:0007089 start control point of mitotic cell cycle
GO:0000085 G2 phase of mitotic cell cycle
GO:0007079 mitotic chromosome movement
GO:0000089 mitotic metaphase
GO:0007080 mitotic metaphase plate congression
GO:0006261 DNA dependent DNA replication
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Table 2. Cluster 8 of dataset I: this cluster contains mainly GO terms associated with
signal transduction

Term Acc. GO Term Name
GO:0000188 inactivation of MAPK
GO:0008277 regulation of G-protein coupled receptor protein signaling pathway
GO:0007165 signal transduction
GO:0007267 cell-cell signaling
GO:0007166 cell surface receptor linked signal transduction
GO:0007200 G-protein signaling, coupled to IP3 second messenger (phospholi-

pase C activating)
GO:0007186 G-protein coupled receptor protein signaling pathway
GO:0007181 TGFbeta receptor complex assembly
GO:0007155 cell adhesion
GO:0008038 neuronal cell recognition
GO:0007179 TGFbeta receptor signaling pathway
GO:0007156 homophilic cell adhesion
GO:0007229 integrin-mediated signaling pathway
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling

pathway
GO:0007160 cell-matrix adhesion
GO:0007268 synaptic transmission
GO:0007173 EGF receptor signaling pathway
GO:0000165 MAPKKK cascade
GO:0000187 activation of MAPK
GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway
GO:0007243 protein kinase cascade

by a light color and lower values by a dark color. Thus, the 10 squares (left)
and the 9 squares (right) indicate regions of small distances corresponding to
the 10 and clusters, respectively. Figure 4 demonstrates that the clusters in the
spectral domain �K have small inner cluster distances and high distances be-
tween them. The original affinity (or similarity) matrices for both data sets are
visualized in Fig. 5. Again, light colors indicate higher values, thus, in this case
a higher similarity. The 10 (left) and 9 (right) clusters are still clearly visible as
regions of high inner cluster similarity compared to the similarity between the
clusters.

Additionally, we examined clusters of a solution in more detail, but due to
space limitations, we cannot show all clusters of both data sets. Therefore, we
confine ourselves to show three selected clusters of data set I: cluster 5, 8 and
9. Tab. 1 - Tab. 3 show the GO terms of each of these clusters, respectively.
A closer study of the GO term names reveals that our method produces from
each other distinct functional clusters each containing GO terms that belong
to a defined biological process. The GO terms of cluster 5 (Tab. 1) are mainly
related to mitosis like cell cycle regulation or CDK activity regulation and DNA
replication. In Tab. 2, the GO terms of cluster 8 are listed. They are mostly
related to processes associated with signal transduction pathways like the TGF-



10 N. Speer, C. Spieth, and A. Zell

Table 3. Cluster 9 of dataset I: this cluster contains mainly GO terms associated with
metabolism

Term Acc. GO Term Name
GO:0006101 citrate metabolism
GO:0015936 coenzyme A metabolism
GO:0006629 lipid metabolism
GO:0006768 biotin metabolism
GO:0006633 fatty acid biosynthesis
GO:0006564 L-serine biosynthesis
GO:0006729 tetrahydrobiopterin biosynthesis
GO:0006048 UDP-N-acetylglucosamine biosynthesis
GO:0006631 fatty acid metabolism
GO:0016042 lipid catabolism
GO:0005989 lactose biosynthesis
GO:0006096 glycolysis
GO:0006700 C21-steroid hormone biosynthesis
GO:0008203 cholesterol metabolism
GO:0008202 steroid metabolism
GO:0006695 cholesterol biosynthesis
GO:0008299 isoprenoid biosynthesis
GO:0006694 steroid biosynthesis
GO:0006529 asparagine biosynthesis
GO:0006541 glutamine metabolism
GO:0006635 fatty acid beta-oxidation
GO:0006809 nitric oxide biosynthesis
GO:0006559 phenylalanine catabolism
GO:0006520 amino acid metabolism
GO:0006563 L-serine metabolism
GO:0006636 fatty acid desaturation
GO:0006004 fucose metabolism
GO:0006099 tricarboxylic acid cycle
GO:0006693 prostaglandin metabolism
GO:0006207 ’de novo’ pyrimidine base biosynthesis
GO:0006780 uroporphyrinogen III biosynthesis

β pathway or G-protein coupled signaling and these GO terms form cluster 8.
Finally, cluster 9 (Tab. 3) contains GO terms associated with metabolic processes
like amino acid synthesis, lipid metabolism or fatty acid biosynthesis, just to
name a few.

6 Discussion

In this paper, we presented a clustering method for GO terms that can be used
to cluster genes or any other gene products that can be annotated with the
Gene Ontology. We showed that the clusters produced by our method have
a higher average inner cluster similarity than those produced by a similarity-
based variant of Average Linkage Clustering. Beside that, we showed for the
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best two solutions in detail that their GO terms have a much higher simi-
larity to each other than to those in the other clusters. This is not only true
for the data in the spectral domain �K , but also for the original affinity ma-
trix. Furthermore, we evaluated three clusters in more detail and could show
that the GO terms in each cluster belong to a defined and separated biological
process.

The Spectral Clustering technique enables us to cluster those objects, like
GO terms, where it is easy to calculate similarities but more difficult to calculate
distances or even means, that are needed by many popular clustering methods.
In contrast to these methods, Spectral Clustering is able to produce a clustering
only due to an affinity matrix. To be suitable for clustering, the affinity matrix
only needs to reflect the natural relationships of the data.

Additionally, the fact that we are using GO terms for clustering and not
genes like in our previous publications has the advantage that now, one gene
can belong to more than one cluster. This makes also biologically sense, since
one gene can also have more than one function. Thus, our method facilitates the
functional analysis of high throughput data.
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