Intrusion Detection and Malware Analysis

IDS feature extraction

Pavel Laskov
Wilhelm Schickard Institute for Computer Science
Metric embedding of byte sequences

Sequences
1. blabla blubla blablabu aa
2. bla blablaa bulab bb abla
3. a blabla blabla ablub bla
4. blab blab abba blabla blu

Geometry

Subsequences

Features

Histograms of subsequences

1. a b aa bb blu blubs blub bulab blubla blublabu
2. a b aa bb blu blubs blub bulab blubla blublabu
3. a b aa bb blu blubs blub bulab blubla blublabu
4. a b aa bb blu blubs blub bulab blubla blublabu
Formalization of embedding

- A sequence x from an alphabet Σ of cardinality N: $x \in \Sigma^*$
- A language L of pre-defined words:
 \[L \subset \Sigma^* = \{ w | w \in \Sigma^* \} \]
- Example languages:
 - n-grams
 - “bag-of-words”
 - all subsequences
 - “bag-of-delimiters”
- Embedding function defined over the language:
 \[\phi_w(x) : \begin{cases}
 \text{frequency} \\
 \text{count} \\
 \text{binary flag}
\end{cases} \text{ for } w \text{ in } x \]
Similarity measures for embeddings

Metric embedding enables application of various *vectorial* similarity measures over sequences, e.g.

<table>
<thead>
<tr>
<th>Kernels</th>
<th>(k(x, y))</th>
<th>Distances</th>
<th>(d(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(\sum_{w \in L} \phi_w(x) \phi_w(y))</td>
<td>Manhattan</td>
<td>(\sum_{w \in L}</td>
</tr>
<tr>
<td>RBF</td>
<td>(\exp(d(x, y)^2 / \sigma))</td>
<td>Minkowski</td>
<td>(\sqrt[k]{\sum_{w \in L}</td>
</tr>
<tr>
<td>Similarity coefficients</td>
<td></td>
<td>Hamming</td>
<td>(\sum_{w \in L} \text{sgn}</td>
</tr>
<tr>
<td>Jaccard, Kulczynski, ...</td>
<td></td>
<td>Chebyshev</td>
<td>(\max_{w \in L}</td>
</tr>
</tbody>
</table>
Abstract similarity measure

- Outer loop:
 \[s(x, y) = \bigoplus_{w \in L} m(x, y, w) \]

- Inner function:
 \[m(x, y, w) = \begin{cases}
 m^+(\phi_w(x), \phi_w(y)), & \text{if } w \text{ matches } x, y \\
 m^-_x(\phi_w(x)), & \text{if } w \text{ mismatches } x \\
 m^-_y(\phi_w(y)), & \text{if } w \text{ mismatches } y
 \end{cases} \]
Inner function computation

\[\oplus \quad m^+ (p, q) \quad m_x^- (p) \quad m_y^- (q) \]

<table>
<thead>
<tr>
<th>Kernel functions</th>
<th>Linear</th>
<th>Distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\sum]</td>
<td>[p \cdot q]</td>
<td>0</td>
</tr>
</tbody>
</table>

Distances

| Manhattan | \[\sum \] | \[|p - q| \] | p | q |
|-----------|-------------|------------------|-----|-----|
| Minkowski | \[\sum \] | \[(p - q)^k \] | \[p^k \] | \[q^k \] |
| Chebyshev | \[\max \] | \[p - q \] | p | q |
How should we store subsequences to ensure linear-time extraction and matching?
How should we store subsequences to ensure linear-time extraction and matching?

- **Hash tables**: simple and relatively efficient; limited embeddings, hash table size difficult to choose.
- **Sorted arrays**: simple and highly efficient (contiguous storage!); limited embeddings
- **Tries**: moderately complex and efficient; limited embeddings.
- **Suffix trees**: unlimited embeddings; very complex, high constants and memory consumption.
Sorted array representation

- Extract subsequences and store them in an array
- Sort the array
- For any pair of sequences, find matching and mismatching entries by looping over sorted arrays.
- Example: $x = \text{abbaa}$, $y = \text{baaaab}$

$\phi[x]$: The length of an array X is denoted by $|X|$. In order to support efficient comparison, the fields of X are sorted by contained words, e.g. using the lexicographical order of the alphabet A.

Figure 1 illustrates the sorted arrays of 3-grams extracted from the two example sequences x and y.

Algorithm.

Comparison of two sorted arrays X and Y is carried out by looping over the fields of both arrays in the manner of merging sorted arrays (Knuth, 1973). During each iteration the inner function m is computed over contained words and aggregated using the operator \oplus. The corresponding comparison procedure in pseudo-code is given in Algorithm 1.

Herein, we denote the case where a word w is present in x and y as match and the case of w being contained in either x or y as mismatch. For run-time improvement, these mismatches can be ignored in Algorithm 1 if a conjunctive similarity measure is computed (cf. Section 3.3).

