
Similarity-based neural networks for applications in
computational molecular biology

Igor Fischer

Wilhelm-Schickard-Institut f̈ur Informatik, Universiẗat Tübingen,
Sand 1, 72076 T̈ubingen, Germany

fischer@informatik.uni-tuebingen.de

Abstract. This paper presents an alternative to distance-based neural networks.
A distance measure is the underlying property on which many neural models
rely, for example self-organizing maps or neural gas. However, a distance mea-
sure implies some requirements on the data which are not always easy to satisfy
in practice. This paper shows that a weaker measure, the similarity measure, is
sufficient in many cases. As an example, similarity-based networks for strings
are presented. Although a metric can also be defined on strings, similarity is the
established measure in string-intensive research, like computational molecular bi-
ology. Similarity-based neural networks process data based on the same criteria
as other tools for analyzing DNA or amino-acid sequences.

1 Introduction

In respect to underlying mathematical properties, most artificial neural networks used
today can be classified as scalar product-based or distance-based. Of these, multi-layer
perceptrons and LVQ [1] are typical representatives.

In distance-based models, each neuron is assigned a pattern to which it is sensitive.
Appearance of the same or a similar pattern on the input results in a high activation of
that neuron — similarity being here understood as the opposite of distance.

For numerical data, distance-based neural networks can easily be defined, for there
is a wide choice of distance measures, the Euclidean distance being certainly the best
known. In some applications, however, the data cannot be represented as numbers or
vectors. Although it may sometimes still be possible to define a distance on them, such
a measure is not always natural, in the sense that it well represents relationships between
data.

One such example are symbol strings, like DNA or amino-acid sequences which are
often subject to research in computational molecular biology. There, a different measure
– similarity – is usually used. It takes into account mutability of symbols, which is
determined through complex observations on many biologically close sequences. To
process such sequences with neural networks, it is preferable to use a measure which is
well empirically founded.

This paper discusses the possibility of defining neural networks to rely on similarity
instead of distance and shows examples of such networks for symbol strings. Some
results of processing artificial and natural data are presented below.

2 Distance and similarity

Distance is usually, but not necessarily, defined on a vector space. Forx, y, z ∈ X , any
functiond : X 2 → R fulfilling the following properties is a distance measure onX :

1. d(x, y) ≥ 0
2. d(x, y) = 0 ⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, y) + d(y, z) >= d(x, z)

For strings, one such measure is the Levenshtein distance [2], also known as edit
distance, which is the minimum number of basic edit operations - insertions, deletions
and replacements of a symbol - needed to transform one string into another. Edit opera-
tions can be given different costs, depending on the operation and the symbols involved.
Such weighted Levenshtein distance can, depending on the chosen weighting, cease to
be distance in the above sense of the word.

Another measure for quantifying how much two strings differ is “feature distance”
[3]. Each string is assigned a collection of its substrings of a fixed length. The substrings
– the features – are typically two or three symbols long. The feature distance is then the
number of features in which two strings differ. It should be noted that this measure is not
really a distance, for different strings can have a zero distance: consider, for example,
stringsAABA andABAA. Nevertheless, feature distance has a practical advantage over
the Levenshtein by being much easier to compute.

A similarity measure is simpler than distance. Any functions : X 2 → R can be
declared similarity – the question is only if it reflects the natural relationship between
data. In practice, such functions are often symmetrical and assign a higher value to two
identical elements than to distinct ones, but this is not required.

For strings, similarity is closely related to alignment.

A (global) alignment of two strings S1 and S2 is obtained by first inserting
chosen spaces (or dashes), either into or at the ends of S1 and S2, and then
placing the two resulting strings one above the other so that every character or
space in either string is opposite a unique character or a unique space in the
other string. [4]

The spaces (or dashes) are special symbols (not from the alphabet over which the strings
are defined) used to mark positions in a string where the symbol from the other string
is not aligned with any symbol. For example, for stringsAABCE andABCD,

AABC-E
-ABCD-

is an alignment, not necessarily optimal. Each alignment can be assigned a score ac-
cording to certain rules. In most simple cases, a similarity score is assigned to each pair
of symbols in the alphabet, as well as for pairs of a symbol and a space. The score for
two aligned strings is computed as the sum of similarity scores of their aligned symbols.
Such similarity measure is called “additive”. There are also more complex schemes, for

example charging contiguous spaces less then isolated. The similarity of the strings is
defined as the score of their highest-scoring alignment.

