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Abstract— With the invention of microarrays, researchers are
capable of measuring thousands of gene expression levels in
parallel at various time points of the biological process. To
investigate general regulatory mechanisms, biologists cluster
genes based on their expression patterns. In this paper, we
propose a new memetic co-clustering algorithm for expression
profiles, which incorporates a priori knowledge in the form of
Gene Ontology information. Ontologies offer a mechanism to
capture knowledge in a shareable form that is also processable
by computers. The use of this additional annotation information
promises to improve biological data analysis and simplifies the
identification of processes that are relevant under the measured
conditions.

I. I NTRODUCTION

In the past few years, DNA microarrays have become one
of the major tools in the field of gene expression analysis.
In contrast to traditional methods, this technology enables
the monitoring of expression levels of thousands of genes in
parallel [36]. Thus, microarrays are a powerful tool helping to
understand the underlying regulatory mechanisms of a cell. A
problem inherent in the use of DNA arrays is the tremendous
amount of data produced, whose analysis itself constitutes a
challenge. Several approaches have been applied to analyze
microarray data including principal component analysis [35]
as well as supervised [12] and unsupervised learning [10],
[32], [33]. In unsupervised learning, clustering techniques
are utilized to extract the gene expression patterns inherent
in the data and thus find potentially co-regulated genes.
Various methods have been applied, such as self-organizing-
maps (SOMs) [32], k-means [33] and hierarchical clustering
[10]. Evolutionary approaches have also been applied to gene
expression data and were shown to be superior to classical
clustering algorithms [23], [30].
Although the results of all these approaches are useful, one
basic problem remains: none of these methods incorporates
known biological information. Therefore, biologists are still
forced to do a sequential analysis of their data by first clus-
tering the expression data alone and afterwards annotating the
genes of each cluster by hand and thus incorporating biological
information into their models. Such an approach is slow and
exhausting and may also result in a suboptimal clustering since
information from other resources could often help in resolving
ambiguities or avoiding errors caused by linkages based on
noisy data or spurious similarities. One major problem of pure

clustering methods is that cluster boundaries are often close
and may also be arbitrary to some degree.
Our work is based on the expectation that the use of the
available biological knowledge is essential for the development
of powerful automatic methods for the analysis of gene
expression data. To our knowledge there are only a few
published attempts that make use of additional biological
information for the interpretation of gene expression profiles.
One of them is to map gene expression clusters determined
by pure mathematical clustering onto metabolic networks in
order to find pathways of interest [34]. Although this method at
least incorporates additional biological knowledge, it still is a
sequential data analysis. A sophisticated approach for an inte-
grated non-sequential method is described in [37]. It generates
biologically possible pathways and scores them with respect
to gene expression measurements. Zienet al. also provide a
significance measure that is calculated by the comparison to a
number of scores for random pathways. Kurhekaret al. [18]
also propose scoring functions to characterize known pathways
at the transcriptional level based on gene expression, co-
regulation and cascade effects. They also present an approach
for the visualization of gene expression data in metabolic and
regulatory pathways using multi-resolution animation.
So far only one attempt is known to us that directly integrates
biological information to improve the result of a clustering
[13]. Hanischet al. [13] map genes to components of known
biological networks and propose a combined distance function
to calculate distances between these genes based on both: their
position in the biological network and their gene expression
profiles. Their results seem promising, but assume an exact
knowledge of the relevant regulatory pathways. Because these
are usually not easily available, the authors show their algo-
rithm performance on data of metabolic pathways [13]. So far,
no approach is known that uses information in a more general
sense.
Researchers doing gene expression experiments often have ac-
cess to genetic network annotation data for the probes on their
arrays. This ranges from semi-structured data like keywords
of a defined vocabulary to unstructured free text descriptions.
Often there is even a large amount of annotation available. This
served the community well in the past when the annotation
was meant for humans to read. However, it causes difficulties
when trying to analyze the annotation computationally since



computational interpretation of text data is hard. Partly because
of that there has been growing interest in ontologies within the
bioinformatics community. They provide a set of vocabulary
terms that label domain concepts and at the same time terms
are placed within a structure of relationship. This makes it
easily processable by computers.
In this paper we utilize biological knowledge in the form of
ontological information and propose incorporating that into the
clustering algorithm. The advantage of such a method is that
combining pure clustering with biological information may
lead to more meaningful clusters in the biological sense and
that no prior knowledge about relevant pathways is necessary,
except a mapping of the expression profiles to the ontological
information. The latter is often available in public databases.
At the same time we use a memetic clustering framework,
which is generally able to overcome less promising local
optima to find globally more optimal solutions. In practice our
memetic framework has been shown to be superior in solution
quality compared to classical clustering methods [30].
The paper is organized as follows: a brief introduction to
the ontological information used, the Gene Ontology (GO),
is given in section II. The semantic distance measure used
within the ontology and the gene expression distance function
are described in section III. In section IV the memetic co-
clustering algorithm is described in detail. The performance
of our co-clustering algorithm on a real world gene expression
dataset is shown in section V. Section VI discusses the paper
and outlines areas of future research.

