
Evolutionary Search for Smooth Maps in Motor
Control Unit Calibration

Jan Poland, Kosmas Knödler, Alexander Mitterer?, Thomas Fleischhauer?,
Frank Zuber-Goos? and Andreas Zell

Universität Tübingen, WSI-RA, Sand 1, D - 72076 Tübingen, Germany
poland@informatik.uni-tuebingen.de,

http://www-ra.informatik.uni-tuebingen.de

Abstract. We study the combinatorial optimization task of choosing
the smoothest map from a given family of maps, which is motivated
from motor control unit calibration. The problem is of a particular in-
terest because of its characteristics: it is NP-hard, it has a direct and
important industrial application, it is easy-to-state and it shares some
properties of the wellknown Ising spin glass model. Moreover, it is ap-
propriate for the application of randomized algorithms: for local search
heuristics because of its strong 2-dimensional local structure, and for Ge-
netic Algorithms since there is a very natural and direct encoding which
results in a variable alphabet. We present the problem from two points of
view, an abstract view with a very simple definition of smoothness and
the real-world application. We run local search, Genetic and Memetic
Algorithms. We compare the direct encoding with unary and binary
codings, and we try a 2-dimensional encoding. For a simple smooth-
ness criterion, the Memetic Algorithm clearly performs best. However,
if the smoothness citerion is more complex, the local search needs many
function evaluations. Therefore we prefer the pure Genetic Algorithm for
the application.

1 Introduction

This paper deals with a combinatorial optimization problem that is motivated
from the calibration of electronic control units (ECUs) for combustion engines.
We briefly sketch the situation. During engine operation, each engine parameter1

is being controlled by a map that is stored in the ECU as a lookup table. In this
way, the engine is adjusted to the actual operating situation, which is necessary
to obtain optimal fuel consumption, exhaust emissions, etc. Technically, an op-
erating situation is a combination of engine speed and relative air mass flow and
thus corresponds to a point in a rectangular domain, the operating range. More-
over, the maps in the ECU are defined by a grid (xj)n

j=1 on the operating range,
the operating points, and the respective co-domain values. If there are m engine
? BMW Group, 80788 München, Germany.
1 engine parameters are controlled variables that determine the behaviour of the en-

gine, e.g. ignition timing angle

y4
3

y4
2

y4
1

x
4

x
3

x
8

x
7

x
2

x
12

x
6

x
1

x
11

x
5

x
10

x
9

Fig. 1. The context: grid, candidates, and a sample map

parameters, then the control unit must store m maps
(
(y(j)(µ))n

j=1

)m

µ=1
. For op-

erating points that are not grid points, the ECU will interpolate the parameter
values. (See e.g. [1] for the technical background).

Our problem now arises in the final phase of the lookup table design. For
each operating point xj , we are given a set of candidates {(y(j)(µ)

k)m
µ=1}nj

k=1,
each of which defines a combination of values for the engine parameters. These
candidates have been obtained by a previous optimization process separately
for each operating point, and they have approximately the same quality (fuel-
consumption etc.). In order to populate the lookup table, one candidate has to
be selected at each operating point. The constraint is the fact that some of the
parameters are adjusted mechanically and thus have a certain inertia. Hence,
one is interested in smooth maps for these parameters, in order that the value
can be adjusted swiftly when the operating point changes.

Note that this is a multiple objective optimization task unless m = 1, since
we have m maps to smooth and choosing a candidate means fixing all parameter
values at the corresponding operating point. Thus, the problem is not separable,
i.e. it is not possible to optimize each map separately.

Clearly the meaning of ”smoothness” has to be defined precisely. The first
part of this paper will assume a very simple smoothness criterion. This turns the
problem into an easy-to-state combinatorial optimization problem with several
interesting properties. The second part of this paper deals with the application.

We use local search heuristics and Genetic Algorithms to find smooth maps.
Even with a simple smoothness definition, it can be seen that a pure heuristic
is not powerful enough to perform an efficient global optimization. On the other
hand, the application implies more complex smoothness criteria. Here, the local
search becomes less efficient, and other methods that require deeper insight into
the problem structure are very expensive to develop or even intractable. However,
we will see that a Genetic Algorithm can still produce good solutions.

2 The abstract case

In this section, we will consider an abstract version of our problem and a very
simple smoothness definition.

