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Abstract— With the invention of microarrays, researchers are clustering methods is that cluster boundaries are often close
capable of measuring thousands of gene expression levels inand may also be arbitrary to some degree.
parallel at various time points of the biological process. To Our work is based on the expectation that the use of the

investigate general regulatory mechanisms, biologists cluster ilable biological k ledae | tial for the d | t
genes based on their expression patterns. In this paper, we available biological knowledge I1s essential for the developmen

propose a new memetic co-clustering algorithm for expression Of powerful automatic methods for the analysis of gene
profiles, which incorporates a priori knowledge in the form of expression data. To our knowledge there are only a few

Gene Ontology information. Ontologies offer a mechanism to published attempts that make use of additional biological
capture knowledge in a shareable form that is also processable jh¢ormation for the interpretation of gene expression profiles.

by computers. The use of this additional annotation information o f th is t . lust det ined
promises to improve biological data analysis and simplifies the ne of them IS 10 map gene expression clusters aetermine

identification of processes that are relevant under the measured by pure mathematical clustering onto metabolic networks in
conditions. order to find pathways of interest [34]. Although this method at

least incorporates additional biological knowledge, it still is a
sequential data analysis. A sophisticated approach for an inte-
In the past few years, DNA microarrays have become ogeated non-sequential method is described in [37]. It generates
of the major tools in the field of gene expression analysisiologically possible pathways and scores them with respect
In contrast to traditional methods, this technology enablés gene expression measurements. Z¢ral. also provide a
the monitoring of expression levels of thousands of genessignificance measure that is calculated by the comparison to a
parallel [36]. Thus, microarrays are a powerful tool helping toumber of scores for random pathways. Kurhe&taal. [18]
understand the underlying regulatory mechanisms of a cell.afso propose scoring functions to characterize known pathways
problem inherent in the use of DNA arrays is the tremendoas the transcriptional level based on gene expression, co-
amount of data produced, whose analysis itself constitutesegulation and cascade effects. They also present an approach
challenge. Several approaches have been applied to anafgzehe visualization of gene expression data in metabolic and
microarray data including principal component analysis [3%¢gulatory pathways using multi-resolution animation.
as well as supervised [12] and unsupervised learning [1@p far only one attempt is known to us that directly integrates
[32], [33]. In unsupervised learning, clustering techniqudsiological information to improve the result of a clustering
are utilized to extract the gene expression patterns inhergl]. Hanischet al. [13] map genes to components of known
in the data and thus find potentially co-regulated gendsiological networks and propose a combined distance function
Various methods have been applied, such as self-organizitgcalculate distances between these genes based on both: their
maps (SOMs) [32], k-means [33] and hierarchical clusterimgpsition in the biological network and their gene expression
[10]. Evolutionary approaches have also been applied to geprefiles. Their results seem promising, but assume an exact
expression data and were shown to be superior to classikabwledge of the relevant regulatory pathways. Because these
clustering algorithms [23], [30]. are usually not easily available, the authors show their algo-
Although the results of all these approaches are useful, aitbm performance on data of metabolic pathways [13]. So far,
basic problem remains: none of these methods incorporatesapproach is known that uses information in a more general
known biological information. Therefore, biologists are stilkense.
forced to do a sequential analysis of their data by first cluResearchers doing gene expression experiments often have ac-
tering the expression data alone and afterwards annotating ¢kss to genetic network annotation data for the probes on their
genes of each cluster by hand and thus incorporating biologieatays. This ranges from semi-structured data like keywords
information into their models. Such an approach is slow amd a defined vocabulary to unstructured free text descriptions.
exhausting and may also result in a suboptimal clustering sinoéen there is even a large amount of annotation available. This
information from other resources could often help in resolvingerved the community well in the past when the annotation
ambiguities or avoiding errors caused by linkages based was meant for humans to read. However, it causes difficulties
noisy data or spurious similarities. One major problem of pushen trying to analyze the annotation computationally since