II. T HE GENE ONTOLOGY

The Gene Ontology (GO) is one of the most important
ontologies within the bioinformatics community [6], [7] and
is developed from the Gene Ontology Consortium [2]. It
is specifically intended for annotating gene products with a
consistent, controlled and structured vocabulary. The GO is
limited to the annotation of gene products and independent
from any biological species. It is rapidly growing having over
16000 terms (as of December 2003) and additionally new
ontologies covering other biological or medical aspects are
being developed.
The GO represents terms within a Directed Acyclic Graph
(DAG) covering three orthogonal taxonomies or ”aspects”:
molecular function, biological processand cellular compo-
nent. The GO-graph consists of a number of terms, repre-
sented as nodes within the DAG, connected by relationships,
represented as edges. Terms are allowed to have multiple
parents as well as multiple children. Two different kinds of
relationship exist (Fig. 1): the ”is-a” relationship (neurogenesis
and odontogenesis are for example children of organogenesis)
and the ”part-of” relationship that describes, for instance, that
histogenesis is part of organogenesis or axongenesis is part
of neurogenesis. The GO terms are used to annotate gene
products in the widest sense, e.g. sequences in databases as
well as measured expression profiles. By providing a standard
vocabulary across any biological resources, the GO enables
researchers to use this information for automatic data analysis
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a
unique accession number.

done by computers and not by humans. The GO is available
as flat files and XML files at [2] and has also been ported to
a MySQL database scheme [7], [3].

III. C ALCULATING DISTANCES

In the following, we will first define the distance functions
for the GO and for the gene expression measurements sepa-
rately. After that we will explain how we combined these two
distance functions.

A. Distances within the Gene Ontology

There are a couple of semantic similarity measures of
different complexity [16], [19], [27], [28], most of them were
originally developed for taxonomies like WordNet [11]. In this
paper we use an approach based on the information content
[28] of each term, originally described in [16] and first adapted
to the GO in [20], [21].
The information content of a term (terms are named classes
in the following) is defined as the probability with which this
term or any child term occurs in a large corpus. Following the
notation in information theory, the information content (IC)
of a term or classc can be quantified as follows:

IC(c) = − ln P (c) (1)

whereP (c) is the probability of encountering an instance of
classc.
In the case of a hierarchical structure, such as the GO, where
a class in the hierarchy subsumes those lower in the hierarchy,
this implies thatP (c) is monotonic as one moves towards the
root node. As the node’s probability increases, its information
content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three
aspects of the GO are disconnected subgraphs, this is still true
if we ignore the root node (”Gene Ontology”, GO:0003673)
and take, for example, ”cellular component” (GO:0005575)
as our root node instead.P (c) is simply computed using
maximum likelihood estimation:

P (c) =
freq(c)

N
(2)

whereN is the total number of classes occurring in the corpus
and freq(c) is the number of times classc or any child class
of c occurs in the corpus.



The similarity of two classesci, cj can then be defined as
followed:

sim(ci, cj) = − ln min
c∈S(ci,cj)

P (c) = − ln Pms(ci, cj) (3)

whereS(ci, cj) is the set of parental classes shared by both
ci and cj . As the GO allows multiple parents for each class,
two classes can share parents by multiple paths. We take the
minimumP (c), if there is more than one parent. This is called
Pms, for probability of the minimum subsumer[21]:

Pms(ci, cj) = min
c∈S(ci,cj)

P (c) (4)

Given the similarity score sim(ci, cj), Jianget al. [16] devel-
oped a distance measure, which is the inverse of similarity.
They defined the semantic distance of two classesci, cj as
follows:

dsem(ci, cj) = 2 ln Pms(ci, cj)− (lnP (ci) + ln P (cj)) (5)

Since genes are often annotated with more than one GO
term, we needed to combine the calculated distances. On
previous work, based on WordNet [11], a similar problem
was found, as individual words have more than one meaning
[29]. In this case the maximum similarity, corresponding to
the minimum distance was taken, as generally only a single
word meaning is used at a time. In contrast, Lordet al. [21]
used the average similarity. They argued that in contrast to
WordNet, a gene product will generally have all of the roles
attributed to it. Since we are using distances not similarities,
we will again take the minimum distance, since the average
distance mathematically loses basic features of a metric, e.g.
that d(ci, ci) = 0.

