Artificial Intelligence
Chapter 7: Logical Agents
Andreas Zell

After the Textbook: Artificial Intelligence, A Modern Approach by Stuart Russel and Peter Norvig (3rd Edition)

7. Logical Agents

• 7.1 Knowledge-Based Agents
• 7.2 The Wumpus World
• 7.3 Logic
• 7.4 Propositional Logic
• 7.5 Propositional Theorem Proving
• 7.6 Effective Propositional Model Checking
• 7.7 Propositional Logic Agents
• 7.8 Summary
7.1 Knowledge-Based Agents

• Logical agents are always definite – each proposition is either true/false or unknown (agnostic)

• Knowledge representation language – a language used to express knowledge about the world
 • Declarative approach – language is designed to be able to easily express knowledge for the world the language is being implemented for
 • Procedural approach – encodes desired behaviors directly in program code

• Sentence – a statement expressing a truth about the world in the knowledge representation language

• Knowledge Base (KB) – a set of sentences describing the world
 • Background knowledge – initial knowledge in KB
 • Knowledge level – we only need to specify what the agent knows and what its goals are in order to specify its behavior
 • Tell(P) – function that adds knowledge P to the KB
 • Ask(P) – function that queries the agent about the truth of P
7.1 Knowledge-Based Agents

- Inference – the process of deriving new sentences from the knowledge base
 - When the agent draws a conclusion from available information, it is guaranteed to be correct if the available information is correct

```c
function KB-Agent( percept) returns an action
   persistent: KB, a knowledge base
   t, a counter, initially 0, indicating time
   Tell(KB, Make-Percept-Sentence(percept, t))
   action ← Ask(KB, Make-Action-Query(t))
   Tell(KB, Make-Action-Sentence(action, t))
   t ← t + 1
   return action
```

A generic knowledge-based agent

7.2 The Wumpus World

- Environment
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
7.2 The Wumpus World

- Performance measure
 - gold +1000,
 - PIT/wumpus -1000
 - -1 per action,
 - -10 for using the arrow

- Actuators:
 - TurnLeft (90°),
 - TurnRight (90°),
 - Forward,
 - Grab (gold),
 - Shoot (arrow),
 - Climb (at 1,1)

- Sensors:
 - Stench, Breeze, Glitter, Bump, Scream

- Observable? No – only local perception
- Deterministic? Yes – outcomes exactly specified
- Episodic? No – sequential at the level of actions
- Static? Yes – Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes – Wumpus is essentially a natural feature
7.2 The Wumpus World

First percept at [1,1]
[None, None, None, None, None]
Stench, Breeze, Glitter, Bump, Scream

Percept at [2,1]
[None, Breeze, None, None, None]

Percept at [1,2]
Percept at [2,3]

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.)
7.3 Logic

- **Logics** – formal languages for representing information such that conclusions can be drawn
- **Syntax** – description of a representative language in terms of well-formed sentences of the language
- **Semantics** – defines the “meaning” (truth) of a sentence in the representative language w.r.t. each possible world
- **Model** – the world being described by a KB
- **Satisfaction** – model m satisfies a sentence α, if α is true in m

7.3 Logic

- **Entailment** – the concept that a sentence follows from another sentence:
 - $\alpha \models \beta$ if α is true, then β must also be true.
- **Logical inference** – the process of using entailment to derive conclusions
- **Model checking** – enumeration of all possible models to ensure that a sentence α is true in all models in which KB is true
- **$M(\alpha)$** is the set of all models of α
7.3 Logic

$KB = \text{wumpus-world rules + observations}$

$\alpha_1 = \"[1,2] is safe\", \ KB \models \alpha_1$, proved by model checking

$KB = \text{wumpus-world rules + observations}$

$\alpha_2 = \"[2,2] is safe\", \ KB \not\models \alpha_2$
7.3 Logic

• If an inference algorithm \(i \) can derive \(\alpha \) from KB we write \(KB \vdash_i \alpha \).