In computational molecular biology, similarity is most often computed for DNA or
amino-acid sequences (sequence and string are used as synonyms here), where similar-
ity between symbols is established empirically to reflect observed mutability/stability
of symbols. Because each pair of symbols can have a different similarity and no obvi-
ous regularity exists, similarities are stored in look-up tables, which have the form of a
quadratic matrix. Among scoring matrices, the PAM (point accepted mutations) [5] and
BLOSUM (block substitution matrix) [6] families are the most often used.

It is intuitively clear that distance and similarity are somehow related, but quanti-
fying the relationship is not always straightforward. For additive measures, if the simi-
larity of each symbol with itself is the same, it can be established by a simple equation
[7]:

〈s1|s2〉 + d(s1, s2) =
M

2
· (|s1| + |s2|). (1)

The notation〈s1|s2〉 is used to symbolize the optimal alignment score of stringss1

ands2, |s| the string length, andM is an arbitrary constant. The distanced(s1, s2) is
defined as the minimal cost for transforming one string into the other. The cost is the
sum of the symbol replacement costsc(αi, βi), αi andβi being the symbols comprising
s1 ands2, and the insertion/deletion costs, each of the operations costing someh > 0
per symbol. These values are related to the values comprising the string similarity:

p(α, β) = M − c(α, β) and

g =
M

2
− h. (2)

wherep(α, β) is the similarity score for the symbolsα andβ andg is the value of
space in the alignment (usually a negative one). For the condition (2) on the distance
to be satisfied,c(α, α) must be always zero, that is,p(α, α) must be constant for all
α. Unfortunately, the above mentioned PAM and BLOSUM scoring matrices do not
satisfy this condition.

Especially for searching large databases of protein and DNA sequences, sophisti-
cated, fast heuristics like FASTA [8] and BLAST [9] have been developed. They have
been fine-tuned not only for speed, but also for finding biologically meaningful results.
For example, from an evolutionary point of view, a compact gap of 10 symbols in an
aligned string is not twice as probable as a gap of 20 symbols at the same position.
Thus, non-additive scoring schemes are applied. This is another reason why the above
described method for computing the distance from similarity is not applicable.

A simple method for computing “distance” from similarity score for proteins was
applied in [10]. For computing the score normalized scoring matrices with values scaled
to [0, 1] were used, and for spaces a fixed value of0.1 were applied. The scores for all
pairs of proteins from the data set were computed and ordered into a new matrixS. The
elementS[i][j] was the similarity score for thei-th andj-th protein from the data set.
This matrix was subsequently also scaled to[0, 1]. The distance betweeni-th andj-th
protein was then computed as

D[i][j] = 1 − S[i][j]. (3)

This approach has several disadvantages: First, the computational and storage over-
heads are obvious. In most applications pair-wise similarity scores of all data are not
needed. Also, this method is not applicable for on-line algorithms, with data sets of
unknown and maybe even infinite sizes. But more than that, it is not clear, if the above
function is a distance at all. It is easy to see that simple scaling of theS matrix can
lead to a situation where the requirement (2) for distance is violated. Such a case ap-
pears when the diagonal elements – standing for self-similarities of strings – are not all
equal. A workaround, like attempt to scale the matrix row- or column-wise, so that the
diagonal elements are all ones, would cause a violation of the symmetry relationship
(3). ElementS[i][j] would generally be scaled differently thanS[j][i] so the two would
not be equal any more. And finally, the triangle inequality – requirement (4) – is not
guaranteed to be satisfied.