B. Distances between Expression Profiles

For gene expression profiles, several different distance func-
tions have been proposed: Euclidean distance, Manhattan dis-
tance as well as Pearson Correlation Coefficient, suggested in
[10]. The last is a measure for the degree of linear dependence
between two time-courses of gene expression levels and has
widely been used for gene expression data. The Correlation
Coefficientρ is defined as follows:

ρ(xi, xj) =
1
N

∑ (
xik − µi

σi

)(
xjk − µj

σj

)
(6)

wherexi and xj are the expression vectors of genei and j,
xik is the expression value of genei at time pointk and µi

and σj denote mean and standard deviation of the measured
time series data of genei. ρ(xi, xj) takes a value of 1, if gene
i andj are totally correlated, 0, if they are not correlated, and
-1, if they are anti-correlated. The correlation coefficient can
easily be converted to a distance measuredexpr in the range
[0, 2]

dexpr(xi, xj) = 1− ρ(xi, xj) (7)

This distance function quantifies the degree of dissimilarity of
two genes. We consider anti-correlated genes as most distant.
In our purpose the use of correlation as a distance function

seems reasonable, since we are looking for genes that par-
ticipate in the same process. Because of that their expres-
sion patterns may depend on each other and thus should
be correlated. However, we can not expect to see perfect
correlation because of noise and the fact that we do not
measure functional gene products, such as proteins, but only
mRNA levels. Nevertheless, we could expect correlation of
genes belonging to the same pathway.

C. Combining Distances

The semantic distance functiondsem operates on pairs of
GO nodes in a DAG, whereas the other distance function
dexpr operates on RNA expression measurements, often seen
as ”gene activity” of an organism. To construct a combined
distance function, both types of information must be available,
thus a mappingM that relates genes of a microarray experi-
ment to nodes in the GO graph is required. For human genes
many databases (e.g. SwissProt, TrEMBL and NCBI) provide
GO annotation for their entries and also Affymetrix makes flat
files accessible to their customers containing GO annotation
for their probeset ids. In our case, we used Gene Lynx [1] to
map NCBI accession numbers to GO terms. Such a mapping
is not one-to-one, a fact that leads to problems: not every
expression probe (or gene) can be annotated with at least one
GO term. Enforcedly, for single expression measurements a
combined distance calculation is not possible, reducing the
number of genes that can take part in such a combined
analysis.
The combined distance function should assign a small distance
to genes that are close in the GO and have similar expression
profiles. Genes that are far apart in the GO, but still show
similar expression, should be assigned higher distances. The
same holds true for genes with highly distinct expression
patterns, but that are close in the GO. The largest distances
should be assigned to genes, which are far apart according
to both measures: expression and GO distance. One function
that fulfills these criteria is a simple linear combination of
the two distance functions using scaled distances in the range
[0, 1]. Scaling is essential, to make both distance measures
comparable:

dcomb(xi, xj) = wexprdexpr(xi, xj)scaled (8)

+wsemdsem(xi, xj)scaled

with wexpr +wsem = 1, wherewexpr is a weight defining the
amount the distance calculation should be influenced by the
pure expression measurement andwsem being the influence
of the GO annotation. We use equal amount of both, gene
expression and GO distance, thuswexpr = wsem = 0.5.

IV. T HE CO-CLUSTERING ALGORITHM: MST-MA

Many popular clustering algorithms for gene expression data
are based on calculating cluster means (e.g. SOMs and k-
means). In our case, we cannot calculate means and also want
to avoid it, since it might become difficult and computationally
very expensive in directed graphs. Therefore, the clustering
algorithm has to satisfy a major criterion: no mean calculation



should be used. The most popular type of clustering algorithms
which do not need means are hierarchical methods, especially
Average Linkage clustering. In [30] we presented a Memetic
Algorithm (MA) based on Minimum Spanning Trees (MST)
that highly outperformed this method and also does not use
means. Therefore, we use this algorithm called MST-MA. The
basic idea of the MST-MA is to build an MST from the dataset
and find so called inconsistent edges in the tree to cut and
thus build the resulting clustering. In the next section we will
review the MST-MA briefly.

