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Abstract

Current research on machine learning and related algorithms is focused mainly on numeric paradigms. It is, however,
widely supposed that intelligent behavior strongly relies on ability to manipulate symbols. In this paper we present on-line
versions of self-organizing maps for symbol strings. The underlying key concepts are average and similarity, applied on
strings. These concepts are easily defined for numerical data and form building blocks for many learning, adaptation and
clustering algorithms. By defining them for symbol strings, we propose to apply current algorithms to symbolic data.
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I. INTRODUCTION

Whereas classical artificial intelligence (AI) has put emphasis on manipulation of symbolic data,
research on neural networks and related learning algorithms has mainly been focused on processing
numeric data. Handling numeric data is inevitable in early steps of real world information processing,
since it is based on sensory data, which are numeric by definition (otherwise they would have to be
interpreted – i.e. processed in some way – to symbolize something). Nevertheless, on higher cognitive
levels, a kind of symbolic reasoning might be desirable.

In a recent paper, Kohonen and Somervuo [2] have shown how a neural model, the self-organizing
map (SOM), can be applied to symbol strings. Like many other neural models and classification or
clustering algorithms, the SOMs rely on concepts like distance, similarity and average. Kohonen and
Somervuo have used a batch averaging algorithm for strings and their SOM was an off-line one.

For autonomous, adaptive systems, on-line algorithms are preferred, since the adaptation process
itself is a continuous one. In this paper we present an on-line averaging algorithm for symbol strings
and show how it can be applied to get an on-line SOM for strings. Strings themselves can encode
anything, but in an adaptive system would most probably find application in encoding sequences of
objects or events.

“Ordinary”, numerical self-organizing maps are usually used for mapping complex, multidimen-
sional numerical data onto a geometrical structure of lower dimensionality, like a rectangular or
hexagonal two-dimensional lattice. The mappings are useful for visualization of data, since they
reflect the similarities and vector distribution of the data in the input space. Each node in the map
has a reference vector assigned to it. Its value is a weighted average of all the input vectors that are
similar either to it or to the reference vectors of the nodes from its topological neighborhood.

For numerical data, average and similarity are easily computed: for the average, one usually takes
the arithmetical mean, and the similarity between two vectors can be defined as their inverse distance,
which is most often the Euclidean one. However, for non-numerical data – like symbol strings –
both measures tend to be much more complicated to compute. Still, like their numerical counterparts,
they rely on a distance measure. For symbol strings one can use theLevenshtein distanceor feature
distance.

Having chosen the distance measure, one can define the average of a set of strings as, simply
speaking, the string with the smallest distance from all strings in the set. The similarity can be again



defined as inverse or, even better, negative distance between the strings. With those two measures and
substituting reference vectors by reference strings, one can construct self-organizing maps of symbol
strings. Provided that the averaging algorithm works on-line, the self-organizing map for strings can
be implemented on-line, too.

II. AVERAGES OF SYMBOL STRINGS

An average can generally be defined for all types of data for which a distance function exists.
For real vectors, the preferred distance measure is Euclidean distance. It is, however, not applicable
for strings. A symbol string cannot be represented by a numerical vector. Although one can assign
a numerical value – acode– to a symbol, a coding in which numerical differences between the
codes reflect dissimilarities among corresponding symbols is hard to achieve. And even if one would
succeed in finding such a coding, or if one decides to neglect the similarities between single symbols,
a string of symbols cannot be acceptably represented by a vector of their corresponding numerical
codes. The problems arise when one tries to compare strings of different lengths, as well as when one
string is derived from another by insertion or deletion of symbols.