3 Distance-based neural networks

As presented in the introduction, distance-based neural networks rely on distance for
choosing the nearest neuron. However, in the training phase the distance is also in-
volved, at least implicitly. All distance based neural networks known to the author try
to place or adapt neurons in such a way that they serve as good prototypes of the input
data for which they are sensitive. If the Euclidean distance is used, the natural prototype
is the arithmetic mean. It can be expressed in terms of distance as the element having
the smallest sum of squared distances over the data set. This property is helpful if oper-
ations like addition and division are not defined for the data, but a distance measure is
provided.

Another kind of prototype is the median. For scalar data, the median is the middle
element of the ordered set members. Like mean, it can be expressed through distance.
It is easy to see that the median has the smallest sum of distances over the data set.
Thus the concept of median can be generalized on arbitrary data for which a distance
measure is defined.

Based on distance measures for strings and relying on the above mentioned proper-
ties of mean and median, neural networks for strings have been defined. Self organizing
map and learning vector quantization – have been defined both in the batch [11] and
on-line [12] form. As is often the case, the on-line version has been shown to be signif-
icantly faster than the batch form.

Finding the mean or the median of a set of strings is not quite easy. The first algo-
rithms [13] performed an extensive search through many artificially generated strings
in order to find the one with the smallest sum of (squared) distances. A later and much
faster algorithm [12] used a by-product of computing the distance – the edit transcript –
for finding the prototype string. The edit transcript is a list of operations needed to trans-
form one string into another. It is not actually needed for computing the distance, but
it can be directly deduced by backtracing through the so-called dynamic programming
table, which is an intermediate result when computing Levenshtein or related distance.
Starting from an approximation of the prototype, the edit operations needed for trans-
forming it into every of the set strings were computed. Then, at each position, the edit
operation appearing most frequently in all transcripts was applied, as long as it min-

imized the sum of (squared) distances. This is only a best effort approach and it can
get stuck in a local optimum. Moreover, since strings are discrete structures, the mean
or the median are not always unambiguous. For example, for the set of two strings,
{ A, B }, bothA andB are equally good mean and median.

4 Similarity-based neural networks

As mentioned in section 2, for some applications similarity is a more natural measure
than distance. Taking the above discussed inconveniences that can appear when using
distance, one could attempt to circumvent it altogether. If one were able to define a
prototype based on similarity, a neural network could be described by an algorithm
almost identical to the distance-based networks: one only needs to search for the neuron
with the highest similarity instead of the one with the minimum distance. Of course, if
the distance is defined in a way that properly reflects the reality, similarity can be defined
as the negative distance and the two paradigms converge.

Computing the prototype based on similarity can indeed be performed, at least for
strings. Recall that the similarity between two strings is computed from their optimal
alignment by summing the similarity scores of aligned symbols. Three or more strings
can also be aligned, in which case one speaks of a multiple alignment. Having computed
the multiple alignment (let the question how to compute it efficiently be put aside for
the moment), the prototype strinḡs can be defined as the string maximizing the sum of
similarities with all strings from the set:

s̄ :
∑

i

〈s̄|si〉 ≥
∑

i

〈sk|si〉 ∀sk �= s̄. (4)

Not quite identical, but in practice also often used prototype is the “consensus
string”, defined as the string having at each position the most common symbol ap-
pearing at that position in all aligned strings.

5 Implementation considerations

Many of the ideas presented here rely on approximate string matching algorithms. Ef-
ficient implementation of a neural network based on string similarity should take care
of the following issues: computing the similarity, finding the most similar string in the
given set and computing multiple alignment.

5.1 Computing the similarity

Similarity is computed from aligned strings, and alignment can be found using dynamic
programming. The simplest algorithms have quadratic time and space complexity. Both
can be reduced under certain circumstances, but also increased if more complex scoring
schemes are used (for literature cf. [4, 7, 14]).

An adaptation of the original algorithm, which includes a divide-and-conquer strat-
egy [15], computes the alignment in linear space for the price of roughly doubling the
computation time. If the alignment itself is not needed, but only the similarity score, the
computation time can remain the same.