• **Sound (truth-preserving) inference** – an inference algorithm that derives only entailed sentences
 • *if KB is true in the real world, then any sentence \(\alpha \) derived from KB by a sound inference procedure is also true in the real world*

• **Complete inference procedure** – an inference proc. that can derive any sentence that is entailed

• **Grounding** – the connection between logical reasoning processes and the real environment in which the agent exists

7.4 Propositional Logic

• **Atomic sentence** – consists of a single propositional symbol, which is *True or False*

• **Complex sentence** – sentence constructed from simpler sentences using parentheses and logical connectives:
 • \(\neg \) (not) – negation
 • \(\land \) (and) – conjunction
 • \(\lor \) (or) – disjunction
 • \(\Rightarrow \) (implies) – implication (premise=>conclusion)
 • \(\Leftrightarrow \) (if and only if) – biconditional

Highest priority

Lowest priority
7.4 Propositional Logic

- **Truth table** – a (simple) representation of a complex sentence by enumerating its truth in terms of the possible values of each of its symbols.

- **Truth table for connectives**:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P⇒Q</th>
<th>P⇔Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.)

7.4 Propositional Logic

- **Wumpus World Symbols**:
 - P_{x,y} is true if there is a pit in [x,y]
 - W_{x,y} is true if there is a wumpus in [x,y]
 - B_{x,y} is true if there is a breeze in [x,y]
 - S_{x,y} is true if there is a stench in [x,y]

- **Sentences R_i**:
 - No pit in [1,1]
 - R₁: ¬P_{1,1}
 - Pits cause breezes in adjacent squares
 - R₂: B_{1,1} ⇔ (P_{1,2} ∨ P_{2,1})
 - R₃: B_{2,1} ⇔ (P_{1,1} ∨ P_{2,2} ∨ P_{3,1})
 - For first two squares
 - R₄: ¬B_{1,1}
 - R₅: B_{2,1}
7.4 Propositional Logic by Model Checking

<table>
<thead>
<tr>
<th>$B_{1,1}$</th>
<th>$B_{2,1}$</th>
<th>$P_{1,1}$</th>
<th>$P_{1,2}$</th>
<th>$P_{2,1}$</th>
<th>$P_{2,2}$</th>
<th>$P_{3,1}$</th>
<th>R_1</th>
<th>R_2</th>
<th>R_3</th>
<th>R_4</th>
<th>R_5</th>
<th>KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
</tr>
</tbody>
</table>

Fig. 7.8: Truth Table for Wumpus World KB, consisting of $2^7 = 128$ rows, one each for the different assignments of truth values to the 7 proposition symbols $B_{1,1}, \ldots, P_{3,1}$. KB is true if R_1 through R_5 are true, which occurs just in 3 rows.

7.4.4 Propositional Model Checking

```
function TT-ENTAILS(KB, α) returns true or false
    inputs: KB, the knowledge base, a sentence in propositional logic
    α, the query, a sentence in propositional logic
    symbols — a list of the proposition symbols in KB and α
    return TT-CHECK-ALL(KB, α, symbols, { })

function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
    if EMPTY(symbols) then
        if PL-TRUE(KB, model) then return PL-TRUE(α, model)
        else return true // when KB is false, always return true
    else do
        P = FIRST(symbols)
        rest = REST(symbols)
        return (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true})) and
                TT-CHECK-ALL(KB, α, rest, model ∪ {P = false })
```

Figure 7.8 A truth-table enumeration algorithm for deciding propositional entailment. (TT stands for truth table.) PL-TRUE returns true if a sentence holds within a model. The variable model represents a partial model—an assignment to some of the symbols. The keyword “and” is used here as a logical operation on its two arguments, returning true or false.
7.5 Propositional Theorem Proving

• Knowledge Base can be represented as a conjunction of all its statements since it asserts that all statements are true.

• Every known inference algorithm for propositional logic has a worst-case complexity exponential in the size of the input.

• Logical equivalence – two sentences \(\alpha \) and \(\beta \) are logically equivalent if they are true in the same set of models.

• Validity – a sentence is valid if it is true in all models.