I. INTRODUCTION



computational interpretation of text data is hard. Partly because : : G(;’oi;so;
of that there has been growing interest in ontologies within the P T pure —

.. . . . . gliogenesis
bioinformatics community. They provide a set of vocabulary———  gareor - / ¥ 00042063

. j rganogenesis / ) neurogenesis part-of .

terms that label domain concepts and at the same time terms.ossr | <"~ | G0o:000739 Q'L; nerve mataration
are placed within a structure of relationship. This makes it \\ odontogenesis part-of GO:0042551
easily processable by computers. GO:0042476 ot M [neuronal migration
In this paper we utilize biological knowledge in the form of G0:0001764

ontological information and propose incorporating that into the

clustering algorithm. The advantage of such a method is that

combining pure clustering with biological information may_ . i )
lead to more meaninaful clusters in the bioloaical sense aFH 1. Relations in the Gene Ontology. Each node is annotated with a
ea . g g ; 0 gue accession number.

that no prior knowledge about relevant pathways is necessary,

except a mapping of the expression profiles to the ontological

information. The latter is often available in pUb'IC databaseggne by computers and not by humans. The GO is available
At the same time we use a memetic clustering frameworks flat files and XML files at [2] and has also been ported to

which is generally able to overcome less promising local MySQL database scheme [7], [3].
optima to find globally more optimal solutions. In practice our

memetic framework has been shown to be superior in solution [11. CALCULATING DISTANCES

quality compared to classical clustering methods [30]. In the following, we will first define the distance functions
The paper Is organlzed as follows: a brief introduction tfbr the GO and for the gene expression measurements sepa-

the ontological information used, the Gene Ontology (GOpately. After that we will explain how we combined these two
is given in section Il. The semantic distance measure usgdtance functions.

within the ontology and the gene expression distance function
are described in section Ill. In section IV the memetic cd?. Distances within the Gene Ontology

ClUStering algorithm is described in detail. The performance‘rhere are a Coup|e of semantic S|m||ar|ty measures of
of our co-clustering algorithm on a real world gene expressi@fifferent complexity [16], [19], [27], [28], most of them were
dataset is shown in section V. Section VI discusses the papgiginally developed for taxonomies like WordNet [11]. In this
and outlines areas of future research. paper we use an approach based on the information content
[28] of each term, originally described in [16] and first adapted
to the GO in [20], [21].

The Gene Ontology (GO) is one of the most importanthe information content of a term (terms are named classes
ontologies within the bioinformatics community [6], [7] andip the following) is defined as the probability with which this
is developed from the Gene Ontology Consortium [2]. ¥erm or any child term occurs in a large corpus. Following the

is specifically intended for annotating gene products with gtation in information theory, the information contedt()
consistent, controlled and structured vocabulary. The GO dga term or class can be quantified as follows:

limited to the annotation of gene products and independent
from any biological species. It is rapidly growing having over IC(c) = —=In P(c) 1)

16000 'terms (a§ of Decem'ber .2003) and gddmonally nev%ereP(c) is the probability of encountering an instance of
ontologies covering other biological or medical aspects ar.

. classc.
being developed. . .
The GO represents terms within a Directed Acydlic Grapqu the case of a hierarchical structure, such as the GO, where

(DAG) covering three orthogonal taxonomies or "as ectsa' class in the hierarchy subsumes those lower in the hierarchy,
9 : tnog PECihis implies thatP(c) is monotonic as one moves towards the
molecular function biological processand cellular compo-

: root node. As the node’s probability increases, its information
nent The GO-graph consists of a number of terms, repre- g .