5.2 Finding the most similar string

Such a case appears in the search for the neuron most similar to the input string. A
simple approach would be to go through all neurons and compute their similarity to
the string, retaining the most similar. Alignments between neurons and the string are
never needed. This algorithm can further be refined: not only alignment, but even exact
similarity need not be computed for all neurons.

The idea is roughly the following: suppose one expects the most similar neuron to
have the similarity score above a certain threshold. This expectation can be based on
experience from previous iterations or on knowledge about the strings. Then one can
go through neurons, start computing the similarity for each and break off the compu-
tation as soon as it becomes obvious that the score would be below the threshold. If
the threshold was correct, the algorithm finds the most similar neuron by computing
the similarity only on a fraction of them. Else, the threshold is reduced and the whole
process repeated.

The above idea is implemented by computing only the similarity matrix elements
in a limited band around its diagonal, thus reducing the complexity toO(kn) [16], k
being the band width andn the string length. The observed speed-up is about an order
of magnitude.

5.3 Computing multiple alignments

Multiple alignment is considered the “holy grail” in computational molecular biology
[4]. Exact computation can be performed by dynamic programming, but with time com-
plexity exponential in the number of sequences. Therefore a number of approximate
algorithms have been developed. In this work, the “star alignment” [17] is used, not
only for its speed and simplicity, but also because it’s close relatedness to the problem
of finding a prototype string.

In star alignment, the multiple alignment is produced by starting from one string –
the “star center” – and aligning it successively with other strings. Spaces inserted into
the center in course of an alignment are retained for further alignments and simulta-
neously inserted into all previously aligned strings. That way, the previous alignments
with the center are preserved.

The choice of the star center is not critical. At the beginning, one can use the string
from the set that maximizes equation (4), and the current prototype in all consecutive
iterations. Measurements presented below show that iterative search for the prototype
is not very sensitive to the initialization.

6 Experimental results

To show that computing the string prototype from a set of similar strings is quite robust
to initialization, a series of experiments has been performed. In one, the prototype string
was computed from a set of strings, all derived from an original random string by adding
noise (insertions, deletions and replacements of random symbols), and starting from
one of these strings. In repeated runs, keeping the noise level at 50%, the computed

prototype converged to the original string in 97% of cases. Even increasing the noise
level to 75% still resulted in 80% of prototypes converging to the original string.

In another type of experiment, everything was left the same, except that the algo-
rithm started from a completely random string. Even then, a 89% convergence was
observed in case of 50% noise and 62% in case of 75% noise.

Fig. 1. A simple example of similarity string SOM. The mapping is produced from the set of
English words corrupted by 75% noise.Above: Initial map with corrupted words randomly dis-
tributed over it.Below: The converged map after 300 iterations. The algorithm has extracted the
original (prototypic) words from the noisy set and ordered them into distinct regions on the map.
Artificial “transition” words appear on regions borders.

Small-scale experiments on similarity-based self-organizing maps were performed
on a set of 1750 words generated artificially by adding noise to 7 English words (Figure
1). Care was taken that no original words appear in the set. Even at the noise level of
75% and with random initialization, the resulting8 × 12 map converged to a state with
the original 7 words placed at distinct closed regions.

In a real-world test, a self-organizing map was tested on a set of 68 sequences from
seven protein families. The12 × 10 map was initialized by random sequences ordered
along their Sammon projection [18]. The map was computed using BLOSUM62 sim-
ilarity matrix and additive scoring. The map (Figure 2) showed all families distributed

Fig. 2. Similarity string SOM of seven protein families. Each square represents a node in the
map , and different families are represented by different fill patterns. The area filled by a pattern
corresponds to the node similarity to the protein. All families are well expressed except transducin
(the black squares).

Table 1. LVQ classification of seven protein family samples, using 15 prototypes, on average
two per class.µij denotes thej-th prototype of thei-th class andNi is the number of elements
from classi assigned to the prototype in the corresponding column. In this set, six sequences are
incorrectly classified.