• Valid sentences are also called tautologies – sentences that are necessarily true.

7.5 Propositional Theorem Proving

• Deduction Theorem – For any sentences \(\alpha \) and \(\beta \), \(\alpha \vdash \beta \) if and only if the sentence \((\alpha \Rightarrow \beta) \) is valid.

• Satisfiability – a sentence is satisfiable if it is true in some model.
 • Determining satisfiability in propositional logic is NP-complete.
 • Proof by contradiction: \(\alpha \vdash \beta \) if and only if the sentence \(\neg(\alpha \Rightarrow \beta) \) or rather \((\alpha \land \neg \beta) \) is unsatisfiable.

• Inferentially equivalent – two sentences \(\alpha \) and \(\beta \) are inferentially equivalent if the satisfiability of \(\alpha \) implies the satisfiability of \(\beta \) and vice versa.
7.5 Propositional Theorem Proving

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg\alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg\beta \Rightarrow \neg\alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg\alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \Leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg\alpha \lor \neg\beta) \quad \text{De Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg\alpha \land \neg\beta) \quad \text{De Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]

Fig. 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary sentences of propositional logic.
7.5 Propositional Theorem Proving

Example to prove \(\neg P_{1,2} \) from \(R_1 \) through \(R_5 \):

- Applying biconditional elimination to \(R_2 \) to obtain
 \(R_6: (B_{1,1} \rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \)

- Applying And-Elimination to obtain
 \(R_7: ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \)

- Contraposition gives
 \(R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})) \)

- Modus Ponens with \(R_8 \) and the percept \(\neg B_{1,1} \) gives
 \(R_9: \neg (P_{1,2} \lor P_{2,1}) \)

- De Morgan’s rule gives
 \(R_{10}: \neg P_{1,2} \land \neg P_{2,1} \)

 that is, neither \(P_{12} \) nor \(P_{21} \) contains a pit.

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.)

7.5 Propositional Theorem Proving

Conjunctive Normal Form (CNF) – every sentence of propositional logic is *logically equivalent* to a conjunction of clauses. E.g. Convert \(B_{1,1} \leftrightarrow (P_{1,2} \lor P_{2,1}) \) to CNF:

1. Eliminate \(\leftrightarrow \), replacing \(\alpha \leftrightarrow \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)\)

 \((B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})\)

2. Eliminate \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \)

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \)

3. Move \(\neg \) inwards using de Morgan’s rules and double-negation

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor \neg P_{2,1}) \lor B_{1,1})\)

4. Apply distributivity law (\(\lor \) over \(\land \)) and flatten

 \((\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})\)

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.)
7.5 Propositional Theorem Proving

Resolution algorithm: Proof by contradiction, i.e., show $KB \land \neg\alpha$ unsatisfiable

Resolution Example from Wumpus World
7.5 Propositional Theorem Proving

- **Definite clause** – disjunction of literals, of which exactly one is positive e.g. \(\neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4 \)
- **Horn clause** – a disjunction of literals at most one of which is positive e.g. \(\neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4 \)
 - Can be used with forward chaining or backward chaining
 - Deciding entailment is linear in the size of KB
- **Goal clause** – a clause with no positive literals, \(\neg P_1 \lor \neg P_2 \)
- **Forward chaining** – a sound and complete inference algorithm that is essentially Modus Ponens
 - *data-driven reasoning*; reasoning which starts from known data
- **Backward chaining** – *goal-directed reasoning*; reasoning that works backward from goal
 - Often works in much less than linear as it avoids redundant facts
7.5 Propositional Theorem Proving

A set of Horn Clauses

\[
\begin{align*}
P & \rightarrow Q & \neg P \lor Q \\
L \land M & \Rightarrow P & \neg L \lor \neg M \lor P \\
B \land L & \Rightarrow M & \neg B \lor \neg L \lor M \\
A \land P & \Rightarrow L & \neg A \lor \neg P \lor L \\
A \land B & \Rightarrow L & \neg A \lor \neg B \lor L \\
A & & \\
B & &
\end{align*}
\]