L . .content or its informativeness decreases. The root node has a
sented as nodes within the DAG, connected by relationships

/ TObabiIity of 1, hence its information content is 0. As the three
represented as edges. Terms are allowed to have multiple

arents as well as multiole children. Two different kinds o spects of the GO are disconnected subgraphs, this is still true
P P . if we ignore the root node ("Gene Ontology”, GO:0003673)

relationship exist (Fig. 1): the "is-a” relationship (neurogenes:,isnSJI take, for example, "cellular component” (GO:0005575)

and odontogenesis are for example children of organogenesis . e X
" ., . . : . as” our root node instead?(c) is simply computed using
and the "part-of” relationship that describes, for instance, that__. . SR

. . . . maeqmum likelihood estimation:
histogenesis is part of organogenesis or axongenesis is par
of neurogenesis. The GO terms are used to annotate gene P(c) = freq(c) @)
products in the widest sense, e.g. sequences in databases as N
well as measured expression profiles. By providing a standattlere NV is the total number of classes occurring in the corpus
vocabulary across any biological resources, the GO enabégrl fredc) is the number of times classor any child class
researchers to use this information for automatic data analysisc occurs in the corpus.

II. THE GENE ONTOLOGY




The similarity of two classes;, c; can then be defined asseems reasonable, since we are looking for genes that par-
followed: ticipate in the same process. Because of that their expres-
. _ . B sion patterns may depend on each other and thus should
sim(c;, ¢;) = —1nceg(1§f}cj)P(C) = - Pus(cic)) () pe correlated. However, we can not expect to see perfect

here S is th t of tal cl hared by b orrelation because of noise and the fact that we do not
where 5(c;, ¢;) is the set of parental classes shared by bo easure functional gene products, such as proteins, but only

ci andc;. As the GO allows multiple pgrents for each clas RNA levels. Nevertheless, we could expect correlation of
two classes can share parents by multiple paths. We take es belonging to the same pathway

minimum P(c), if there is more than one parent. This is calle

P,.s, for probability of the minimum subsumg21]: C. Combining Distances
Pps(ciye;) = min  P(c) ) The semgntic distance functiafl.,, operate_s on pairs of_
c€S(cicy) GO nodes in a DAG, whereas the other distance function

despr Operates on RNA expression measurements, often seen
Given the similarity score sifa;, ¢;), Jianget al. [16] devel- as "gene activity” of an organism. To construct a combined
oped a distance measure, which is the inverse of similariglistance function, both types of information must be available,
They defined the semantic distance of two classes; as thus a mappingV/ that relates genes of a microarray experi-
follows: ment to nodes in the GO graph is required. For human genes
_ _ 4 many databases (e.g. SwissProt, TTEMBL and NCBI) provide
dsem (€ ¢5) = 210 Pms(ci, ;) = (In P(ei) +1n P(e;)) - (5) GO annotation for their entries and also Affymetrix makes flat
Since genes are often annotated with more than one Gil@s accessible to their customers containing GO annotation
term, we needed to combine the calculated distances. fontheir probeset ids. In our case, we used Gene Lynx [1] to
previous work, based on WordNet [11], a similar problermap NCBI accession numbers to GO terms. Such a mapping
was found, as individual words have more than one meaniigynot one-to-one, a fact that leads to problems: not every
[29]. In this case the maximum similarity, corresponding texpression probe (or gene) can be annotated with at least one
the minimum distance was taken, as generally only a singB term. Enforcedly, for single expression measurements a
word meaning is used at a time. In contrast, Letdal. [21] combined distance calculation is not possible, reducing the
used the average similarity. They argued that in contrast iamber of genes that can take part in such a combined
WordNet, a gene product will generally have all of the roleanalysis.
attributed to it. Since we are using distances not similaritieShe combined distance function should assign a small distance
we will again take the minimum distance, since the average genes that are close in the GO and have similar expression
distance mathematically loses basic features of a metric, gpgofiles. Genes that are far apart in the GO, but still show
thatd(c;,c;) = 0. similar expression, should be assigned higher distances. The
same holds true for genes with highly distinct expression
patterns, but that are close in the GO. The largest distances
For gene expression profiles, several different distance fuRgrould be assigned to genes, which are far apart according
tions have been proposed: Euclidean distance, Manhattan ¢#shoth measures: expression and GO distance. One function
tance as well as Pearson Correlation Coefficient, suggesteqngt fulfills these criteria is a simple linear combination of
[10]. The last is a measure for the degree of linear dependemge two distance functions using scaled distances in the range

between two time-courses of gene expression levels and igg). scaling is essential, to make both distance measures
widely been used for gene expression data. The Correlati@hnparable:

Coefficientp is defined as follows:

B. Distances between Expression Profiles

dcomb(x% J?j) = wexprde:vpr(mia xj)scaled (8)

1 Tig — Mi \ [ T — My
p($i7$j) = N Z < ka__ > ( L ]> (6) +wsemdsem(mi7mj)scaled

gj

wherez; andz; are the expression vectors of genandj, With Wewpr +wsem = 1, Wherew,,,, is a weight defining the
z;;, is the expression value of gerieat time pointk and y; amount the distance calculation should be influenced by the

ando; denote mean and standard deviation of the measufé/€ €xpression measurement and,, being the influence
time series data of genep(z;, z;) takes a value of 1, if gene of the GO annotation. We use equal amount of both, gene
i and;j are totally correlated, 0, if they are not correlated, arfiikPression and GO distance, thus,,, = wsem = 0.5.

-1, if they are anti—correlatgd. The correlation. coefficient can |\ THE CO-CLUSTERING ALGORITHM: MST-MA

easily be converted to a distance measiug, in the range

0, 2] Many popular clustering algorithms for gene expression data

doapr (5, 2;) = 1 — plas, ;) ) are based on calculating cluster means (e.g. SOMs and k-
pris e means). In our case, we cannot calculate means and also want
This distance function quantifies the degree of dissimilarity ¢d avoid it, since it might become difficult and computationally
two genes. We consider anti-correlated genes as most distaaty expensive in directed graphs. Therefore, the clustering
In our purpose the use of correlation as a distance functialgorithm has to satisfy a major criterion: no mean calculation



should be used. The most popular type of clustering algorithmeight. An MST can be computed using either Kruskal’s [17]
which do not need means are hierarchical methods, especialtyPrim’s algorithm [26] inO(|E|log | E|) andO(|E|log |V])
Average Linkage clustering. In [30] we presented a Memetitne, respectively| - | denoting the number of elements in the
Algorithm (MA) based on Minimum Spanning Trees (MSTyet. We decided to use Prim’s algorithm, since it is faster for
that highly outperformed this method and also does not usdly connected graphs. For details on the algorithm and its
means. Therefore, we use this algorithm called MST-MA. Thimplementation see [8].
basic idea of the MST-MA is to build an MST from the datasdBy utilizing this MST representation we transform the
and find so called inconsistent edges in the tree to cut amdlti-dimensional clustering problem (that is usually defined
thus build the resulting clustering. In the next section we wills finding the best partitio®(X) according to an objective
review the MST-MA briefly. function) into a tree partitioning problem: finding a set of tree
edges and deleting them, so that the resulting unconnected
components determine the clustering. Representing a multi-

