
Improving Web Based Training using an XML content base

Simon Wiest, Andreas Zell
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen, Köstlinstraße 6, 72074 Tübingen, Germany
{wiest, zell}@informatik.uni-tuebingen.de

Abstract

In this paper we point out the benefits of using structured content in Web Based Training (WBT) scenarios.
Using an XML compliant subset of the DocBook document type definition –enriched with semantics for interactive
hypermedia and educational elements– we present a complete publishing workflow for educational online material.
Original content is authored in an SGML/XML editor, then processed into a set of XML files containing course
structure and contents. Finally a web server extension written in Java (servlet) renders this XML content on-the-fly
into HTML pages according to learner preferences, desired target media or current educational situation. All user
requests and their parameters are logged into a relational database. This allows the collection and sharing of
comparable data on applicability and effectiveness of the content and helps to improve the quality of future online
courses.

1. Introduction
Interactive computer based training (CBT) has experienced a tremendous growth over the last few years.
However, the rapidly growing demand for interactive CBT revealed that the traditional content creation
workflow has serious shortcomings that make its large-scale application difficult:

Reuse and exchange of content modules are hard to implement, because most learning environments use
proprietary authoring tools and data formats. It soon turned out that also HTML, the lingua franca of the
Internet, lacks functionality in fulfilling the needs of on-line educators, e.g. no dedicated semantics for
online exercises, no support for complex equation rendering, difficult reformatting of HTML content that
is to be reused in new contexts.

This paper presents a workflow that tries to tackle some of these problems using an non-proprietary
content structure and introduces a web server extension that enables HTML browsers to access the
features made possible by XML content.

2. Benefits of structuring educational content
The key idea behind structuring educational material is to decouple style from content. Storing course
contents in elements that reflect its semantics (e.g. introduction, example, quiz, ...) allows the reuse of
data in different situations and formats - adapted to learner preferences, target media or purposes. All
groups concerned with the online learning process benefit from the use of structured documents:

Authors

• Authors can concentrate on content not (necessarily) on style and formatting
• Structural integrity can be checked/enforced by an authoring application (e.g. hyperlinks can be

validated automatically)
• Hyperlinks can point to document subcomponents, allowing fine-grained cross-references.
• Indexes, summaries, glossaries etc. can be generated automatically
• Content modules can be reused in other contexts (e.g. related courses, in a guided tour, in different

skill levels)



Publishers / Internet Service Providers

• Contents are well machine-processable (i.e. well storable in databases to facilitate content
administration and improvement of retrieval performance)

• Crossmedia publishing is possible from one, single source (e.g. online/offline versions, printed
material). The concept of viewgroups presented in [12] addresses this idea.

• Structured content allows the attachment of meta data not only to the complete document but also
to its subcomponents.

• Versioning is facilitated.

Learners

• Mandatory structure leverages navigating the course content.
• Advanced search and retrieval of content components.
• New features like multi-representation content become feasible (e.g. the same content in both

visual and textual representation. [14] suggests a Presentation Markup Language.)

Researchers / Quality Assurance

• Enhanced possibilities for learner tracking and usage evaluation allow the collection and sharing of
comparable data on applicability and effectiveness of the content and help to improve its quality
[4].

• Flexible rendering allows experiments with screen designs, navigation concepts etc.

3. Existing applications of SGML/XML in the educational field
Like its predecessor, SGML [10], XML [5] is a scheme to define new languages. It does not specify what
kind of application data is stored in a file by itself but rather provides a framework to define purpose-
depended languages that follow one common syntax. This is done in a document type definition (DTD)
that describes the overall structure and the components of generic data file. There have been already
different suggestions to apply SGML, XML or at least structured documents to educational purposes:

The IEEE Learning Technology Standards Committee proposes a learning object meta data standard
(LOM) [9] to facilitate the retrieval, reuse and exchange of educational content. Learning objects range
from small components like a single sentence, a figure or a Java applet up to complete on-line courses.
LOM contains information on technical, didactical and legal issues of educational content and provides
support for versioning. LOM does not standardize the actual internal data structure of learning content.

The Tutorial Markup Language [6] provides a language to describe several classes of online exercises
like multiple-choice tests, drag & drop puzzles etc. Other structured file formats [3], [11] pursuit the
same goal but currently don’t use neither SGML nor XML.

The Synchronized Multimedia Integration Language (SMIL) [8] allows an XML compliant specification
of both time-line based and event driven multimedia presentations. Supported by widely distributed
player applications, it definitely will be used in educational context in the future although it does not
contain dedicated didactic semantics.