Algorithm 1

Array-based sequence comparison

1: function $\text{Compare}(X; Y: \text{Array})$
2: $s \leftarrow e$; $i \leftarrow 1$; $j \leftarrow 1$
3: while $i \leq |X|$ or $j \leq |Y|$ do
4: $x \leftarrow X[i]$; $y \leftarrow Y[j]$
5: if $y = \text{nil}$ or $\text{word}[x] < \text{word}[y]$ then
6: $s \leftarrow s \oplus m(\phi[x]; 0)$
7: $i \leftarrow i + 1$
8: else if $x = \text{nil}$ or $\text{word}[x] > \text{word}[y]$ then
9: $s \leftarrow s \oplus m(0; \phi[y])$
10: $j \leftarrow j + 1$
11: else
12: $s \leftarrow s \oplus m(\phi[x]; \phi[y])$
13: $i \leftarrow i + 1$; $j \leftarrow j + 1$
14: return s

Run-time.
The comparison algorithm based on sorted arrays is simple to implement, yet it does not enable linear-time comparison for all embedding languages, e.g. if $L = A^*$. However, sorted arrays enable linear-time similarity measures, if there exist $O(|x|)$ words $w \sqsubseteq x$, which implies all $w \in L$ have no or constant overlap in x. Examples are the common bag-of-words and k-gram embedding languages.
How to sort (sub-)sequences?
How to sort (sub-)sequences?

- Radix sort at byte level
 - Simple, linear running time
How to sort (sub-)sequences?

- Radix sort at byte level
 - Simple, linear running time
- Store subsequences in machine words, use numeric sorting
 - Simple, superlinear running time, extremely low constants
How to sort (sub-)sequences?

- Radix sort at byte level
 - Simple, linear running time
- Store subsequences in machine words, use numeric sorting
 - Simple, superlinear running time, extremely low constants
- Ditto, use radix sorting at bit-level
A suffix tree for an m-character string S stores all suffixes of S.

$S = \text{ababc}$
Properties of suffix trees

- A suffix tree has exactly m leaves numbered 1 to m.
- Each internal node has at least two children.
- Each edge is labeled by a non-empty substring of S.
- All edges of the same node begin with different symbols.
- For any leaf i, the concatenation of the labels on the path from root to i is the suffix of S starting at position i, i.e. $S[i..m]$.
What are suffix trees good for?

- **Problem**: Given a string S of length n and a pattern p of length m, $m \ll n$, find positions of all occurrences of P in S.
- **Classical solution**: $O(m + n)$ (e.g. Knuth-Morris-Pratt)
- **Suffix tree solution**: $O(m)$
- Labels are replaced by index ranges.
- Internal nodes contain depth and leaf counts.
- Suffix links point to subtrees corresponding to the next suffix.

\(S = \text{ababc}\$ \)
Chang & Lawler Algorithm: an example

Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$$S = \text{ababc}\$, \ P = \text{baaaba}$$

```
Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:
```

![Diagram of suffix tree with nodes labeled 1, 2, 3, 4, 5, and edges labeled 'ab', 'b', 'c$'. The root of the tree is labeled 'S = ababc$', and the leaves are labeled '1', '2', '3', '4', '5'.]
Chang & Lawler Algorithm: an example

Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$S = \text{ababc}$, $P = \text{baaaba}$

Scan 'b'
Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$S = ababc$, $P = baaaba$

scan ’a’: MATCH, count 1
Chang & Lawler Algorithm: an example

Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$S = \text{ababc}$, $P = \text{baaaba}$

scan 'a': MISMATCH
Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$$S = ababc$, $P = baaaba$$

Scan 'a': MISMATCH
Chang & Lawler Algorithm: an example

Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$S = \text{ababc}$, $P = \text{baaaba}$

scan 'b': MATCH, count 2
Chang & Lawler Algorithm: an example

Given a suffix tree for S, we can count matching substrings in S and P by walking along P and S:

$S = \text{ababc}$, $P = \text{baaba}$

scan 'a': MATCH, count 1
Generalized suffix tree (GST)

- A suffix tree for more than one string.
- Creation: concatenate two strings with different delimiters and build a single suffix tree
- Example: GST for \(x = \text{'abbaa'}\) and \(y = \text{'baaaa'}\):
Similarity computation using GST

<table>
<thead>
<tr>
<th>2-grams</th>
<th>“abbaa”</th>
<th>“baaa”</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“abbaa” · “baaa” = 0
Similarity computation using GST

<table>
<thead>
<tr>
<th>2-grams</th>
<th>“abbaa”</th>
<th>“baaaa”</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“abbaa” · “baaaa” = 3
Similarity computation using GST

<table>
<thead>
<tr>
<th>2-grams</th>
<th>“abbaa”</th>
<th>“baaaa”</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“abbaa” · “baaaa” = 3
Similarity computation using GST

<table>
<thead>
<tr>
<th>2-grams</th>
<th>“abbaa”</th>
<th>“baaaa”</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ba</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“abbaa” · “baaaa” = 4
Similarity computation using GST

<table>
<thead>
<tr>
<th>2-grams</th>
<th>"abbaa"</th>
<th>"baaaa"</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ba</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bb</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

"abbaa" \cdot "baaaa" = 4
Lessons learned

- Extraction of features from packet payloads is tricky but can be efficiently done with specialized data structures.
- In practice, sorted arrays work best for computation of similarity measures.
- Suffix trees are the most powerful data structure for feature extraction: will be used for other problems.
D. Gusfield.
Algorithms on strings, trees, and sequences.

K. Rieck and P. Laskov.
Linear-time computation of similarity measures for sequential data.

E. Ukkonen.
Online construction of suffix trees.