Intrusion Detection and Malware Analysis

String matching algorithms

Pavel Laskov
Wilhelm Schickard Institute for Computer Science
Problem (Exact string matching)

Given a string \(P \) called a **pattern** and a longer string \(T \) called **text**, find all occurrences, if any, of pattern \(P \) in text \(T \).

Example

Let \(P = aba \) and \(T = bbabaxababay \), then \(P \) occurs in \(T \) starting at positions 3, 7 and 9 (notice the possible overlap of \(P \) in \(T \)).

Remark (Substrings vs. subsequences)

It is a general convention to denote contiguous patterns as **strings** whereas non-contiguous patterns (in the left-to-right order) are referred to as **sequences**.
Inexact matching and alignment

Problem (Inexact string matching)

Given a string P *and a text* T *find all strings* S *in* T *that contain at most* k *“errors” with respect to* P.

Example

Let $P = aba$ and $T = bbabaxababay$, then inexact match of P in T with respect to 1 character substitution occurs at positions 1, 3, 5, 7 and 9.

Problem (Sequence alignment)

Alignment of two strings S_1 and S_2 *is obtained by inserting spaces either into or at the ends of* S_1 and S_2 *so that every character of one string corresponds to exactly one character of the other one.*

Example

```
q  a  c  _  d  b  d
q  a  w  x  _  b  _
```
A whirlwind tour of string matching

Today:
- Naive string matching
- Fundamental preprocessing
- Knuth-Morris-Pratt
- Set matching

Other problems/algorithms:
- Regular expression matching
- Rabin-Karp fingerprints
- Suffix trees/arrays
- Inexact matching
- Sequence alignment
Naive string matching

- Align left end of P with the left end of T and compare characters of P and T until a mismatch is found or P is exhausted.
- Shift P by one character and restart from the left of P.
- Continue until the right end of P shifts past the right end of T.
- Running time: $O(mn)$
Naive algorithm:

T: xabxyabxyabxz
P: abxyabxz

*
 abxyabxz
 ^^^^^^*
 abxyabxz
 ^^^^^^^^*
 abxyabxz
 ^^^^^^*
 abxyabxz
 ^^^^^^*
 abxyabxz
Speeding up the naive method

Naive algorithm:

T: xabxyabxyabxz
P: abxyabxz

Larger shifts:

T: xabxyabxyabxz
P: abxyabxz

Saving partial matches:

T: xabxyabxyabxz
P: abxyabxz

abxyabxz

abxyabxz

abxyabxz

abxyabxz
Speeding up the naive method

Naive algorithm:

T: xabxyabxyabxz
P: abxyabxz

*
 abxyabxz
 ^^^^^^^
 abxyabxz
 *
 abxyabxz
 ^^^^^
 abxyabxz
 *
 abxyabxz
 ^~~~~~~
 abxyabxz
 *
 abxyabxz

Larger shifts:

T: xabxyabxyabxz
P: abxyabxz

*
 abxyabxz
 ^^^^^^^
 abxyabxz
 *
 abxyabxz
 ^~~~~~~
 abxyabxz
 *
 abxyabxz
 ^~~~~~~

Saving partial matches:

T: xabxyabxyabxz
P: abxyabxz

*
 abxyabxz
 ^^^^^^^
 abxyabxz
 *
 abxyabxz
 ^~~~~~~
 abxyabxz
 *
 abxyabxz
 ^~~~~~~
General idea: spend some modest amount of time on learning about the internal structure of P or T in order to save some time during search.

Different preprocessing techniques were employed in various original string matching algorithms.

Similarity of preprocessing techniques can be expressed in terms of a fundamental preprocessing which is independent of a search algorithm.
Definition

Given a string S and a position $i > 1$, let $Z_i(S)$ be the length of the longest substring of S that starts at i and matches a prefix of S. This substring is called a Z-box.
Definition

Given a string S and a position $i > 1$, let $Z_i(S)$ be the length of the longest substring of S that starts at i and matches a prefix of S. This substring is called a Z-box.