A. Memetic algorithms

Memetic Algorithms, and Genetic Algorithms in general,
are population-based heuristic search approaches and have
been applied in a number of different areas and problem
domains, mostly combinatorial optimization problems. It is
known that it is hard for a ’pure’ Genetic Algorithm to ’fine
tune’ the search in complex spaces [9]. It has been shown
that a combination of global and local search is almost always
beneficial [22]. The combination of an Evolutionary Algorithm
with a local search heuristic is called Memetic Algorithm [24],
[25]. MAs are known to exploit the correlation structure of the
fitness landscape of combinatorial optimization problems [22],
[23]. They differ from other hybrid evolutionary approaches
in that all individuals in the population are local optima, since
after each variation step, a local search is applied.
MAs are inspired by Dawkin’s [9] notion of ameme. A meme
is a ”cultural gene” and in contrast to genes,memesare usually
adapted by the people who transmit them before they are
passed to the next generation. From the optimization point
of view, it is argued that the success of an MA is due to the
tradeoff between the exploration abilities of the underlying EA
and the exploitation abilities of the local searchers used. This
means that during variation, the balance between disruption
and information preservation is very important: on the one
hand the escape of local optima must be guaranteed, but on
the other hand disrupting too much may cause the loss of
important information gained in the previous generation.

B. Minimum Spanning Trees

As described earlier we use a Minimum Spanning Tree
(MST) to represent the dataset. LetX = {x1, . . . , xn} be a set
of gene expression data with eachxi = (xi1 , . . . , xim) ∈ <m

denoting them-dimensional data vector of genei with its
expression levels at time1, 2, . . . ,m. Let G(X) = (V,E) be
an undirected weighted acyclic and complete graph, where
V = {xi|xi ∈ X} being a set of vertices (in our case genes)
andE = {xi, xj |xi, xj ∈ X∨i 6= j} a set of edges connecting
the genes. Each edge(u, v) ∈ E has been assigned with a
weight w(u, v) that represents the dissimilarity betweenu
and v. We use the combined distancedcomb as dissimilarity
measure. A tree is a connected weighted graph with no
circuits and a spanning treeT of a connected weighted graph
G(X) is a tree ofG(X) that contains every vertex ofG(X).
If we define the weight of a tree to be the sum of its edge
weights, an MST is a spanning tree with minimum total

weight. An MST can be computed using either Kruskal’s [17]
or Prim’s algorithm [26] inO(|E| log |E|) andO(|E| log |V |)
time, respectively,| · | denoting the number of elements in the
set. We decided to use Prim’s algorithm, since it is faster for
fully connected graphs. For details on the algorithm and its
implementation see [8].
By utilizing this MST representation we transform the
multi-dimensional clustering problem (that is usually defined
as finding the best partitionP (X) according to an objective
function) into a tree partitioning problem: finding a set of tree
edges and deleting them, so that the resulting unconnected
components determine the clustering. Representing a multi-
dimensional dataset as a relatively simple tree structure leads
to a loss of information. In [30] our results indicated that no
indispensable information is lost that is needed to solve the
clustering problem. Instead, the MST representation of the
dataset allows us to deal with clusters of complex shapes,
with which classical algorithms, which are based on the idea
of grouping the data around a center, have problems.

C. Representation of an Individual and Initialization

The representation used in the MA resembles the one in
Genetic Algorithms, since we reduced the multi-dimensional
clustering problem to a binary tree partitioning problem:
First, the MST is computed once using Prim’s [26] algorithm
and then copied to each individual. The individual itself is
represented as a bit vector of lengthn − 1, with n denoting
the number of genes. Each bit corresponds to an edge of the
MST indicating whether the edge is deleted (0) or not (1). The
resulting cluster memberships can then be calculated from the
MST partition.
To initialize the population,k− 1 edges are randomly chosen
according to a uniform distribution and deleted from the MST,
with k denoting the number of clusters.

D. Fitness Function

One of the two fitness functions used in [30] does not use
centroids and therefore is useful for our special clustering
purpose. It is defined as follows:

min
k∑

i=1


 ∑

xi,xj∈Ci,i 6=j

d2(xi, xj)
|Ci|


 (9)

whered(·, ·) is the combined distance (dcomb), |Ci| the number
of cluster members in clusterCi, k the number of clusters. Eq.
(9) is also known as total squared distance measure [14].