Memetic Algorithms, and Genetic Algorithms in generaldimensional dataset as a relatively simple tree structure leads
are population-based heuristic search approaches and hava loss of information. In [30] our results indicated that no
been applied in a number of different areas and problendispensable information is lost that is needed to solve the
domains, mostly combinatorial optimization problems. It islustering problem. Instead, the MST representation of the
known that it is hard for a 'pure’ Genetic Algorithm to ‘finedataset allows us to deal with clusters of complex shapes,
tune’ the search in complex spaces [9]. It has been showith which classical algorithms, which are based on the idea
that a combination of global and local search is almost alwagé grouping the data around a center, have problems.
beneficial [22]. The combination of an Evolutionary Algorithm
with a local search heuristic is called Memetic Algorithm [24] ) o o
[25]. MAs are known to exploit the correlation structure of th&- Representation of an Individual and Initialization
fitness landscape of combinatorial optimization problems [22], The representation used in the MA resembles the one in
[23]. They differ from other hybrid evolutionary approaches&enetic Algorithms, since we reduced the multi-dimensional
in that all individuals in the population are local optima, sincelustering problem to a binary tree partitioning problem:
after each variation step, a local search is applied. First, the MST is computed once using Prim’s [26] algorithm
MAs are inspired by Dawkin’s [9] notion of meme A meme and then copied to each individual. The individual itself is
is a "cultural gene” and in contrast to genegemesre usually represented as a bit vector of length- 1, with n denoting
adapted by the people who transmit them before they ale number of genes. Each bit corresponds to an edge of the
passed to the next generation. From the optimization poMiST indicating whether the edge is deleted (0) or not (1). The
of view, it is argued that the success of an MA is due to thesulting cluster memberships can then be calculated from the
tradeoff between the exploration abilities of the underlying EMST partition.
and the exploitation abilities of the local searchers used. THig initialize the populationk — 1 edges are randomly chosen
means that during variation, the balance between disruptiaccording to a uniform distribution and deleted from the MST,
and information preservation is very important: on the onaith £ denoting the number of clusters.
hand the escape of local optima must be guaranteed, but on
the other hand disrupting too much may cause the loss R
important information gained in the previous generation. One of the two fitness functions used in [30] does not use

o . centroids and therefore is useful for our special clustering

B. Minimum Spanning Trees purpose. It is defined as follows:

As described earlier we use a Minimum Spanning Tree .
(MST) to represent the dataset. Lét= {z,,...,,} be a set minz Z d? (i, x5)
of gene expression data with each= (z;,,...,2;,, ) € R™ |Cil
denoting them-dimensional data vector of genewith its
expression levels at timg 2,...,m. Let G(X) = (V, E) be whered(,-) is the combined distancd (,.;), |C;| the number
an undirected weighted acyclic and complete graph, whesecluster members in clusté¥;, k the number of clusters. Eq.
V = {z;]z; € X} being a set of vertices (in our case geneg®) is also known as total squared distance measure [14].
andE = {z;,z|z;,x; € X Vi # j} a set of edges connecting
the genes. Each edde,v) € E has been assigned with af- Local Search
weight w(u,v) that represents the dissimilarity between  The local search works as follows: for each individual a list
andv. We use the combined distande,,,,, as dissimilarity of deleted and non-deleted edges is created. During each step,
measure. A tree is a connected weighted graph with @modeleted and a non-deleted edge is chosen randomly. Then
circuits and a spanning treéé of a connected weighted graphboth states of the edges are reversed, the deleted becomes
G(X) is a tree ofG(X) that contains every vertex @¥(X). undeleted and vice versa, if the resulting clustering has a
If we define the weight of a tree to be the sum of its edgemaller objective value according to Eq. (9). This procedure
weights, an MST is a spanning tree with minimum totdk repeated until no enhancement could be made or one of

A. Memetic algorithms

Fitness Function

9)

i=1 \a;,2;€C;,i#]



the two lists is empty. Since for each deleted deleted edgeectors were normalized to have a mean of 0 and a variance
non-deleted edge is reversed as well, the number of clustefsl as described in [33]. We selected 10 clusters as described
is preserved during local search. in the original paper [15].