4. Our implementation
At our department, we offer several on-line courses on computer science topics to our students. This
material consists of some 200 linked HTML pages per course, enriched with additional interactive
elements like Shockwave animations, Flash movies, and Java applets. The courses were created from
legacy content in Adobe FrameMaker format as a starting point. Dealing with mathematical and
statistical subjects the courses contain over 500 equations. A typical page is shown in Fig. 1.



Fig. 1. Left: Typical page from online course “Evolutionary Algorithms”. Note the high number of equations and
symbols in the main content area. Small symbols, especially indices, are hard to read on-screen and do not print
very well. Right: Using our improved system, learners can click on any equation to open a high resolution version
in a separate windows. An additional print view offers also a high quality hardcopy option.

Although FrameMaker ships with HTML/XML export functionality, files generated by the HTML export
function needed manual clean-up which took one person about 1-2 days to complete for each new release
of a course. Additionally, an evaluation among student users turned out that the poor display quality of
equations was a major annoyance to learners.

From our previous experience we also could identify two main usage scenarios for our online content:
the tutorial mode, in which learners tend to navigate through the course linearly and slowly paced and
the script mode, in which users want to look up small amounts of information like definitions, proofs or
concepts quickly. Because both modes are related representations of the same content, we wanted to keep
maintaining course contents simple and generate both versions from one single data source. Because
interface design for WBT is still a young discipline we also realized that there might be a need for
additional modes in the future. Ideally, a learning environment would therefore apply formatting and user
preferences to the desired content not until the moment of an incoming learner’s request.

We therefore came up with a new publishing workflow that consists of six steps:

1. Choosing/creating an appropriate document type definition (DTD).
2. Structuring a complete course according to the DTD in an authoring environment.
3. Converting the SGML content into XML and preparing it to be served on the WWW.
4. Creation of HTML page templates and navigational controls.
5. Developing a servlet that converts XML to HTML on-the-fly.
6. Tracking content usage into a relational database.

4.1. Document Type Definition (DTD)
In the search for an appropriate document type definition we realized that while there are quite a few
standard DTDs for technical documentation like DocBook [13], our course content structure had also to
support didactic and hypermedia elements. We decided to enrich an XML-compliant, light-weight
variant of the DocBook DTD with additional elements and attributes that cater educational needs,
different media types and hyperlink capabilities.

Educational elements: According to the idea of learning objects proposed in [9], educational content can
be decomposed into subcomponents of different aggregation level:



Table 1 LOM aggregation levels

Level Example
0 “content atoms” like single sentences, images or raw media files
1 A collection of level 0 objects like a single HTML page with some embedded pictures
2 A collection of level 1 objects like a linked net of HTML pages with an common index page
3 A collection of level 2 objects like a complete course

We classified the elements inherited from DocBook into the given aggregation levels appropriately. All
level 0 objects were assigned a 32digit hexadecimal identifier attribute id, unique in time and space. All
level 1 objects also got an attribute time, which reflects the assumed learner’s time to complete this
object. A typical level 1 object is a short quiz which consists of a question and an answer. Further
educational elements are experiment, procedure, definition, algorithm, proof,
example, important, note, aims, didactical.

Media type support: We added several elements for different media types with appropriate attributes
specific to the media type. Supported media elements are graphic, applet, equation,
shockwave, flash, quicktime.

Hypertext support: Hyperlinks are defined according to a subset of the the W3C XLink working draft of
July, 26 1999 [7].

4.2. Authoring environment
We chose FrameMaker+SGML as XML editor because it combines the ease of use of a modern word
processor (especially equation handling) with the structural functionality of an XML editor. To track
down learning objects during the following processing steps, each level 0 object was assigned a globally
unique identifier. Once the identifiers are assigned, they will be present in FrameMaker+SGML files as
well as in exported SGML documents. It is important to note that even though contents are kept in the
FrameMaker+SGML file format, this format represents nothing more than a wrapper around a DTD
compliant structure.

4.3. Converting and preparing XML content
The next step is to export the FrameMaker contents into an SGML file using built-in export functionality.
Image representations of embedded equations are also generated in this step.

A common problem creating scientific content for the WWW is to display mathematical equations.
While some browsers already feature limited MathML rendering capabilities it is common practice to
embed equations as bitmap images, e.g. as GIF or PNG files. This one-way conversion complicates later-
on modifications for the author and results in poor image quality of the content (especially when
hardcopied. We decided to keep equations in this format within FrameMaker but to convert them in GIFs
during SGML export. By exporting the course contents twice with different resolution (72dpi, 300dpi),
we get two versions of the same equation. This allows features like zooming into equations that are hard
to read (see Fig. 1 right) or high quality hardcopy options.