Let G = (xj)n
j=1 be a set of points defined by a rectangular P by Q grid

in R2. For each grid point xj , a number of candidates {y(j)
k }nj

k=1 ⊂ R is given
(see Fig. 1). Then, M(xj) = y

(j)
kj

defines a map from G into R, this is the map

obtained by choosing the candidate y
(j)
kj

at the grid point xj with 1 ≤ kj ≤ nj

(Fig. 1 shows an example map). Clearly, there are
∏n

j=1 nj different maps, we
denote the family of all these maps by M.

This situation is quite similar to the wellknown spin glass model in two
dimensions. Therefore, we will use a similar terminology and refer to the energy
of a map instead of its smoothness or steepness. Then, the problem of minimizing
the energy of a map corresponds to the problem of finding an exact ground state
of a spin glass model (see e.g. [2]). Of course, there are also relations to other
fields and problems with a two-dimensional structure, e.g. image processing.

Definition 1 For two neighbouring grid points xi, xj ∈ G and a map M , we
define the energy of the connection xi − xj in the map as

E(i,j)(M) = 1|y(i)−y(j)|>c,

i.e. the connection energy is 1 if the ordinate distance is greater than a constant
threshold c > 0, and 0 otherwise. We may fix c = 1

2 without loss of generality.

Two grid points are neighbouring if they are adjacent in the grid.

Definition 2 For a map M , we define its energy (i.e. steepness) by the sum
over all connection energies:

E(M) =
∑

i<j are neighbours

E(i,j)(M).

The above definition has a natural interpretation in terms of inert engine
parameters: If the distance of two neighbouring grid points xi and xj is too
large, then the adjusting time for the engine parameter is larger than a certain
limit when the operating point changes from xi to xj . The limit could be derived
e.g from the time resolution of the control unit.

Since the smoothest map has the lowest energy, our problem can be stated
as follows.

Problem (”SmoothMap”): Find the map M0 ∈M with minimal energy, i.e.

E(M0) = min
M0∈M

E(M).

Although the above energy definition is very simple, and we have restricted
to only one optimization objective (m = 1), the resulting abstract problem
SmoothMap has very interesting features:

1. It is NP-complete in the grid dimension, even if the number of candidates
nj is limited to 2 for all 1 ≤ j ≤ n. This is shown in [3].

2. It admits a PTAS (polynomial time approximation scheme) for certain ”non-
degenerate” instances. (Instances with a very small energy of the optimal
solution are called degenerate, since in this case the approximation quality
of the PTAS cannot be assured.) However, the PTAS does not produce good
solutions in reasonable time, on the other hand, there is no fully PTAS .

3. If one grid dimension is equal to 1 (the one-dimensional case), there is a
polynomial time algorithm. This is extendible to the case where one grid
dimension is bounded. See [3] for these results.

4. Because of the simple neighbourhood definition, the problem has a strong
2-dimensional local structure.

5. A very appropriate encoding for Genetic Algorithms is the direct encoding,
which leads to a variable alphabet. This will be discussed in the sequel.

For the spin glass model, certain cases have been proved to be NP-hard,
while other cases are solvable in polynomial time (see [4]), including the simple
two-dimensional case. Although the present problem seems to be very similar,
its structure is quite different, and so is the proof of its complexity.

2.1 Variable Alphabet Coding

The direct encoding of a map is just a vector with n components c = (cj)n
j=1,

each component cj defining the candidate chosen at the grid point xj . In terms
of Genetic Algorithms, each xj corresponds to one gene cj of the chromosome c,
and we have

c = (cj)n
j=1 ∈

n⊗

j=1

{1, . . . , nj}.

If this variable alphabet coding is used for Genetic Algorithms, we observe that
the conditions and hence the assertions of the schema theorem are not at all
affected (cf. [5], [6]).

Since the genes correspond to grid points, a simple 2-dimensional arrange-
ment of the genes resulting in a 2-dimensional chromosome would be natural.
Appropriate crossover operators have been suggested e.g. in [7]. On the other
hand, a conventional one-dimensional chromosome can be considered as a refer-
ence.

In order to show the benefits of the direct encoding, we will additionally try a
standard binary encoding as well as a unary encoding. (Here, ”unary encoding”
means bit-counting, i.e. a sufficiently large part of the bit string is reserved for
a grid point and the number of ones in this part define the candidate chosen.)