F. Selection, Recombination and Mutation B. Computational Results

Selection is applied twice during the main loop of the In the experiments, the MA was run with a population size
algorithm: selection for variation and selection for survivabf P = 40. The MA was terminated upon convergence or
For variation (recombination and mutation) individuals arbefore the 400th generation. The recombination and mutation
randomly selected without favoring better individuals. Teoate was set td0% and a single point-mutation per mutation
determine the parents of the next generation, selection &iep was applied. The experiments were repeated 50 times and
survival is performed on a pool consisting of all parents ahe best solution according to Eq. 9 is shown.
the current generation and the offspring. The new populatidime results of the clustering are shown in Fig. 2 and 3.
is derived from the best individuals of that pool. Hence, thEhe 19-dimensional gene expression vectors are visualized as
selection strategy is similar to the selection iffia+ )\)-ES heatmap, red indicating up-regulated genes, black no change
[5]. To guarantee that the population contains each solutiand green standing for down-regulation. The expression mea-
only once, duplicates are eliminated. sures are in the following order: 0 min, 15 min and 30 min, 1 h,
The recombination operator is a modified uniform crossoveth, 4 h, 6 h, 8 h, 12 h, 16 h, 20 h, 24 h after serum stimulation,
similar to the uniform crossover for binary strings [31]. Tainsynchronized followed by 30 min, 1 h, 2 h, 4 h and 0
preserve the number of clusters, for both parents, lists of thhirand after serum and cyclohexamide (a protein synthesis
deleted edges are created. Each bit of the child’s bit vectorifibitor) stimulation, unsynchronized with cyclohexamide.
setto 1. Then, a pair of deleted edges (one from each parenté)ditionally, for each gene the NCBI accession nhumber and
randomly chosen and deleted from the lists. With a probability description are provided.
of 0.5 either the deleted edge of parentr the one of parent Generally, it is visible that in some clusters the expression pro-
b is copied to the child. This is repeated until both lists ares are not as similar as they might be with pure mathematical
empty. Thus, it is guaranteed that the number of clustersdsistering. But still all clusters contain similar expression pro-
preserved. files and there are also clusters with very strong corresponding
As mutation operator a simple modified point mutation is agxpression vectors, e.g. cluster 1 and 6. Having a closer look
plied. Since each individual contains much more non-deleteml the genes and their GO annotation of each cluster, some
than deleted edges a normal point mutation (just flipping dusters contain very clearly only genes belonging to the same
randomly chosen bit) would lead to more and more clustetsiological process. All genes in cluster 1 except one are
To preserve the number of clusters, again the two lists willelonging to immune processes or stress response. On the
either deleted and non-deleted edges are created. A pair axpression side, all are slightly up-regulated when serum is
deleted and a non-deleted edge is randomly chosen and hadlded and down-regulated again when the transition from GO
are reversed. to G1 phase of the cell cycle takes place (after 1 or 2 h). The
same holds true for the genes cluster 3, but they differ on the
GO side, being involved in the biosynthesis of lipids, amino

The system was implemented in Java 1.4. For the GO gragtids and/or cholesterol. These two clusters are good examples
the MySQL database implementation [3], release December clusters that do not differ much in expression, but in the
2003, was used. The performance of our combined clusterifugnction of the genes. Another example of such a case are

V. RESULTS

algorithm is discussed on a real world dataset. clusters 5, 6, 7, 8 and 9. They all share a more or less similar
expression, being down-regulated or neutral at the beginning
A. Dataset and showing a strong up-regulation starting at 8h, but mostly