In a final step the course description, a hierarchical table-of-contents structure is extracted from the
SGML document to serve as website structure. Course description, course content (stored in a set of
XML files) and equation images are now copied onto the web server file system, ready to be served.

The complete conversion procedure is depicted in Fig. 2. Export and equation rendering of a 200 page
course on a PII 350 MHz Windows PC takes roughly 10 minutes for the 72dpi version (40 minutes for
300dpi) and does not require any human interaction.



FM+
SGML

GIF

GIF GIF

FM

XMLXML

FM

FM+
SGML

SGML

SGML

GIF

GIF GIF

XML
course
description

course
content

legacy
content

content
author

structured
content

course
content

course
content

equation
images
(hi-res)

equation
images
(low-res)

equation
images

export (300dpi)markup

new contents export (72dpi)

Authoring Workflow

SGML/XML
converter
& merger

Fig. 2. Authoring workflow. Content creation takes place inside the SGML editor (like FrameMaker+SGML). In
two passes, SGML versions and two variants of equation graphics are exported. Finally these file get converted to
XML and prepared for being served by our servlet-based system.

4.4. Page templates and navigational controls
Page templates were designed in a HTML editor, containing placeholders for dynamic content. These
placeholders get replaced by applying several XSLT transformations [17] using an open source XSLT
formatter [1] to the requested course content file. XSL style sheets exist for several target media (on-line,
print) and usage modes (tutorial and script mode). Fig. 3 shows three examples of different modes and
target media rendering. The globally unique learning object identifiers are preserved during conversion,
allowing web browsers to make use of this information. We are working on a smart, fine-grained
annotation system that works at the subcomponent level within HTML pages.

Fig. 3. The same XML content rendered for different modes/targets. Left: Script mode for on-screen usage. Middle:
Tutorial mode for on-screen usage. Note the box containing learning goals in the middle of the main content area.
Right: Script mode for printout. It has higher resolution and contrasts that enhance printability. Navigational
elements are suppressed because they don’t make sense on printed paper.

4.5. Serving content
Because most browsers currently provide only limited XML support, the course contents are server-side
converted from XML to HTML. Additionally, this allows adaptation of the contents to a specific user’s
learning context (e.g. formatting preferences, target media, usage mode) at this point.



To bridge the gap between web server and XML content, we developed a Servlet Interface for Online
User-adapted XML (SIOUX). Servlets [15] are plug-in extensions written in Java that add functionality
to a HTTP daemon. To serve a request, SIOUX

a) reads in the requested XML file,
b) applies a XSL transformation to the target medium and mode,
c) inserts the content into a page template,
d) resolves server-side includes and other placeholders,
e) returns the HTML page to the learner’s client and
f) logs user id, URL and learning context into a relational database.

Our setup builds on an Apache HTTP daemon [1] and the MySQL RDBMS [16] running on an RS/6000
workstation. Servlet support is provided by the JServ servlet engine, connecting to the SIOUX servlet on
a Windows PC (Windows NT4.0, Pentium II-350, 256 MB, Sun Java Runtime Environment 1.2.2). The
response times vary between 0.2-1.0 seconds per page request depending on complexity of the XSLT
style sheets. This is acceptable compared to the 1-5 minutes it takes a learner to work through the page
contents. Fig. 4 shows how a request is handled by Apache/SIOUX and which resources are used.

*

XSL

XML

XHTML

Internet

XML

*

XSLXHTML

XML

Apache
HTTP daemon

SIOUX servlet

course
description

course
content

templates

RDBMS
user profiles
usage logs
feedback

styles

sta
tic

co
nt

en
t

dy
na

m
ic

co
nt

en
t

HTML browser

Course ServerLearner

HTTP request

HTML

*

XML

JDBC

images, digital video,
documentation, executables

Fig. 4. Resources used within the SIOUX architecture. The SIOUX servlet generates dynamic content from XML
structure, content, style and template files. Static content is handled by the Apache server without SIOUX
intervention.

4.6. Tracking content usage
The system contains a learner database that allows restricting access to course contents, personalized
tracking of content usage and persistent storage of user preferences. After a request has been served, the
user’s ID, the requested URL and all session parameters (e.g. current mode, target media, individual
interface settings, date and time of access, referring URL, agent, ...) are logged into a relational database.