E. Local Search

The local search works as follows: for each individual a list
of deleted and non-deleted edges is created. During each step,
a deleted and a non-deleted edge is chosen randomly. Then
both states of the edges are reversed, the deleted becomes
undeleted and vice versa, if the resulting clustering has a
smaller objective value according to Eq. (9). This procedure
is repeated until no enhancement could be made or one of



the two lists is empty. Since for each deleted deleted edge a
non-deleted edge is reversed as well, the number of clusters
is preserved during local search.

F. Selection, Recombination and Mutation

Selection is applied twice during the main loop of the
algorithm: selection for variation and selection for survival.
For variation (recombination and mutation) individuals are
randomly selected without favoring better individuals. To
determine the parents of the next generation, selection for
survival is performed on a pool consisting of all parents of
the current generation and the offspring. The new population
is derived from the best individuals of that pool. Hence, the
selection strategy is similar to the selection in a(µ + λ)-ES
[5]. To guarantee that the population contains each solution
only once, duplicates are eliminated.
The recombination operator is a modified uniform crossover,
similar to the uniform crossover for binary strings [31]. To
preserve the number of clusters, for both parents, lists of their
deleted edges are created. Each bit of the child’s bit vector is
set to 1. Then, a pair of deleted edges (one from each parent) is
randomly chosen and deleted from the lists. With a probability
of 0.5 either the deleted edge of parenta or the one of parent
b is copied to the child. This is repeated until both lists are
empty. Thus, it is guaranteed that the number of clusters is
preserved.
As mutation operator a simple modified point mutation is ap-
plied. Since each individual contains much more non-deleted
than deleted edges a normal point mutation (just flipping a
randomly chosen bit) would lead to more and more clusters.
To preserve the number of clusters, again the two lists with
either deleted and non-deleted edges are created. A pair of a
deleted and a non-deleted edge is randomly chosen and both
are reversed.

V. RESULTS

The system was implemented in Java 1.4. For the GO graph
the MySQL database implementation [3], release December
2003, was used. The performance of our combined clustering
algorithm is discussed on a real world dataset.

A. Dataset

The dataset used is publicly available at [4]. The authors
[15] examined the response of human fibroblasts to serum on
cDNA microarrays in order to study growth control and cell
cycle progression. They found 517 genes whose expression
levels varied significantly, for details see [15]. We used these
517 genes for which the authors provide NCBI accession
numbers. The GO mapping was done via Gene Lynx [1] ids.
After mapping to the GO 288 genes remained. The other
229 genes unfortunately had no GO annotation. Since we are
interested in knowledge incorporation of ongoing processes,
we only use the taxonomybiological processof the GO. Out
of the 288 genes, 238 genes showed one or more GO mappings
to biological processor a child term ofbiological process.
These 238 genes were used for clustering. Their expression

vectors were normalized to have a mean of 0 and a variance
of 1 as described in [33]. We selected 10 clusters as described
in the original paper [15].

B. Computational Results

In the experiments, the MA was run with a population size
of P = 40. The MA was terminated upon convergence or
before the 400th generation. The recombination and mutation
rate was set to40% and a single point-mutation per mutation
step was applied. The experiments were repeated 50 times and
the best solution according to Eq. 9 is shown.
The results of the clustering are shown in Fig. 2 and 3.
The 19-dimensional gene expression vectors are visualized as
heatmap, red indicating up-regulated genes, black no change
and green standing for down-regulation. The expression mea-
sures are in the following order: 0 min, 15 min and 30 min, 1 h,
2 h, 4 h, 6 h, 8 h, 12 h, 16 h, 20 h, 24 h after serum stimulation,
unsynchronized followed by 30 min, 1 h, 2 h, 4 h and 0
h and after serum and cyclohexamide (a protein synthesis
inhibitor) stimulation, unsynchronized with cyclohexamide.
Additionally, for each gene the NCBI accession number and
a description are provided.
Generally, it is visible that in some clusters the expression pro-
files are not as similar as they might be with pure mathematical
clustering. But still all clusters contain similar expression pro-
files and there are also clusters with very strong corresponding
expression vectors, e.g. cluster 1 and 6. Having a closer look
to the genes and their GO annotation of each cluster, some
clusters contain very clearly only genes belonging to the same
biological process. All genes in cluster 1 except one are
belonging to immune processes or stress response. On the
expression side, all are slightly up-regulated when serum is
added and down-regulated again when the transition from G0
to G1 phase of the cell cycle takes place (after 1 or 2 h). The
same holds true for the genes cluster 3, but they differ on the
GO side, being involved in the biosynthesis of lipids, amino
acids and/or cholesterol. These two clusters are good examples
for clusters that do not differ much in expression, but in the
function of the genes. Another example of such a case are
clusters 5, 6, 7, 8 and 9. They all share a more or less similar
expression, being down-regulated or neutral at the beginning
and showing a strong up-regulation starting at 8h, but mostly
at 16 h after serum stimulation, the startpoint of mitosis [15].
Genes of cluster 5 could be found to have a role in apoptosis
whereas those in cluster 6 mostly perform different tasks like
initiating mitosis, playing a role in DNA replication and repair
as well as chromosome condensation. All genes of cluster 7
belong to the glycolyse pathway, and those of cluster 8 are
known to have a role in protein modification and folding.
Cluster 9 genes are annotated to play a role in cell adhesion.
Thus, we can show that our co-clustering MA is able to
separate genes based on their expression profile and their role
in a biological process. It is evident, that from the biologists
point of view, such a cluster distribution helps a lot to realize
the ongoing processes in a cell and simplifies gene expression
data analysis.