Fortunately, there are distance measures which work for symbol strings:
� Levenshtein distanceis the minimum number of elementary transformations – insertion, deletion
and substitution of a symbol – needed to transform one string into another [7]:

LD(s1; s2) = min (nins + ndel + nsubst) (1)

Closely related to it isweighted Levenshtein distance(WLD) [4], also known asedit distance[13],
where different costs are assigned to each edit operation. The termedit distanceis sometimes used
only for the special case, where insertion and deletion have unit cost, and substitution is considered
to be a deletion-insertion pair, having thus a cost of2 [12].
� Feature distance[5] is the number of features in which the two strings differ. For strings,N -grams
(substrings ofN consecutive symbols) are the usual choice for features. If one string is longer than
the other, the unmatchedN -grams are also counted as differences:

FD(s1; s2) = max(N1; N2)�m(s1; s2) (2)

whereN1 andN2 denote the number ofN -grams in stringss1 ands2 andm(s1; s2) is the number of
matchingN -grams.
TheLevenshtein distanceleads in general to a slightly better classification accuracy than thefeature
distance, but the latter has one big computational advantage when applied to self-organizing maps:
searching and comparing based on it can be performed much faster than when usingLevenshtein
distance[6], [2].

Based on the distance measure, one can define an average as generalized median (the item having
minimum sum of distances over the whole set) or generalized mean (the item having minimum sum
of squared distances over the whole set) [6]. For similarity, negative distance is a better choice than
the inverse, because it is defined even for items with zero distance. There are also other possibilities;
for the learning algorithm it is only important that greater distance implies lower similarity and vice
versa.

Both mean and median of a string set can be computationally intensive to find. The exhaustive
search through all possible strings generally takes prohibitively long time. Still, some kind of search
has to be performed in order to find the best choice. The algorithm by Kohonen starts by finding
theset average(the set element having the smallest sum of distances or sum of squared distances to
all other members of the set) as the initial guess for the average. This string is then systematically
modified by inserting, deleting and replacing symbols at all positions in it, and the modification is
accepted if it leads to a better average.

One notes that this is an off-line algorithm: the complete set has to be accessible in order to compute
the average. Consequently, all applications relying on it, like the string SOM, have to be defined as
off-line (batch) processes.



III. A FASTER APPROXIMATION OF THE STRING AVERAGE

For practical purposes, the algorithm for computing string averages, as explained in the previous
section, doesn’t guarantee finding the average. As long as one varies only one symbol at a time, it
can get stuck in a local optimum. To leave it (i.e. to further decrease the sum of distances or their
squares), one would have to change two or more symbols simultaneously. Increasing the number of
simultaneous variations in the algorithm would only slightly increase the likelihood of finding the
global optimum: if the algorithm performsn simultaneous changes, it can still happen thatn + 1 are
needed to leave the local optimum. But, the computing time would increase exponentially.

We don’t know a method of finding the average of strings in polynomial time. But we have de-
veloped an algorithm that also finds good approximations of the average and that is faster than the
original one presented above, especially for long strings. It is based on the following consideration:

Let us define the average of a string set as the me-
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Fig. 1. An example for computing average of a string
set.

dian over that set, with Levenshtein distance as dis-
tance measure. Then we can interpret the average
as the string from which all strings in the set can be
produced with, on average, smallest number of edit
operations. Now let us take a random string as an
initial guess for the average and compare it with all
strings in the set. Each comparison produces a set
of edit operations (transformations) needed to ob-
tain that string from the presumed average and that
transformations can take place on different positions
in the “average”. For easier explanation, we shall,
in addition to the three elementary transformations
(insert, delete and substitute) introduce the “do noth-
ing” as the fourth possibility. Now we consider all
the transformations (resulting from all comparisons)
that refer to a same position in the “average”. On
that single position we have a number of insertions
(possibly of different symbols), replacements (also
with different symbols), deletions and “do nothing”
operations. It is easy to see that the transformation
that appears most often is the optimal one, at least
locally. If we would apply it, we would get in the
next round of comparisons “do nothing” as the most frequent transformation for that position; in
other words, the overall number of variations, excluding “do nothing”, would decrease at that posi-
tion, therefore decreasing the sum of distances. A simple example is shown in figure 1.