And the corresponding AND-OR graph:

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.) 31

7.5 Propositional Theorem Proving

with Resolution

\[
\begin{align*}
KB = \neg P \lor Q, \neg L \lor \neg M \lor P, \neg B \lor \neg L \lor M, \neg A \lor \neg P \lor L, \neg A \lor \neg B \lor L, A, B
\end{align*}
\]

Question: \(KB \models Q ? \)

\[
KB \models Q \text{ if and only if } KB, \neg Q \models \text{false}
\]

So \(Q, \neg P \lor Q, \neg L \lor \neg M \lor P, \neg B \lor \neg L \lor M, \neg A \lor \neg P \lor L, \neg A \lor \neg B \lor L, A, B \)

\[
\begin{align*}
\neg P & \lor Q, \\
\neg L & \lor \neg M \\
\neg B & \lor \neg L \\
\neg A & \lor \neg B \\
\neg B & \\
\text{false (empty clause)}
\end{align*}
\]

(factoring, elimination of duplicate Literals)

Unit resolution (\(l_i \) are literals):

\[
\begin{align*}
\begin{array}{c}
I_1 \lor I_2 \lor \ldots \lor I_n, \quad \neg l_i \\
I_1 \lor I_2 \lor \ldots \lor I_n, \quad (l_i, \text{deleted})
\end{array}
\end{align*}
\]

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.) 32
7.5 Propositional Theorem Proving with Resolution

- **Full Resolution:** \[l_1 \lor l_2 \lor \ldots \lor l_k \lor \neg m_1 \lor \neg m_2 \lor \ldots \lor \neg m_n \]

where the \(l_i \) and \(m_j \) are complementary literals. Multiple copies of a literal are reduced to one (factoring).

Examples:
- \(\neg P \lor Q, \neg L \lor \neg M \lor P \)
- \(\neg B \lor \neg L \lor \neg M \lor P \)
- \(\neg A \lor B, \neg A \lor C \)

\(\neg A \lor B, \neg A \lor C \) cannot be resolved

7.6 Effective Propositional Model Checking

- **Davis-Putnam algorithm (DPLL)** – an algorithm for checking satisfiability based on the fact that satisfiability is commutative. Essentially, it is a DFS method of model checking.

- **Fundamental algorithm:**

 DP(\(clauses, symbols, model \))
 - If (all \(clauses \) are true in \(model \)) return true;
 - If (there is a false \(clause \) in \(model \)) return false;
 - \(P \) = next unassigned symbol in \(symbols \);
 - return DP (\(clauses, symbols, model + \{ P / true \} \)) OR DP (\(clauses, symbols, model + \{ P / false \} \));
7.6 Effective Propositional Model Checking

- Heuristics in the Davis-Putnam algorithm:
 - Early termination – short-circuit logical evaluations.
 A clause is true if any literal in it is true.
 A sentence is false if any clause in it is false.
 - Pure symbol heuristic – a symbol that appears with the same sign in all clauses of a sentence (all positive literals or negative ones).
 - Making these literals true can never make a clause false. Hence, pure symbols are fixed respectively.
 - Unit clause heuristic – assignment of true to unit clauses.
 - unit clause – a clause in which all literals but one have been assigned false.
 - unit propagation – assigning one unit clause creates another cascade of forced assignments.

function DPLL(satisfiable)?(s) returns true or false
inputs: s, a sentence in propositional logic
clauses — the set of clauses in the CNF representation of s
symbols — a list of the propositional symbols in s
return DPLL(clauses, symbols, {})
7.6 Effective Propositional Model Checking

- Tricks to scale up to large SAT problems:
 - Component Analysis (and working on each component separately)
 - Variable and value ordering (choosing the variable that appears most often in remaining clauses)
 - Intelligent backtracking (backing up all the way to the relevant conflict)
 - Random restarts (reduces the variance on the time to solution)
 - Clever indexing (with dynamic indexing structures).