The dataset used is publicly available at [4]. The authoas 16 h after serum stimulation, the startpoint of mitosis [15].
[15] examined the response of human fibroblasts to serum @enes of cluster 5 could be found to have a role in apoptosis
cDNA microarrays in order to study growth control and celivhereas those in cluster 6 mostly perform different tasks like
cycle progression. They found 517 genes whose expressioitiating mitosis, playing a role in DNA replication and repair
levels varied significantly, for details see [15]. We used thess well as chromosome condensation. All genes of cluster 7
517 genes for which the authors provide NCBI accessidielong to the glycolyse pathway, and those of cluster 8 are
numbers. The GO mapping was done via Gene Lynx [1] idenown to have a role in protein modification and folding.
After mapping to the GO 288 genes remained. The oth€luster 9 genes are annotated to play a role in cell adhesion.
229 genes unfortunately had no GO annotation. Since we diteus, we can show that our co-clustering MA is able to
interested in knowledge incorporation of ongoing processegparate genes based on their expression profile and their role
we only use the taxonomlgiological procesf the GO. Out in a biological process. It is evident, that from the biologists
of the 288 genes, 238 genes showed one or more GO mappipgmt of view, such a cluster distribution helps a lot to realize
to biological processor a child term ofbiological process the ongoing processes in a cell and simplifies gene expression
These 238 genes were used for clustering. Their expressdata analysis.
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Fig. 2. Clusters 1-4: The squares contain the 19 dimensional expression vector visualized heatmap (red (up-regulated) via
black to green (down-regulated)), followed by the NCBI accession number and a gene description. The expression measures
are in the following order: 0, 15 and 30 min, 1, 2, 4, 6, 8, 12, 16, 20, 24 h after serum stimulation, unsynchronized followed
by 30 min, 1, 2, 4 and Oh and after serum and cyclohexamide (a protein synthesis inhibitor) stimulation, unsynchronized
with cyclohexamide.

VI. DISCUSSION ANDFUTURE RESEARCH work that is generally able to overcome less promising local
optima and find more global optimal solutions and has been
In this paper, we presented a new co-clustering algorithm feliown to be superior to classical clustering algorithms [30].
gene expression data and biological annotation. The biologiddthough our results are very promising and an auspicious
annotation is based on the GO, a tool that is available in m@tempt to bring more biological knowledge into the field of
public databases. Our algorithm is based on a memetic frargene expression analysis, we recognized a couple of problems
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Fig. 3. Clusters 5-10: The squares contain the 19 dimensional expression vector visualized heatmap (red (up-regulated) via
black to green (down-regulated)), followed by the NCBI accession number and a gene description. The expression measures
are in the following order: 0, 15 and 30 min, 1, 2, 4, 6, 8, 12, 16, 20, 24 h after serum stimulation, unsynchronized followed
by 30 min, 1, 2, 4 and Oh and after serum and cyclohexamide (a protein synthesis inhibitor) stimulation, unsynchronized
with cyclohexamide.

that should also be discussed here. like SwissProt. But still we could show that a discrimination
One problem is, that many genes, e.g. some of clusterb@ween different more general aspects of the GO is possible.
and 10 are only annotated with quite general GO termds second point is that using only the best and not the
like "cell cycle”. This is of course not detailed enough foaverage GO distance due to mathematical properties might of
biologists examining cell cycle processes. But this deficit ourse disregard other relations that may also be important.
not a general problem of the GO, that provides terms beii@ overcome this problem a similarity and not a distance
detailed enough (e.g. "G2 phase of mitotic cell cycle”), butased clustering algorithm might be helpful, because with
a problem of the people annotating the genes. Probably wiimilarities one can easily use averages. Another point for
more and more annotation this problem might disappear ovature research constitutes the combined distance function. The
the years or may be coped with using hand curated databagssar combination of distances proposed in this paper shows



good performance that could very likely be improved using9]
a more sophisticated distance function that separates much
more the low distances from the middle and higher ongsg,
Exploring a sigmoidal distance function might be interesting
in this context. Furthermore, another field of research would
be to develop a centroid calculation method for the GO. [ﬁl]
should be tested if the higher computational complexity of
centroid calculation in graphs is worth accepting due to a betté!
clustering. At the same time one would be able to expand other
standard clustering algorithms with co-clustering features and
compare their performance to our memetic framework. (23]
In summary, we showed that the clusters found by our co-
clustering MA are separated mathematically as well as bio-
logically. This fact enormously facilitates the gene expressid#f
data analysis, since it brings the view to the ongoing biological
processes in a cell. Hence, our proposed method is shown to
be highly valuable for clustering gene expression profiles aig!
therefore constitutes a good alternative to classical clustering
methods.
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