Since we perform the transformation of a symbol at each position independently of all other posi-
tions, there is no guarantee that applying all transformations leads directly into the global optimum.
Insertion or deletion of a symbol at a position can have side effects on other positions, so several
iterations may be needed. Also, the resulting average depends on the initial guess. Nevertheless,
taking the set median (the set member with smallest sum of distances from other strings) as initial
guess and taking the result of each iteration as the guess for the next one leads generally to a good
approximation of the average string after only few iterations.

More formally we can summarize the algorithm as follows:
1. Find the set median of the string set and use it as initial average guess.
2. Go through all strings in the set and find the transformations needed to get that string from the
average guess.
3. For each position in the average guess, find the most frequent transformation (counting “do noth-
ing” also as a transformation) and apply it to the average guess.
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Fig. 2. Execution time for computing string average as
a function of set size. Average string length = 12,
alphabet size = 26.
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Fig. 3. Execution time for computing string average as
a function of string length. Set size = 300, alphabet
size = 26.

4. Take the result as a new guess average and repeat from 2 until no further improvement takes place.
Transformations needed to get one string from another are computed using dynamic programming

[13]. For strings of approximately same length, the computing time increases quadratically with string
length [11], although under certain assumptions faster algorithms are known [8], [9], [1]. The time
needed to determine the best transformation for each position depends on the number of possible
transformations, which is itself limited by the alphabet size. Since this has to be done for the whole
set, this algorithm is approximately ofO(sl2+ sla) complexity,l, s anda being string length, set size
and alphabet size, respectively.

On the other hand, finding distances between two
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Fig. 4. Execution time for computing string average as a
function of alphabet size. Average string length = 12,
set size = 300.

strings is generally of quadratic complexity, too. In
the original algorithm, one has to compute them for
every variation at every position in the string and
then compare the resulting string with all others
from the set. Consequently, the original algorithm
is generally ofO(asl3). Whenfeature distanceis
used, one can apply redundant hash addressing in
computing distances, thus reducing the complexity
to roughlyO(al3 + alsl0), wherel0 denotes the av-
erage number of uniqueN -grams in strings. For
short strings it can be approximated withl, since
the probability that the sameN -gram appears more
than once in a string is negligible. But, for long
strings over short alphabets, it is better approxi-
mated byaN . For such strings, one can even put all
uniqueN -grams of the test string into hash, reduc-

ing complexity to approximatelyO(al2l0 + alsl0). However, our experiments show that the constant
overhead introduced by this hashing tends to overweight its benefits if the strings are not very long.

Execution time measurements on artificially generated data sets are shown in figures 2 to 4.
The algorithm presented above is also an off-line one. But the basic idea from it will help us to

develop an on-line version.



IV. COMPUTING STRING AVERAGES ON THE FLY

For numerical data, the average can be computed on-line according to the following formula:

�x(n+ 1) = �x(n) +
x(n + 1)� �x(n)

n + 1
(3)

where�x(n) and�x(n + 1) denote the arithmetic mean in then-th andn + 1-th iteration, respectively,
andx(n + 1) the input vector in then + 1-th iteration.

Discrete values, like symbols, cannot be incrementally changed by only a small portion of error.
However, one can accumulate errors and make a discrete change as soon as it reaches a certain level.
This fact, combined with the algorithm presented in the previous section, leads to the algorithm for
computing string averages on-line.

A. Simple on-line averages

As in the numeric version, the first input string is taken as the first approximation of the average.
Two counters are assigned to each symbol position in the average: one for number of comparisons
since the symbol was last changed, and one for number of comparisons which resulted in a request for
change. Then, as each new string appears on the input, the transformations needed to get it from the
average are computed. The counters are correspondingly updated: the comparison counter is uncon-
ditionally incremented and the request-for-change counter is incremented if a transformation at that
position is needed. If the request-for-change counter reaches a certain limit value, the transformation
is applied to that position and both counters are reset.