Definition

For any index i, r_i is the right-most end of Z-boxes beginning at or before i; l_i is the left end of the corresponding Z-box.
Goal: Compute Z_i for each successive position i starting from $i = 2$.

All Z-values are kept, as well as the recent pair r, l.

Initialization: explicitly compute Z_2 by scanning $S[2 \ldots |S|]$ and comparing it with $S[1 \ldots |S|]$.

Recursion: given $Z_2, \ldots, Z_{k-1}, r_{k-1}, l_{k-1}$, compute Z_k, r_k, l_k.
Recursive step of the Z-algorithm

- **Key insight:** character in the position \(k \) also appears in the position \(k' = k - l_{k-1} + 1 \); this also holds for entire substrings \(S[k \ldots r_{k-1}] \) and \(S[k' \ldots Z_{l_{k-1}}] \).

\[
S: \begin{array}{cccc}
\alpha & \beta \\
k' & Z_{l_{k-1}} & l_{k-1} & k & r_{k-1}
\end{array}
\]
Recursive step of the Z-algorithm

- **Key insight:** character in the position k also appears in the position $k' = k - l_{k-1} + 1$; this also holds for entire substrings $S[k \ldots r_{k-1}]$ and $S[k' \ldots Z_{l_{k-1}}]$.

- If $Z_{k'} \leq |\beta|$, then $Z_k = Z_{k'}$, and r, l remain unchanged.
Recursive step of the Z-algorithm

- **Key insight:** character in the position k also appears in the position $k' = k - l_{k-1} + 1$; this also holds for entire substrings $S[k \ldots r_{k-1}]$ and $S[k' \ldots Z_{l_{k-1}}]$.

- If $Z_{k'} \leq |\beta|$, then $Z_k = Z_{k'}$, and r, l remain unchanged.

- If $Z_{k'} \geq |\beta|$ then the entire β is a prefix of S. Keep scanning until a mismatch occurs, set l to k and r to the character before a mismatch.
Theorem

All values $Z_i(S)$ can be computed in $O(|S|)$ time.

Proof.

- For each “≤”-iteration k, a constant-time work is needed for each iteration.
- In each “≥”-iteration, the value r_k strictly increases, however not beyond the end of S. Hence the overall amount of work is bound by $|S|$.

\[\square\]
Knuth-Morris-Pratt algorithm

General idea:

- Keep scanning the pattern P and text T left-to-right until mismatch is found.
- Shift P such that its prefix overlaps with its suffix before the mismatch position.
- Continue scanning from the mismatching position.
Let the **shift pointer** s_p_i be the length of the longest prefix of P which is the suffix of $P[1 \ldots i]$ (0 if no such prefix exists).

- In KMP, if a mismatch is found in position $i + 1$ in P, P can be shifted by $i - s_p_i$ positions to the right.
- For each i in P, s_p_i is the length of a Z-box ending at i.
- **Computing s_p_i:** after initializing all s_p’s to 0, loop backwards over j and set $s_p_{j+Z_j-1} = Z_j$.
Correctness of the shift rule

Theorem

For any alignment of P and T, if characters 1 through i of P match their counterparts in T but character $i + 1$ mismatches $T(k)$, then P can be shifted by $i - sp_i$ positions to the right without passing any occurrence of P in T.

Proof.

Let β denote the prefix of P after shift of length sp. By definition of sp, β matches its counterpart in T. Suppose there exist a missed occurrence of P in T which begins earlier than a shifted P, i.e. it begins with a prefix $\alpha \beta$. Then $\alpha \beta$ is a suffix of P before shift which is a prefix of (missed) P. However, the longest such suffix must have been of $|\beta|$, which is a contradiction. \square
procedure Knuth-Morris-Pratt(T, P) ▷ |P| = n; |T| = m
 Preprocess P to find $F(k) = sp_{k-1} + 1$ for all k from 1 to $n + 1$.
 $c \leftarrow 1$
 $p \leftarrow 1$
 while $c + (n - p) \leq m$ do
 while $P(p) = T(c)$ and $p \leq n$ do
 $p \leftarrow p + 1$
 $c \leftarrow c + 1$
 end while
 if $p = n + 1$ then ▷ End of p
 Report an occurrence of P at the position $c - n$ in T
 end if
 if $p = 1$ then ▷ Mismatch at position 1 of p
 $c \leftarrow c + 1$
 end if
 $p \leftarrow F(p)$ ▷ Shift P by $p - sp$
 end while
end procedure
Exact pattern set matching