µ11 µ12 µ13 µ21 µ22 µ31 µ41 µ42 µ51 µ52 µ61 µ62 µ63 µ71 µ72

N1 3 3 4
N2 9 2
N3 2 6
N4 4 5 1
N5 5 5
N6 1 7 1 1
N7 1 1 4 4

Fig. 3. Similarity string SOM of hemoglobine sequences. Two different chains,α (dark shades)
andβ (light shades), occupy distinct map areas. Moreover, weakly expressed subclusters can be
recognized in each of the chains (white-dotted and black forα, and white forβ).

on it, although one of them (transducin) much weaker. On the class boundaries, uniden-
tified “mutations” appeared.

Another real-world example is shown in figure 3. The mapping is produced from
320 hemoglobine alpha and beta chain sequences of different species, as used in [19].

Attempting to classify the seven protein families by LVQ, using 15 prototype strings
led to the results presented in Table 1. Six sequences (about 9% of the data set) were in-
correctly classified. On the simpler hemoglobine data, perfect classification is obtained
by already two prototypes.

7 Conclusion and outlook

This paper shows that already a simple similarity measure, combined with an algorithm
for its local maximization, is sufficient to define a large class of neural networks. A
distance measure is not necessary. Even if it is defined, like, for example, for symbol
strings, it is not always a ’good’ measure. In some applications, like molecular biology,
a similarity measure is more natural than distance and is preferred in comparing protein
sequences. It is shown that such data can be successfully processed by similarity-based
neural networks. It can therefore be concluded that similarity-based neural networks are
a promising tool for processing and analyzing non-metric data.

In the presented work, simple, additive similarity measures for strings were used.
Further experiments, for example embedding BLAST search engine, are in preparation.

References

1. Kohonen, T.: Learning vector quantization. Neural Networks1 (1988) 303

2. Levenshtein, L.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics–Doklady10 (1966) 707–710

3. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin Heidelberg
(1988)

4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press
(1997)

5. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In
Dayhoff, M., ed.: Atlas of Protein Sequence and Structure. Volume 5., Washington, DC.,
Natl. Biomed. Res. Found. (1978) 345–352

6. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. In:
Proceedings of the National Academy of Sciences. Volume 89., Washington, DC (1992)
10915–10919

7. Setubal, J.C., Meidanis, J.: Intorduction to Computational Molecular Biology. PWS Pub-
lishing Company, Boston (1997)

8. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. In: Pro-
ceedings of the National Academy of Sciences of the U.S.A. Volume 85., Washington, DC,
National Academy of Sciences of the U.S.A (1988) 2444–2448

9. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment
search tool. Journal of Molecular Biology215 (1990) 403–410

10. Agrafiotis, D.K.: A new method for analyzing protein sequence relationships based on Sam-
mon maps. Protein Science6 (1997) 287–293

11. Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing21
(1998) 19–30

12. Fischer, I., Zell, A.: String averages and self-organizing maps for strings. In Bothe, H.,
Rojas, R., eds.: Proceedings of the Neural Computation 2000, Canada / Switzerland, ICSC
Academic Press (2000) 208–215

13. Kohonen, T.: Median strings. Pattern Recognition Letters3 (1985) 309–313
14. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: the Theory and

Practice of Sequence Comparison. Addison-Wesley, Reading, MA (1983)
15. Hirshberg, D.: A linear space algorith for computing maximal common subsequences. Com-

munications of the ACM18 (1975) 341–343
16. Landau, G., Vishkin, U.: Introducing efficient parallelism into approximate string matxhing

and a new serial algorithm. In: Proceedings of the ACM Symposium on the Theory of
Computing. (1986) 220–230

17. Altschul, S.F., Lipman, D.J.: Trees, stars, and multiple biological sequence alignment. SIAM
Journal of Applied Mathematics49 (1989) 197–209

18. Sammon, Jr., J.: A nonlinear mapping for data structure analysis. IEEE Transactions on
Computers18 (1969) 401–409

19. Apostol, I., Szpankowski, W.: Indexing and mapping of proteins using a modified nonlinear
Sammon projection. Journal of Computational Chemistry (1999)