The limit value, which triggers a change at a certain position, depends on the number of com-
parisons up-to-date and is computed statistically. Ideally, we would like to apply the change that is
requested by most comparisons, as in the off-line version. Unfortunately, since the number of all
possible changes for each position can be large, that would impose a need for many counters in order
to keep track of their frequencies..

We shall use a simpler, although not quite correct variant of the decision procedure from the off-
line version: a change to the symbol at a certain position should be made if more than the half of all
strings differ at that position. Since the strings appear stochastically at the input, the statement “more
than the half of all strings differ at a position” can be made only with certain statistical significance.
The change is then applied to a symbol if the probability that the statement is not true is lower than
the significance level.

Let � denote our significance level,n the number of comparisons at a string position andr� the
number of requests for change for that position. We shall suppose that the probability that a compari-
son results in a request for change is constant. Then,r� is computed as the smallest integer for which
the following inequality is satisfied:

nX
i=r�

�
n

i

��
1

2

�n

� � (4)

In practice,r� can be well implemented as a look-up table, thus speeding up the computation. So,
if a the request-for-change counter reachesr� for chosen� and given value of comparison counter, a
change of the symbol at that position is made.

Up till now we haven’t saidwhichchange to make at the position. As mentioned above, we don’t
trace which request for change appeared most frequently. However, the request that appears most
frequently has the highest probability to be the one that caused the counter to reach the limit. So
the most simple method is to apply the current change to the symbol. If this decision proves wrong,
further comparisons will cause again requests for change. Often it takes only few iterations to reach
the stable state at a position.

Altogether, the algorithm consists of the following steps:



1. Take the first input string as the average guess and reset comparison and request-for-change coun-
ters.
2. Take the next symbol from the input and compute the transformations needed to obtain that string
from the average guess.
3. For each position in the average guess, increment comparison counter and, if the comparison re-
sulted in a transformation at that position, increase the request-for-change counter, too.
4. If the request-for-change counter has reached the limit valuer�, apply the transformation at that
position and reset both counters.
5. Repeat from 2 as long as there are strings at the input.

The algorithm presented is also an approximative one. Although it leads to slightly inferior results
compared to the off-line algorithms presented above, it is much faster, sometimes even several orders
of magnitude, and therefore still very attractive for practical use. However, for larger sets consisting
of strongly dissimilar strings, the algorithm can oscillate, never reaching the stable state. A simple
modification brings significant improvement.

B. On-line averages – more sophisticated

The changes that the above algorithm makes to symbols are not the optimal ones. To find the
optimal transformation, we shall, as in the off-line version, trace not onlyif a change is needed at a
position in string, but alsowhichchanges are requested. When the most frequent request reaches the
limit value, the change is performed.

The values of the request-for-change counters are distributed multinomially. But, conditional dis-
tribution of a single counter is binomial. So, for the limit value, one can still use the simple binomial
formula (4). Puttingn to be the sum of the two most frequent requests for changes, we test if the most
frequent request appears significantly more often than the next most frequent.

As already mentioned above, this algorithm needs many counters, one for each type of request
for change. This introduces also a certain computational overhead. Nevertheless, the benefits of this
improvement – more in result quality than in computation time – justify additional effort.

V. STRING SOMS

The self-organizing map of symbol strings (string SOMfor short) doesn’t differ much from or-
dinary “numerical” SOM. It is also a low dimensional lattice of neurons (usually two-dimensional
quadratic or hexagonal lattice, sometimes one- or three-dimensional), but instead of having a refer-
ence vector of input space dimensionality assigned to each node, reference strings are used. In the
ordinary SOM, the reference vectors approximate the average of similar input vectors and input vec-
tors similar to the reference vectors of the nodes from the topological neighborhood. In string SOM,
the reference strings approximate the averages of corresponding input strings.

A. The batch algorithm

The batch algorithm for computing the map [2] is roughly as follows: First, the map is initialized
using Sammon projection [10]. Then, for each node in the map, a set is formed of all input strings to
whom the reference string of the node is the nearest reference string. Finally, for each node the union
of the sets belonging to the node and its topological neighborhood is produced, the average over it is
computed and taken as the new value of the reference string of that node. The process repeats from
the second step until one obtains a stable map.