2.2 A Local Search Operator

Because of its 2-dimensional local structure, the problem admits a very canonical
and powerful local search heuristic.

0 100 200 300 400 500

700

750

800

850

900

950

1000

1050

1100

generations

av
ar

ag
e

fit
ne

ss

uniform cross variable alphabet
uniform cross binary coding
uniform cross unary coding
2−point cross var. alph.
2−dim 2−point cross var. alph
hybrid GA
local heuristic (minimum)
global optimum and best found value

Fig. 2. Construction of a spiral line test
instance

Fig. 3. Fitness curves for the spiral line
test instance

Algorithm.
Repeat N times

Choose j ∈ {1, . . . , n} randomly
Find all k ∈ {1, . . . , nj} such that the resulting choice has minimal energy
Choose randomly one of theese k

End Repeat

In order to obtain reference solutions, a good choice for number of loops is
N = 10 · P ·Q, where P and Q are the grid dimensions. On the other hand, we
will use the heuristic as mutation operator for the GA thus obtaining a Memetic
Algorithm (hybrid GA). In this case, N = P ·Q is sufficient.

2.3 Test Instances

We will use three types of test instances of the abstract problem SmoothMap.

1. Random test instances.
For each grid point j, both the number of candidates and the candidate
values are randomly generated. This is the easiest test instance type, the
test instances are almost surely nondegenerate. On the other hand, the global
optimum is unknown and intractable to compute, so one cannot check if an
algorithm succeeds to find it.

2. Line test instances.
This test instance type permits to compute the global optimum. One starts
by placing a line onto the grid, such that the line does not touch itself, i.e.
neighbouring grid points that belong to the line are neighbouring in the
line. In Fig. 2, the line is spiral-formed, other forms are possible as well, e.g.
meander. For the line points, the number of candidates and the candidate
values are randomly generated. Then the optimal choice for these points is

0 100 200 300 400 500
400

450

500

550

600

650

700

750

800

850

900

950

generations

av
ar

ag
e

fit
ne

ss

uniform cross variable alphabet
uniform cross binary coding
uniform cross unary coding
2−point cross var. alph.
2−dim 2−point cross var. alph
hybrid GA
local heuristic (minimum)
best found value

0 100 200 300 400 500

0

100

200

300

400

500

600

700

800

900

1000

generations

av
ar

ag
e

fit
ne

ss

uniform cross variable alphabet
uniform cross binary coding
uniform cross unary coding
2−point cross var. alph.
2−dim 2−point cross var. alph
hybrid GA
local heuristic (minimum)
global optimum and best found value

Fig. 4. Fitness curves for the random
test instance

Fig. 5. Fitness curves for the noisy
plane test instance

calculated with the efficient one-dimensional case algorithm (see [3]). Finally
the remaining grid points (the ”separating” points) are randomly endowed
with candidates, where clearly one has to assure that the optimal choice
for the line points does not change. The resulting test instance has a global
optimum that is easy to compute only if the line is exploited. Moreover, it
is almost surely nondegenerate.

3. Noisy plane test instances.
A very simple way to produce test instances with known global optimum 0
is the following: Start with one candidate for each grid point and arrange
these candidates such that the respective neighbouring differences are small,
i.e. they form a noisy plane with energy 0. Then add more randomly placed
candidates for each grid point, clearly the optimum remains 0. Placing these
additional candidates far away from the noisy plane probably raises the
optimization difficulty for the local heuristic. The resulting test instances
are of course degenerate, and the optimum is easy to find if the existence of
the noisy plane is known.

2.4 Experimental Results

The experiments have been performed with a spiral line instance, a random
instance and a noisy plane instance. All three of them are defined on a 25×25 grid
and contain from 3 to 7 candidates per grid point. These relatively large numbers
were chosen in order to obtain difficult test instances and thus a good observation
of the convergence speed. The following representations and crossover operators
are compared:

1. direct encoding with uniform crossover,
2. binary coding with uniform crossover,
3. unary coding (”bit counting”) with uniform crossover,

4. direct encoding with 2-point crossover,
5. 2-dimensional direct encoding with 2-point crossover.

In order to obtain an undistorted measure of the convergence properties of the
different representations, we use the pure GA. Additionally, a Memetic Algo-
rithm and the pure local heuristic have been executed.