5. Conclusion
We presented how structuring content supports the online learning process in creating, deploying and
using course content. Examples have been given, how existing DTDs can be modified to address the
specific needs of online educators. Using this XML compliant DTD offers dedicated semantics needed in
didactical processes while avoiding getting trapped in a proprietary format. Publishing time of new
course releases could be cut down from 1-2 days of manual labor to some minutes batch processing time.



Using one single source which is varied on-thy-fly avoids complicated and error prone maintenance of
several parallel versions. Rendering is acceptable fast for online learning purposes. Several modes
(tutorial, script) match the main usage scenarios closer than a single all-purpose version. The handling of
equations has been improved by providing high resolution versions for screen and printout. The equation
itself remains in a editable textual representation which might use MathML in the near future.

Preserving learning object identifiers in the resulting HTML pages makes way for applications like fine-
grained annotation mechanisms on sub-page detail level.

The flexibility in displaying content in different flavors provides also a test bed for evaluation of
different user interfaces or navigation. Equally important is the ability to measure the usage of these
experimental variations. While it is obvious that web interface design plays an important role in online
education process, it is arguable which is the best way. Due to extended tracking possibilities we can
offer an approach that helps to collect hard facts. In the likely case we’ll learn that there is no single ideal
interface for all learners, the presented workflow is already powerful enough to serve highly personalized
educational content. In any way, precise usage data will help WBT authors to understand how students
are using their course contents as well as web interface designers to improve their work based on learners
acceptance of interface innovations.

Acknowledgements
The site description file format has been originally developed by Igor Fischer. The research described in
this papers was conducted within the project “Bioinform@tik”, funded by the state of Baden-
Württemberg and the Deutsche Telekom AG.

References
[1] Apache XML Project, “Xalan-J XSLT,” http://xml.apache.org/xalan/index.html

[2] Apache Software Foundation, “Apache HTTP Server Project,” http://www.apache.org/httpd.html
[3] S. Arneil, M. Holmes, and H. Street, “Hot Potatoes,“ University of Victoria Language Centre, http://web.uvic.ca/hrd/halfbaked/
[4] B. Barquero, U. Creß, F.W. Hesse, “BioInform@tik. Evaluation der multimedialen Lehrveranstaltungen im Sommersemester 99,“

internal report, Deutsches Institut für Fernstudienforschung an der Universität Tübingen, University of Tübingen, Tübingen, 1999.
[5] T. Bray, J. Paoli, and C.M. Sperberg-McQuee, eds., “Extensible Markup Language (XML) 1.0,“ W3C Recommendation 10-Feb-1998,

http://www.w3.org/TR/1998/REC-xml-19980210.html
[6] D. Brickley, “Tutorial Markup Language (TML),” Institute for Learning and Research Technology, University of Bristol,

http://www.ilrt.bris.ac.uk/netquest/about/lang/
[7] S. DeRose, D. Orchard, and B. Trafford, eds., “XML Linking Language (XLink),” World Wide Web Consortium Working Draft 26-

Jul-1999, http://www.w3.org/1999/07/WD-xlink-19990726
[8] P. Hoschka, ed., “Synchronized Multimedia Integration Language (SMIL) 1.0,” W3C Recommendation 15-June-1998,

http://www.w3.org/TR/REC-smil/
[9] “Draft Standard for Learning Object Metadata,” IEEE Standards Department, Learning Technology Standards Committee, Piscataway,

2000. (IEEE P1484.12/D4.0).
[10] “ISO 8879: Information processing – Text and office systems – Standard Generalized Markup Language (SGML),“ International

Organization for Standardization (ISO), Genf, 1986.
[11] R. Krauße, “Exercise Format,” TU Dresden, http://linus.psych.tu-dresden.de/Stupla/ef/
[12] H. Müller, J. Deponte, “Distributed Multimedial Presentation and Conferencing,“ Proc. Workshop “Die Virtuelle Wissensfabrik“,

GMD, St. Augustin, 1999.
[13] Organization for the Advancement of Structured Information Standards (OASIS), “The DocBook DTD,“ http://www.oasis-

open/docbook, 1998.

[14] A. Ram et al., “PML: Adding Flexibility to Multimedia Presentations,” IEEE Multimedia, Vol. 6, No. 2, April 1999, 40-51.
[15] Sun Microsystems Inc., “The Java Servlet Specification v2.2,”, December 1999, http://java.sun.com/products/servlet/
[16] T.c.X, DataConsultAB, “MySQL,” http://www.mysql.com

[17] World Wide Web Consortium (W3C), “Extensible Stylesheet Language (XSL) Version 1.0,” W3C Working Draft 27-Mar-2000,
http://www.w3.org/TR/xsl