- WalkSAT – a local search algorithm based on the idea of a random walk.
 - Initial assignment is chosen randomly.
 - Repeat until satisfied or “exhausted”.
 - A min-conflicts heuristic (as with CSPs) is used to minimize the number of unsatisfied clauses.
 - A random walk step chooses the symbol to flip.
 - If a satisfying assignment exists, it will be found, eventually.
 - WalkSAT can not guarantee a sentence is unsatisfiable except with high probability.
7.6 Effective Propositional Model Checking

function \textsc{walksat}(\text{clauses}, p, \text{max. flips}) returns a satisfying model or \text{failure}
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
\text{max. flips}, number of flips allowed before giving up

model — a random assignment of \text{true}/\text{false} to the symbols in clauses

for $i = 1$ to \text{max. flips} do
 if model satisfies clauses then return model
 \text{clause} — a randomly selected clause from clauses that is false in model
 with probability p flip the value of a randomly selected symbol in \text{clause}
 else flip whichever symbol in \text{clause} maximizes the number of satisfied clauses

return \text{failure}

Figure 7.15 The \textsc{walksat} algorithm for checking satisfiability by randomly flipping the values of variables. Many versions of the algorithm exist.

7.6 Effective Propositional Model Checking

Hard Satisfiability

- Let m be the number of clauses and n be the number of symbols.
- The ratio m/n is indicative of the difficulty of the problem.
- The probability for satisfiability drops sharply around $m/n = 4.3$.
- underconstrained — relatively small m/n thus making the expected number of satisfying assignments high.
- overconstrained — relatively high m/n thus making the expected number of satisfying assignments low.
- critical point — value of m/n such that the problem is nearly satisfiable and nearly unsatisfiable. Thus, the most difficult cases for satisfiability algorithms

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.) 39
7.7 Propositional Logic Agents

• **Inference-based agent** – an agent that maintains a knowledge base of propositions and uses the inference procedures described above for reasoning.

 • It is beyond the power of propositional logic to efficiently express statements that are true for sets of objects.

 • A proliferation of clauses occurs due to the fact that a different set of clauses is needed for each step in time.

• **Circuit-based agent** – a reflex agent in which percepts are inputs to a sequential circuit – a network of gates (logical connectives) and registers (store truth value of a single proposition)

 • **dataflow** – at each time step, the inputs are set for that time step and signals propagate through the circuit.

 • **delay line** – implements internal state by feeding output of a register back into the register as input at the next time step. The delay is represented as a triangular gate.

 • Circuits can only ascribe true/false values to a variable; no unknowns.
 • requires each variable be represented by 2 knowledge propositions; 1 if the variable is known and the other for the value if known.

 • **locality** – the property of models in which the truth of each proposition can be determined by a constant number of other propositions.

 • **acyclicity** – a circuit such that every cyclical path has a time delay; a requirement for physical implementation.

 • Circuit agents have trouble representing interlocking dependencies → incomplete.
7.7 Propositional Logic Agents

- **Tradeoffs:**
 - **Conciseness** – circuit agents do not need separate copies of knowledge at each point in time whereas inference agents do.
 - **Computational Efficiency** – In worst case, inference is exponential in the number of symbols whereas circuit executes linearly in its size.
 - **Completeness** – An inferential agent is complete whereas a complete circuit-based agent becomes exponentially large in the worst case.
 - **Ease of Construction** – Building small, acyclic, not-too-incomplete circuits is relatively hard to building a declarative description.
 - **Hybrid agent** – tries to get the best of both worlds by implementing reflexes with circuit agents and performing inference when needed for more difficult reasoning.

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.) 43

```plaintext
7.7 Propositional Logic Agents

Function (Wrap up) to handle perceptual input and return an action
Input: (percept: list [sight,hearing,smell,touch,etc])
Output: an action

```

Function: Plan-Action(current,goal,allowed) returns an action sequence
Input: current, the agent's current position
Output: a sequence of actions the agent can perform to
plan to move to a goal while avoiding obstacles

```

---

Zell: Artificial Intelligence (after Russel/Norvig, 3rd Ed.) 44

---