B. The basic on-line algorithm

Based on the on-line algorithm for computing averages of strings, we have developed the on-line
version of the self-organizing map of symbol strings. The adaptation algorithm for the string SOM
resembles the one for numerical map [3]:
1. Initialize the map with random strings from input and reset counters for reference strings
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Fig. 6. Execution time for computing string SOM as a
function of alphabet size. Average string length = 12,
set size = 300.

2. Take the next symbol from the input and find the node in the map with the nearest (most similar)
reference string assigned to it
3. Compute the difference, i.e. the transformations needed to get the input string from the reference
string
4. For each position in the reference string, increment comparison counter and, if comparison resulted
in a transformation at that position, increase the request-for-change counter, too
5. If the request-for-change counter has reached the limit valuer�, apply the transformation at that
position and reset both counters
6. apply steps 3, 4 and 5 to reference strings assigned to the topological neighborhood of the node
7. Repeat from 2 as long as there are strings at input or until a stable map is reached

The node with the nearest reference string can be found by searching for it through the whole map.
It is, however, much more efficient to useredundant hash addressing[2]. This is not to be confused
with the use of hash in computing the average, as mentioned in section III: in finding only the nearest
string, one tries to avoid checking many strings, whereas in computing averages one is bound to check
the whole set.

The hash is based on feature distance, whereas
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Fig. 7. Execution time for computing string SOM as a
function of alphabet size. Average string length = 12,
set size = 300.

the algorithm for computing averages tends to min-
imize the Levenshtein distance. This inconsistency
is, however, more of theoretical nature. Compar-
isons using Levenshtein and feature distance lead
to very similar, if not same results and the refer-
ence strings generally differ enough to prevent as-
signment of input string to a false reference string.
Thus, using hash can accelerate the computation
for large maps without noticeable influence on ac-
curacy.

A comparison in execution time for batch and
on-line string SOMs is given in figures 5 to 7. Whe-
reas for the batch algorithm the number of adap-
tation cycles was always 10, for the on-line algo-
rithms it depended on set size. That reflects the fact
that in the batch version, the whole map is updated
in a single cycle, whereas the on-line algorithms update only a single node per cycle. For the set sizes
of 100, 300, 1000 and3000, the number of adaptation cycles was set to10000, 30000, 100000 and



300000, respectively.

C. Scaled influence on the neighborhood

For all presented algorithms we implicitely assumed the “bubble” function for the neighborhood
kernel: a correction is made either in full amount or not at all, depending whether the string belongs to
the neighborhood or not. For numerical SOMs, a continuous function is often used as neighborhood
kernel, so the correction is scaled by a real number:

Wj(n+ 1) = Wj(n) + hcj�jX(n)�Wj(n)j (5)

j denoting a node in the neighborhood of nodec, Wj its reference vector,X the input vector andhcj
the neighborhood function for nodesc andj, hcj 2 [0; 1] andhcc = 1.

The same principle can be applied to the string SOM, too. The idea is following: instead of making
discrete changes to the request-for-change counter, by incrementing it by one or leaving it unchanged,
one increments or decrements it by a real valuehcj. If the comparison resulted in a need for change
at a certain position, the corresponding counter is incremented, and decremented otherwise. The
comparison counter is still incremented by one. Consequently, a request-for-change counter having
large positive value means that the symbol at that position has to be changed, whereas a large negative
value means that it should be left as it is. The rationale is simple:

In analogy to the numerical version, we want comparisons to have less influence on changing a
symbol in the reference string assigned to nodes for whichhcj is smaller. In other words, a comparison
at a node with smallerhcj “weights less”, or is “less significant” than at nodes with largerhcj.