All code has been implemented in MATLAB. The following GA parameters
were used: five parallel populations, each of size µ = 200 (one population of
size µ = 100 for the hybrid GA), number of generations tmax = 500, tournament
selection with q = 5, crossover and mutation probability pcross = 0.6 and pmut =
1/625 (for the hybrid GA the local search is performed with probability pmut =
0.01). For each setting, 30 runs have been executed. The fitness curves in the plots
(Figs. 3 - 5) display the average fitness values over the generations, except for
the pure heuristic runs, here the minimum value is shown for reference purpose.

The Memetic Algorithm converges much faster than any of the pure GAs for
all test data sets, even with less function evaluations per generation. This was
not unexpected because of the strong local structure of the problem. However
the pure GA reaches the solution quality of the Memetic Algorithm after a
sufficient number of generations, since the combination of conventional mutation
and selection can simulate the local heuristic.

The direct encoding performs considerably better than both the binary and
the unary coding. This is not only valid for the avarage values: The best binary
or unary results are even worse than the worst variable alphabet results after
generation 35 for all three test data sets. The 2-point crossover reduces the
convergence speed for the 1-dimensional encoding, while in combination with
the 2-dimensional natural encoding the performance improves a little.

The average running time (with a Pentium III, 500 Mhz) is about 24 min
for the variable alphabet GA, 89 min for the binary and 57 min for the unary
coded GA. This is mainly due to the fact that the fitness function is relatively
cheap, while the decoding of the binary or unary bit strings takes some time.

The plots for the first two data sets look very similar. This indicates that the
line test instance is good in the sense that its hardness is similar to the random
instance, if the line information is not exploited. However, the global optimum
700 was found 7 times by the Memetic Algorithm, while for the random instance
the best ever found value 414 was obtained only once. This suggests that the
random instance is still harder to optimize. The last test instance is apparently
easier for the local heuristic. However, even for this data set, the pure heuristic
fails to find the global optimum in any run.

3 The application

After having investigated the abstract problem, we turn to the application. That
is, we are given a set of operating points and candidates and try to find a candidate
choice that results in m simultaneously smooth maps.

As already mentioned, the operating range is spanned by the engine speed
and the relative air mass flow. We will consider m = 2 maps here, one for the

1000
2000

3000
4000

5000
6000

20
40

60
80

100
0

20

40

60

80

100

120

engine speedrelative air mass flow

ex
ha

us
t v

al
ve

 s
pr

ea
d

0 20 40 60 80 100
3.87

3.88

3.89

3.9

3.91

3.92

3.93

3.94

3.95

3.96
x 10

4

generations

av
ar

ag
e

fit
ne

ss

uniform cross variable alphabet
uniform cross binary coding
uniform cross unary coding
2−point cross var. alph.
2−dim 2−point cross var. alph
best found value and local heuristic (min)

Fig. 6. The application: Operating
range, operating points, grid (i.e. ECU
operating points) and some exhaust
valve spread candidates

Fig. 7. Fitness curves for the applica-
tion

inlet valve spread and one for the exhaust valve spread. Both valve spreads are
mechanically adjusted actuators. Unfortunately, the operating points needed for
the lookup tables are no more the equal to the operating points at which the
candidates are available (see Fig. 6). Moreover, for the different candidates at
each operating point, the location in the operating range varies slightly. I.e. two
different candidates for one operating point have not only different exhaust valve
spread values, but also slightly different engine speed and air mass values, as can
be observed in Fig. 6.

As a consequence, when a selection of candidates is given, one has to apply
appropriate interpolation and extrapolation algorithms in order to obtain values
for the grid points. After that, one can apply the fitness function for evaluating
the map. Here the next question arises: Which is the right smoothness criterion?
Clearly there are many possibilities. We will consider a very simple criterion by
integrating the square gradients of the two maps:

E =
∫

operating
range

∇y2
inlet +

∫
operating

range

∇y2
exhaust.

Even with this simple formula, the local structure of the energy function
becomes unclear with respect to the operating points because of the interpolation
and extrapolation process. Thus a local search operator is much less efficient than
before, since it cannot save computation time by directly exploiting the local
structure. Instead it has to use complete evaluations of the energy function,
which is quite expensive.