Fig. 2. Clusters 1-4: The squares contain the 19 dimensional expression vector visualized heatmap (red (up-regulated) via
black to green (down-regulated)), followed by the NCBI accession number and a gene description. The expression measures
are in the following order: 0, 15 and 30 min, 1, 2, 4, 6, 8, 12, 16, 20, 24 h after serum stimulation, unsynchronized followed
by 30 min, 1, 2, 4 and 0h and after serum and cyclohexamide (a protein synthesis inhibitor) stimulation, unsynchronized
with cyclohexamide.

VI. D ISCUSSION ANDFUTURE RESEARCH

In this paper, we presented a new co-clustering algorithm for
gene expression data and biological annotation. The biological
annotation is based on the GO, a tool that is available in most
public databases. Our algorithm is based on a memetic frame-

work that is generally able to overcome less promising local
optima and find more global optimal solutions and has been
shown to be superior to classical clustering algorithms [30].
Although our results are very promising and an auspicious
attempt to bring more biological knowledge into the field of
gene expression analysis, we recognized a couple of problems



Fig. 3. Clusters 5-10: The squares contain the 19 dimensional expression vector visualized heatmap (red (up-regulated) via
black to green (down-regulated)), followed by the NCBI accession number and a gene description. The expression measures
are in the following order: 0, 15 and 30 min, 1, 2, 4, 6, 8, 12, 16, 20, 24 h after serum stimulation, unsynchronized followed
by 30 min, 1, 2, 4 and 0h and after serum and cyclohexamide (a protein synthesis inhibitor) stimulation, unsynchronized
with cyclohexamide.

that should also be discussed here.
One problem is, that many genes, e.g. some of cluster 2
and 10 are only annotated with quite general GO terms
like ”cell cycle”. This is of course not detailed enough for
biologists examining cell cycle processes. But this deficit is
not a general problem of the GO, that provides terms being
detailed enough (e.g. ”G2 phase of mitotic cell cycle”), but
a problem of the people annotating the genes. Probably with
more and more annotation this problem might disappear over
the years or may be coped with using hand curated databases

like SwissProt. But still we could show that a discrimination
between different more general aspects of the GO is possible.
A second point is that using only the best and not the
average GO distance due to mathematical properties might of
course disregard other relations that may also be important.
To overcome this problem a similarity and not a distance
based clustering algorithm might be helpful, because with
similarities one can easily use averages. Another point for
future research constitutes the combined distance function. The
linear combination of distances proposed in this paper shows



good performance that could very likely be improved using
a more sophisticated distance function that separates much
more the low distances from the middle and higher ones.
Exploring a sigmoidal distance function might be interesting
in this context. Furthermore, another field of research would
be to develop a centroid calculation method for the GO. It
should be tested if the higher computational complexity of
centroid calculation in graphs is worth accepting due to a better
clustering. At the same time one would be able to expand other
standard clustering algorithms with co-clustering features and
compare their performance to our memetic framework.
In summary, we showed that the clusters found by our co-
clustering MA are separated mathematically as well as bio-
logically. This fact enormously facilitates the gene expression
data analysis, since it brings the view to the ongoing biological
processes in a cell. Hence, our proposed method is shown to
be highly valuable for clustering gene expression profiles and
therefore constitutes a good alternative to classical clustering
methods.
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