Let pj(n) denote the request-for-change increment for symbol at positionp in reference stringj,
in n-th iteration:

pj(n) = �hcj (6)

Since the input strings appear stochastically at the input, we can considerpj(n) to be a random
variable. The value of the request-for-change counter is

Rpj =
nX

i=1

pj (7)

Rpj is itself a random variable with, for largen, approximatively normal distribution

N(0; �2) (8)

Knowing the shape of neighborhood function, we can easily compute the dispersion�2 = n�2
 ,

where�2
 denotes the dispersion of.

The limit value for the request-for-change is then defined as the minimum valuer�, for which
following holds:

1

�
p
2�

1Z
r�

e�
1

2
( x
�
)2dx < � (9)

For practical purposes, a look-up table is used.

VI. EXAMPLES OF THE STRINGSOM

For an example application of the string SOM, we generated a set of 500 strings by introducing
noise to 8 English words:always, certainly, deepest, excited, meaning, remains, safety,andtouch,
and initialized a10�10 quadratic map with the Sammon projection of a random sample from the set.
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d s r j f e m t y    c e m r t a i n y    m e a n i t n g     m s e a n q n g     c r i a i n l d y    m e a n i i n g     m e a n i g n g     d e e j e s t      c e m r a i n l y    d e e p e s e o t

s a f e t y       s a f e t y       s a f e t y       s a f e t y       e x c i t e d      e x c i t e d      e x c i t e d      r e m a i n s      r e m a i n s      r e m a i n s

s a f e t y       s a f e t y       s a f e t y       s a f e t y       e x c i t e d      e x c i t e d      e x c i t e d      r e m a i n s      r e m a i n s      r e m a i n s

s a f e t y       s a f e t y       s a f e t y       s a f e t y       e c i t e d       e x c i t e d      r e m a i n s      r e m a i n s      r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        s a f e y        s a f e y        e m a i n s       r e m a i n s      r e m a i n s      r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        t o u c h        a l w a s        a l w a y s       a l w a y s       r e m a y s       r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        t o u c h        a l w a s        a l w a y s       a l w a y s       a l w a y s       a l w a y s       a l w a y s

t o u c h        t o u c h        t o u c h        t o u c h        a l w a s        a l w a y s       a l w a y s       a l w a y s       a l w a y s       a l w a y s

t o u c h        t o u c h        t o u c h        t o u c h        m e a n n s       a l w a y s       a l w a y s       a l w a y s       a l w a y s       a l w a y s

c e r t a i l y     c e r t i n y      m e a n i g       m e a n i n g      m e a n i n g      m e a n i n g      d e p e s t       d e p e s t       d e p e s t       d e p e s t

c e r t a i n l y    c e r t a i n l y    m e a n i n g      m e a n i n g      m e a n i n g      m e a n i n g      d e e p e s t      d e e p e s t      d e e p e s t      d e e p e s t

Fig. 8. Example of string SOM for a set of 500 strings. Above: initial map. Below: the map after 10 cycles of batch
training.

s a f e t y       s a f e t y       s a f e t y       s a w e y        a l w a y s       a l w a s        e i r c i t e d     e x c i t e d      e x c i t e d      e x c i t e d

s a f e t y       s a f e t y       s a f e y        s l w e y        a l w a y s       a l w a y s       e x c i t t s      e x c i t e d      e x c i t e d      e x c i t e d

s a f e t y       s a f e t y       s e a e y        a l w a y        a l w a y s       a l w a y s       l w a y s        e m i t e s       e x c i n d       e x c i e d

o u f c h        o t c w h        k j e y         a a y s         a l w a y s       r l w a y s       r e m a i s       r e m a i n s      r e m a i n s      r e m a i n s

t o u h         t o u c h        t q u h         m k a i z h       m l a y s        m e m a i n s      r e m a i n s      r e m a i n s      r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        m e a n i c g      m e a i n g       m e m a i n g      r e m a i n s      r e m a i n s      r e m a i n s      r e m a i n s