Problem
Given a set of patterns \(\mathcal{P} = \{P_1, \ldots, P_z\} \), find all occurrences of some pattern from \(\mathcal{P} \) in text \(T \).

Possible solutions:
- Run a standard single pattern matching algorithm (e.g. KMP) \(z \) times: \(O(z(m + n)) \).
- Build a suffix tree for \(T \) and scan each pattern in \(\mathcal{P} \) against it: \(O(m + zn) \).
- Build a keyword tree for \(\mathcal{P} \) and run the Aho-Corasick algorithm; \(O(m + n + k) \), where \(k \) is the number of matches.
A **keyword tree** \mathcal{K} corresponding to a set of patterns \mathcal{P} is a tree satisfying the following conditions:

- Each edge is labeled with exactly one character.
- Any two edges out of the same node have different labels.
- Every pattern in \mathcal{P} maps to some node v in \mathcal{K} such this pattern is spelled out by edge labels on the path from the root to v.
- Every leaf in \mathcal{K} corresponds to some pattern in \mathcal{P}.

Keyword tree (trie)
Keyword tree example

Keyword tree for \(\mathcal{P} = \{ \text{“error”,”potato”,”pottery”,”other”,”otter”} \} : \)
Naive set matching using keyword tree

- Follow a unique path in \mathcal{K} that matches a substring of T starting from a fixed position l until either a marked node or a mismatch is encountered.
- Move to the next position l and repeat until T is exhausted.
- **Running time:** $O(mn)$.
Definition
For any node v in a keyword tree, let
- $L(v)$ denote the label sequence on the path from root to v,
- $lp(v)$ be the longest suffix of $L(v)$ which is a prefix of some pattern in \mathcal{P}, and
- n_v be the unique node in \mathcal{K} labeled with the suffix of $L(v)$ of length $lp(v)$.

Definition
A failure link is a pair of nodes (v, n_v).
Keyword tree for $\mathcal{P} = \{ "error", "potato", "pottery", "other", "otter" \}$ augmented with failure links:
Aho-Corasick algorithm

procedure AHO-CORASICK Search\((T, P, K)\)

\(c \leftarrow 1\) \hspace{1cm} \triangleright Text running index

\(l \leftarrow 1\) \hspace{1cm} \triangleright Starting position of current match

\(w \leftarrow \text{root of } K\) \hspace{1cm} \triangleright Running keyword tree node pointer

repeat

\textbf{while} there is an edge \((w, w')\) labeled with \(T(c)\) do

\hspace{1cm} \textbf{if} \(w'\) is marked with \(i\) \textbf{then}

\hspace{1cm} \hspace{1cm} Report an occurrence of \(P_i\) at the position \(l\) in \(T\)

\hspace{1cm} \textbf{end if}

\hspace{1cm} \(w \leftarrow w'\)

\hspace{1cm} \(c \leftarrow c + 1\)

\textbf{end while}

\(w \leftarrow n_w\)

\(l \leftarrow c - \text{lp}(w)\)

\textbf{until} \(c > m\)

end procedure
function FAILURE_LINK(v, K)
 v' ← parent of v
 x ← character on the edge (v', v)
 w ← n_v' ▷ Begin with the failure link of v’s parent
 while there is no edge of w labeled with x, and w ≠ root do
 w ← n_w ▷ Follow failure links until an edge labeled x found
 end while
 if there is an edge (w, w') out of w labeled with x then
 n_v ← w'
 else
 n_v ← root
 end if
end function
D. Gusfield.

Algorithms on strings, trees, and sequences.