In terms of multi-objective optimizition, we thus use a simple aggregation
method. Clearly, other more sophisticated multi-objective techniques can be ex-
pected to produce further interesting results, in particular for growing number
of maps m. This should be subject of subsequent research.

We present the experimental results for the data set sketched in Fig. 6. There
are 55 operating points endowed with candidates, the maximum number of can-
didates for one operating point is 4, the grid has dimension 12×12. This is a rela-
tively small data set from the real-world application. Again, we compare variable
alphabet coding with uniform crossover, 2-point crossover and 2-dimensional 2-
point crossover as well as unary and binary coding with uniform crossover. Since
the operating points do not form a grid this time, we used the grid construction
algorithm from [8] in order to obtain the 2-dimensional arrangement.

The following GA parameters were used: population size µ = 100, number
of generations tmax = 100, tournament selection with q = 5, crossover and
mutation probability pcross = 0.6 and pmut = 1/55. Again, 30 runs have been
performed for each setting. We didn’t use a Memetic Algorithm, since the local
search is quite expensive in this case: One call needs more function evaluations
than a whole GA generation, and the local search cannot efficiently exploit the
local structure of the problem, as discussed above. Nevertheless we include the
results of the pure local search.

Figure 7 shows the average GA fitness curves. This smaller instance is obvi-
ously easier to optimize than the 25× 25 test instances. Again, direct encoding
performs considerably better than both unary and binary coding. This time the
best binary or unary results are worse than the worst variable alphabet results
after generation 37. The optimal value is found by the variable alphabet GA
with any crossover operator in all of the 30 runs. Hence we assume this value to
be the global optimum. The binary coded GA obtains it in 27, the unary coded
GA in 20 out of 30 runs. The pure local search finds the optimum in 20 out of 30
runs. This seems quite good, but the heuristic does not scale up nicely, it fails
to optimize larger instances. And it needs quite many function evaluations, as
already mentioned.

This time, the plot indicates that uniform crossover performs slightly better
than the 2-dimensional 2-point crossover. This may be due to the fact that the 2-
dimensional structure of the operating points is weaker than before. The average
running time of the GA is about 7 min, independently of the representation. This
is a consequence of the quite complex fitness function, where the decoding time
becomes negligible.

4 Discussion

Our study covers two different aspects. On the one hand, the GA is able to op-
timize the application we started with in a satisfactory way. The quality of the
resulting maps is similar or even better compared to the maps that were previ-
ously obtained manually by an engineer, a process which took several hours. On
the other hand, we presented an easy-to-state problem with interesting features.
We studied the performance of different codings and showed that a direct encod-
ing is more suitable for a GA. We also tried a 2-dimensional encoding and saw
that it can slightly accelerate the GA performance. This confirmes prior results
of different researchers, who find that a d-dimensional encoding can result in a

moderate, but no significant performance gain. Finally, hybridization of a GA
with a local search yields superior results, if the local search can be performed
efficiently.

Acknowledgments

This research has been supported by the BMBF (grant no. 01 IB 805 A/1).

References

1. A. Mitterer. Optimierung vielparametriger Systeme in der Antriebsentwick-
lung, Statistische Versuchsplanung und Künstliche Neuronale Netze in der
Steuergeräteauslegung zur Motorabstimmung. PhD thesis, Lehrstuhl für Meßsystem-
und Sensortechnik, TU München, 2000.

2. C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact
ground states of Ising spin glasses: New experimental results with a branch and cut
algorithm. Journal of Statistical Physics, 80:487–496, 1995.

3. J. Poland. Finding smooth maps is NP-complete. Preprint, 2001.
4. F. Barahona. On the computational complexity of ising spin glass model. J.Phys:A:

Math.Gen., 15:3241–3253, 1982.
5. D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, 1989.
6. J. Holland. Adaptions in Natural and Artificial Systems. Ann Arbor: The University

of Michigan Press, 1975.
7. T. N. Bui and B. R. Moon. On multidimensional encoding/crossover. In 6th Inter-

national Conference on Genetic Algorithms, pages 49–56, 1995.
8. J. Poland, K. Knödler, and A. Zell. On the efficient arrangement of given points

in a rectangular grid. In E. J. W. Boers et al., editor, Applications of Evolutionary
Computation (LNCS 2037), pages 110–119, 2001.