t o u n c h       t o u c h        t o u c h        m a n e i n g      m e a n i n g      m e a n i n g      m e n i n g       e e e p i s t      e e p e s t       d e e e s s

c e r t a i n l y    c e r t a i n l y    c e r t a i n l y    e r t a n i n      m e a n i n g      m e a n i n g      m e e n i n g      e e p e s t       d e e p e s t      d e e p e s t

c e r t a i n l y    c e r t a i n l y    c e r t a i n l y    c e t a i n l y     m e a n i n g      m e a n i n g      e e e n g        d e e p e s t      d e e p e s t      d e e p e s t

c e r t a i n l y    c e r t a i n l y    c e r t a i n l y    c e a i n l y      m e a n i n g      m e a n i n g      m e e n e n g      d e p e s t       d e p e s t       d e e p e s t

c e r t a i n l y    c e a i n l y      s a a f e l y      s a f e t y       e a i t e d       e x c i t e d      e x c i t e d      e e m a i n d      r e m a i n s      r e m a i n s

c e r t a i n l y    s a i n l y       s a f e t y       s a f e t y       s a f e t d       e x c i t d       e x c i n d       r e m a t s       r e m a i n s      r e m a i n s

s t f n l y       s a f e t y       s a f e t y       s a f e d        e x c i e d       e x c i t e d      r e m t n d       r e m a i n s      r e m a i n s      r e m a i n s

t o e c y        t e t y         s a f e h        s a f e d        s a i e d        e m a e s        r e m i n s       r e m a i n s      r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        o u c h         a i a y         e l a i y s       a l a y s        r e m a i n s      r e m a i n s      r e m a i n s

t o u c h        t o u c h        t o u c h        o u c h         a l u a s        a l a y s        a l w a y s       a l w a y s       a e w a y s       r e m a i s

t o u c h        t o u c h        t o u c h        o u y h         a l w a s        a l w a y s       a l w a y s       a l w a y s       a e w a y s       d e p e s t

t n i n h        t a n c g        m e a n i h       m e w i n g       a l w a y s       a l w a y s       a l w a y s       d e w a y t       d e e p e s t      d e e e s t

m e a n i n g      m e a n g        m e a n i g       m e n i n g       m e a n i s       d e w a y s       d e p e a y t      d e e e s t       d e p e s t       d e e e s t

m e a n i n g      m e a n i n g      m e a n i n g      m e a n i n g      m e n i n g       m e p i n t       d e p e s t       d e e p e s t      d e p e s t       d e e p e s t

Fig. 9. String SOM trained with on-line algorithms. Above: using simple on-line average algorithm. Below: using
improved algorithm.



Figure 8 shows the initial map and the map after 10 cycles of training with our batch algorithm. We
used an initial neighborhood radius of1:5 and a radius reduction factor of0:9. The complete training
process took about90 s on a Pentium II 300 MHz machine.

In figure 9 we show maps of same data, trained by our on-line algorithms. The initial neighborhood
radius was set to2:5 and the radius reduction factor0:99995. 10000 training cycles took about11 and
13 seconds for the simple and the improved algorithm, respectively.

VII. CONCLUSION

Starting with an improved batch algorithm, we have developed two variants of an on-line algorithm
for computing averages of symbol strings. Together with the concept of similarity between strings,
those algorithms build the basic blocks for self-organizing maps of symbol strings.

However, the described concepts of average and similarity for symbol strings can be used in a
number of learning, clustering and adaptation algorithms, likeK means, learning vector quantization,
adaptive resonance theoryand many more, giving a new dimension to them. All these, currently
numeric algorithms, can be modified to work on symbol strings, thus making them applicable to
problems on higher cognitive levels. This would not render their numeric counterparts obsolete.
Instead, we expect numeric data processing to serve as the first stage in future intelligent systems,
analyzing the raw data from the environment and producing symbol-coded results. These can be
further fed into higher processing stages, which would then work completely on a symbolic level.
Given these considerations, we anticipate further developments in this area.
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